
this print for content only—size & color not accurate 7.5 x 9.25 spine = 1.125" 600 page count

M
orton

Osborne
Sanda

Sham
sudeen

Still
Oracle SQL

THE EXPERT’S VOICE® IN ORACLE

Pro
Oracle SQL

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

Karen Morton, Kerry Osborne, Robyn Sands
Riyaj Shamsudeen, and Jared Still

Companion
eBook Available

Exploit the full power of SQL and
supporting features in Oracle Database

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Oracle SQL
Pro Oracle SQL unlocks the power of SQL in the Oracle Database—one of the
most potent SQL implementations on the market today. To master it requires
a three-pronged approach: learn the language features, learn the supporting
features that Oracle provides to help use the language effectively, and learn to
think and work in sets.

Karen Morton and her team help you master powerful aspects of Oracle
SQL not found in competing databases. You’ll learn analytic functions, the
MODEL clause, and advanced grouping syntax—features that will help in cre-
ating good queries for reporting and business intelligence applications. Pro
Oracle SQL also helps you minimize parsing overhead, read execution plans,
test for correct results, and exert control over SQL execution in your database.
You’ll learn when to create indexes, how to verify that they make a difference,
how to use SQL Profiles to optimize SQL in packaged applications, and much
more. You’ll also understand how SQL is optimized for working in sets, and
that the key to getting accurate results lies in making sure that queries ask
clear and precise questions.

• Endorsed by the OakTable Network, a group of Oracle technologists
 well-known for their rigorous and scientific approach to Oracle Database
 performance.
• Comprehensive – goes beyond the language with a focus on what you need
 to know to write successful queries and data manipulation statements.

Kerry Osborne

US $49.99

Shelve in:
Databases / Oracle

User level:
Intermediate–Advanced

THE APRESS ROADMAP

Expert
Oracle Database

Architecture

Troubleshooting
Oracle Performance

Pro
Oracle SQL

Oracle PL/SQL
Recipes

Beginning
Oracle SQL

Beginning
Oracle PL/SQL

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-3228-5

9 781430 232285

54999

Pro
Karen Morton, Author of

Expert Oracle Practices

Beginning Oracle SQL

Riyaj Shamsudeen,
Author of

Expert Oracle Practices

Jared Still

Robyn Sands, Author of

Expert Oracle Practices

Pro Oracle SQL

Karen Morton

Kerry Osborne

Robyn Sands

Riyaj Shamsudeen

Jared Still

Pro Oracle SQL

Copyright © 2010 by Karen Morton, Kerry Osborne, Robyn Sands, Riyaj Shamsudeen,
and Jared Still

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3228-5

ISBN-13 (electronic): 978-1-4302-3229-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewers: Christopher Beck, Iggy Fernandez, and Bernard Lopuz
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Anita Castro
Copy Editor: Mary Behr
Compositor: Lynn L'Heureux
Indexer: Julie Grady
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC.,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales

iii

Contents at a Glance

About the Authors.. xv
About the Technical Reviewer... xvii
Introduction...xix

Chapter 1: Core SQL...1

Chapter 2: SQL Execution ..29

Chapter 3: Access and Join Methods..61

Chapter 4: SQL is About Sets...105

Chapter 5: It’s About the Question ..129

Chapter 6: SQL Execution Plans ..153

Chapter 7: Advanced Grouping..191

Chapter 8: Analytic Functions ...221

Chapter 9: The Model Clause...251

Chapter 10: Subquery Factoring..283

Chapter 11: Semi-joins and Anti-joins..325

Chapter 12: Indexes ...373

Chapter 13: Beyond the SELECT ..403

Chapter 14: Transaction Processing ...433

Chapter 15: Testing and Quality Assurance..465

Chapter 16: Plan Stability and Control ..497

Index...565

v

Contents

About the Authors.. xv
About the Technical Reviewer... xvii
Introduction...xix

Chapter 1: Core SQL...1

The SQL Language ..1

Interfacing to the Database ...2

Review of SQL*Plus...3

Connect to a Database ..3

Configuring the SQL*Plus environment ..4

Executing Commands ...6

The Five Core SQL Statements ..8

The SELECT Statement..9

The FROM Clause ...10

The WHERE Clause ...11

The GROUP BY Clause...12

The HAVING Clause ...13

The SELECT List..13

The ORDER BY Clause...14

The INSERT Statement ..15

Single-table Inserts ...15

Multi-table Inserts...16

The UPDATE Statement ...18

The DELETE Statement..22

The MERGE Statement ..24

Summary ..27

CONTENTS

vi

Chapter 2: SQL Execution ..29

Oracle Architecture Basics ..29

SGA – The Shared Pool ...31

The Library Cache ...32

Identical Statements..33

SGA – The Buffer Cache ..37

Query Transformation..39

View Merging ..40

Subquery Unnesting ..44

Predicate Pushing ...47

Query Rewrite with Materialized Views ..50

Determining the Execution Plan...52

Executing the Plan and Fetching Rows ..56

SQL Execution – Putting It All Together..59

Summary ..60

Chapter 3: Access and Join Methods..61

Full Scan Access Methods...61

How Full Scan Operations are Chosen ...62

Full Scans and Throwaway..65

Full Scans and Multiblock Reads...66

Full Scans and the Highwater Mark...67

Index Scan Access Methods ..73

Index Structure ...74

Index Scan Types..75

Index Unique Scan ..78

Index range scan...79

Index Full Scan ...81

Index Skip Scan ..85

Index Fast Full Scan ..87

Join Methods ..88

Nested Loops Joins...89

Sort-Merge Joins ..92

CONTENTS

vii

Hash Joins ..94

Cartesian Joins ...96

Outer Joins ...98

Summary ..104

Chapter 4: SQL is About Sets...105

Thinking in Sets ..105

Moving from Procedural to Set-based Thinking ...106

Procedural vs Set-based Thinking: An Example...111

Set Operations ..113

UNION and UNION ALL ..114

MINUS ..117

INTERSECT..119

Sets and Nulls ...119

NULLs and Unintuitive Results...120

NULL Behavior in Set Operations...123

NULLs and GROUP BY and ORDER BY..124

NULLs and Aggregate Functions..126

Summary ..127

Chapter 5: It’s About the Question ..129

Asking Good Questions..129

The Purpose of Questions..130

Categories of Questions...130

Questions about the Question..133

Questions about Data ..135

Building Logical Expressions ...141

Summary ..154

Chapter 6: SQL Execution Plans ..153

Explain Plans...153

Using Explain Plan...153

Understanding How EXPLAIN PLAN can Miss the Mark ..160

Reading the Plan...163

CONTENTS

viii

Execution Plans...166

Viewing Recently Generated SQL...166

Viewing the Associated Execution Plan..166

Collecting the Plan Statistics ...168

Identifying SQL Statements for Later Plan Retrieval ...171

Understanding DBMS_XPLAN in Detail ..174

Using Plan Information for Solving Problems ...180

Summary ..189

Chapter 7: Advanced Grouping..191

Basic GROUP BY Usage ...192

HAVING Clause ..195

“New” GROUP BY Functionality ...197

CUBE Extension to GROUP BY..197

Putting CUBE To Work ...201

Eliminate NULLs with the GROUPING() Function ...207

Extending Reports with GROUPING() ..209

Extending Reports With GROUPING_ID()...210

GROUPING SETS and ROLLUP()..214

GROUP BY Restrictions ..217

Summary ..220

Chapter 8: Analytic Functions ...221

Example Data ..221

Anatomy of Analytic Functions...222

List of Functions..223

Aggregation Functions...224

Aggregate Function Over An Entire Partition ..225

Granular Window Specifications ..226

Default Window Specification..227

Lead and Lag ..227

Syntax and Ordering ...227

Example 1: Returning a Value from Prior Row ...227

Understanding that Offset is in Rows...228

Example 2: Returning a Value from an Upcoming Row ..229

CONTENTS

ix

First_value & Last_value ...230

Example: First_value to Calculate Maximum ...231

Example: Last_value to Calculate Minimum ..231

Other Analytic Functions..232

Nth_value (11gR2) ..232

Rank ...234

Dense_rank ..235

Row_number ..236

Ratio_to_report...237

Percent_rank ..238

Percentile_cont...238

Percentile_disc ...240

NTILE..241

Stddev ..242

Listagg..243

Performance Tuning..243

Execution Plans...244

Predicates...244

Indexes ...246

Advanced topics..246

Dynamic SQL ..247

Nesting Analytic Functions ..248

Parallelism..249

PGA size ...250

Organizational Behavior...250

Summary ..250

Chapter 9: The Model Clause...251

Spreadsheets ..251

Inter-Row Referencing via the Model clause..252

Example Data..252

Anatomy of a Model Clause...253

Rules ..254

Positional and Symbolic References ..255

Positional Notation ..256

CONTENTS

x

Symbolic Notation ...257

FOR Loops ..258

Returning Updated Rows ...258

Evaluation Order..260

Row Evaluation Order..260

Rule Evaluation Order..262

Aggregation...263

Iteration ..264

An Example...265

PRESENTV and NULLs ...266

Lookup Tables...267

NULLs ...269

Performance Tuning with the Model Clause...271

Execution Plans...271

Predicate Pushing ...274

Materialized Views ..276

Parallelism..277

Partitioning in Model Clause Execution ..278

Indexes ...280

Subquery Factoring ...281

Summary ..282

Chapter 10: Subquery Factoring..283

Standard Usage...283

Optimizing SQL ...286

Testing Execution Plans ..286

Testing Over Multiple Executions...290

Testing the Effects of Query Changes..293

Seizing Other Optimization Opportunities...296

Applying Subquery Factoring to PL/SQL ..301
Recursive Subqueries..304

A CONNECT BY Example ...304
The Example Using an RSF..306
Restrictions on RSF...307
Differences from CONNECT BY. ...308

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CONTENTS

xi

Duplicating CONNECT BY Functionality ..309

The LEVEL Pseudocolumn ...309

The SYS_CONNECT_BY_PATH Function ..311

The CONNECT_BY_ROOT Operator..313

The CONNECT_BY_ISCYCLE Pseudocolumn and NOCYCLE Parameter.................................316

The CONNECT_BY_ISLEAF Pseudocolumn ..319

Summary ..324

Chapter 11: Semi-joins and Anti-joins..325

Semi-joins...325

Semi-join Plans ...334

Controlling Semi-join Plans ...339

Controlling Semi-join Plans Using Hints ...339

Controlling Semi-join Plans at the Instance Level ..342

Semi-join Restrictions ...345

Semi-join Requirements ..347

Anti-joins ..347

Anti-join Plans...353

Controlling Anti-join Plans ...363

Controlling Anti-join Plans Using Hints...363

Controlling Anti-join Plans at the Instance Level ..364

Anti-join Restrictions ...367

Anti-join Requirements..371

Summary ..371

Chapter 12: Indexes ...373

Understanding Indexes ..374

When to use Indexes...374

Choice of Columns ..376

The Null Issue ...378

Index Structural Types...379

B-tree indexes ..379

Bitmap Indexes ...380

Index Organized Tables ...381

CONTENTS

xii

Partitioned Indexes..383

Local Indexes..384

Global Indexes ..385

Hash Partitioning vs. Range Partitioning ..386

Solutions to Match Application Characteristics...390

Compressed Indexes...390

Function Based Indexes ..392

Reverse Key Indexes ...395

Descending Indexes ..396

Solutions to Management Problems ..397

Invisible Indexes..397

Virtual Indexes ..399

Bitmap Join Indexes..400

Summary ..402

Chapter 13: Beyond the SELECT ..403

INSERT..403

Direct Path Inserts ..403

Multi-Table Inserts ..406

Conditional Insert ..407

DML Error Logging ..409

UPDATE...417

DELETE ...424

MERGE..428

Syntax and Usage ...428

Performance Comparison..432

Summary ..435

Chapter 14: Transaction Processing ...433

What is a Transaction? ..433

ACID Properties of a Transaction ...434

Transaction Isolation Levels ..435

Multi-Version Read Consistency ..437

CONTENTS

xiii

Transaction Control Statements...438

Commit...438

Savepoint..438

Rollback..438

Set Transaction...438

Set Constraints ...439

Grouping Operations into Transactions ..439

The Order Entry Schema ...440

The Active Transaction ..447

Using Savepoints...449

Serializing Transactions ..452

Isolating Transactions ...455

Autonomous Transactions ...458

Summary ..463

Chapter 15: Testing and Quality Assurance..465

Test Cases ..466

Testing Methods..467

Unit Tests..468

Regression Tests...472

Schema Changes ..472

Repeating the Unit Tests ...476

Execution Plan Comparison ...478

Instrumentation...484

Adding Instrumentation to Code...484

Testing for Performance ..488

Testing to Destruction ...490

Troubleshooting through Instrumentation ..491

Summary ..495

Chapter 16: Plan Stability and Control ..497

Plan Instability: Understanding The Problem ..497

Changes to Statistics ..498

Changes to the Environment ...500

CONTENTS

xiv

Changes to the SQL ..502

Bind Variable Peeking ...502

Identifying Plan Instability..505

Capturing Data on Currently-Running Queries ...505

Reviewing the History of a Statement’s Performance...506

Aggregating Statistics by Plan...508

Looking for Statistical Variance by Plan ...509

Checking for Variations Around a Point in Time ...511

Plan Control: Solving the Problem..513

Modifying Query Structure...513

Making Appropriate Use of Literals..514

Giving the Optimizer some Hints..514

Plan Control: Without Access to the Code) ...522

Option 1: Change the Statistics ...523

Option 2: Change Database Parameters ..525

Option 3: Add or Remove Access Paths ...525

Option 4: Apply Hint Based Plan-Control Mechanisms ...526

Outlines ..526

SQL Profiles ..538

SQL Plan Baselines ...555

Hint Based Plan Control Mechanisms Wrap Up ..562

Conclusion ..562

Index...565

xv

About the Authors

KAREN MORTON is a consultant and educator specializing in
application optimization in both shoulder-to-shoulder consulting
engagements and classroom settings. She is a Senior DBA Performance
and Tuning Specialist for Fidelity Information Services. For over 20
years, Karen has worked in information technology. Starting as a
mainframe programmer and developer, she has been a DBA, a data
architect, and now is a researcher, educator, and consultant. Having
used Oracle since the early 90s, she began teaching others how to use
Oracle over a decade ago.

Karen is a frequent speaker at conferences and user groups, an
Oracle ACE, and a member of the OakTable network (an informal association of “Oracle
scientists” that are well known throughout the Oracle community). She blogs at
karenmorton.blogspot.com.

KERRY OSBORNE began working with Oracle (version 2) in 1982. He
has worked as both a developer and a DBA. For the past several years,
he has been focused on understanding Oracle internals and solving
performance problems. He is an OakTable member and is the author of
an upcoming Apress book on Exadata. Kerry is a frequent speaker at
Oracle conferences. Mr. Osborne is also a co-founder of Enkitec, an
Oracle-focused consulting company headquartered in Dallas, Texas.
He blogs at kerryosborne.oracle-guy.com.

ABOUT THE AUTHORS

xvi

ROBYN SANDS is a software engineer for Cisco Systems, where she
designs and develops embedded Oracle database products for Cisco
customers. She has been working with Oracle since 1996, and has
extensive experience in application development, large system
implementations, and performance measurement. Robyn began her
work career in industrial and quality engineering, and has combined
her prior education and experience with her love of data by searching
for new ways to build database systems with consistent performance
and minimal maintenance requirements. She is a member of the
OakTable network and a co-author of Expert Oracle Practices: Oracle
Database Administration from the Oak Table (Apress, 2010). Robyn

occasionally posts random blog entries at adhdocddba.blogspot.com.

RIYAJ SHAMSUDEEN is the principal DBA and President of
OraInternals, a performance/recovery/E-Business consulting company.
He specializes in RAC, performance tuning, and database internals. He
frequently blogs about these technology areas in his blog
orainternals.wordpress.com. He is also a regular presenter in US and
international conferences. He is a proud member of OakTable network
and an Oracle ACE. He has 19 years of experience using Oracle
technology products and 18 years as an Oracle DBA/Oracle
Applications DBA.

JARED STILL has been wrangling Oracle databases for longer than he
cares to remember. During that time he has learned enough about SQL
to realize that there will always be more to learn about SQL. He believes
that everyone that queries an Oracle database should gain enough
mastery of the SQL language that writing effective queries should
become second nature. He participation as a co-author of Pro Oracle
SQL is one way to help others achieve that goal. When Jared isn't
managing databases, he likes to tinker with and race fast cars.

xvii

About the Technical Reviewers

CHRISTOPHER BECK has a degree in computer science from Rutgers
University and has been working with multiple DBMSs for more than 19
years. He has spent the last 15 years as an Oracle employee where he is
currently a Master Principal Technologist focusing on core database
technologies. He is a co-inventor of two U.S. Patents on software
methodologies that were the basis for what is now known as Oracle
Application Express. Chris has reviewed other Oracle books including
Expert One-On-One (Peer Information, 2001) and Expert Oracle
Database Architecture (Apress, 2005), both by Tom Kyte, and is himself
the co-author of two books, Beginning Oracle Programming (Apress,
2003) and Mastering Oracle PL/SQL (Apress, 2004). He resides in

Northern Virginia with his wife Marta and 4 children; when not spending time with them, he
can usually be found wasting time playing video games or watching Serie A football.

IGGY FERNANDEZ has a rich history of working with Oracle Database

in many capacities. He is the author of Beginning Oracle Database 11g
Administration (Apress, 2009) and the editor of the NoCOUG Journal.
He writes a regular column called “The SQL Corner” for the NoCOUG
Journal and regularly speaks on SQL topics at Oracle conferences. He
has a lot of opinions but is willing to change them when confronted
with fresh facts. His favorite quote is “A foolish consistency is the
hobgoblin of little minds, adored by little statesmen and philosophers
and divines. Speak what you think now in hard words, and tomorrow
speak what tomorrow thinks in hard words again, though it contradict
everything you said today.” (Ralph Waldo Emerson, Self-Reliance and
Other Essays.)

ABOUT THE TECHNICAL REVIEWERS

xviii

BERNARD LOPUZ has been a senior technical support analyst at
Oracle Corporation since 2001, and he is an Oracle Certified
Professional (OCP). Before he became an Oracle DBA, he was a
programmer developing Unisys Linc and Oracle applications, as well as
interactive voice response (IVR) applications such as telephone banking
voice-processing applications. Bernard was coauthor of the Linux
Recipes for Oracle DBAs (Apress, 2008) and technical reviewer of two
other books, namely, Oracle RMAN Recipes (Apress, 2007) and Pro
Oracle Database 11g Administration (Apress, 2010). He has a bachelor’s
degree in computer engineering from the Mapúa Institute of
Technology in Manila, Philippines. Bernard was born in Iligan,

Philippines, and now resides in Ottawa, Canada, with his wife, Leizle, and daughters, Juliet
and Carol. Aside from tinkering with computers, Bernard is a soccer and basketball fanatic.

xix

Acknowledgments

I want to thank my fellow authors for all their hard work. This book is the result of many hours
of your personal time and I appreciate every minute you spent to produce this excellent work.
I'd also like to thank my family who graciously supported me during the long hours I had my
nose stuck in my computer working. Your encouragement to take on this project was the main
reason I decided to do so. Thanks for always believing in me.

Karen Morton

I'd like to dedicate this work to my family. My wife Jill and my kids Jordan, Jacob, Noah, and
Lindsey have put up with me while I sat around with a far off look in my eyes (usually I
wondering why my Mac wouldn't apply the right fonts to my examples). Seriously though,
anyone who writes a book sacrifices a lot of time to do so. Writers undertake these projects for
various reasons, but it is their choice. The people that care about them, though, also end up
sacrificing a lot, through no fault of their own. So I am thankful for my family and the patience
they have shown with me and for even occasionally pretending to be mildly interested in what
I writing about.

Kerry Osborne
Enkitec

blog: kerryosborne.oracle-guy.com

Thank you to the Oracle community in general and the OakTable network specifically for all
the support and encourage over the years. Your examples motivated me to continue to learn,
and the information you shared made it possible.

Robyn Sands

I dedicate this book to my lovely wife Nisha Riyaj.

Riyaj Shamsudeen

ACKNOWLEDGMENTS

xx

My portion of this book is dedicated to my wife Carla. She patiently tolerated the many late
nights I spent in the home office, creating example SQL queries and writing text to explain
them. Without her support I just couldn't do this.

I have spent a large portion of my DBA career working as a lone DBA, without a team of
DBA peers to call on when needed. The online Oracle communities in their many forms have
filled that void nicely. In particular, I would like to acknowledge those that participate in the
Oracle-L mailing list at www.freelists.org/list/oracle-l. Though this is now considered an old
fashioned form of social media, the members of the Oracle-L community are quite
knowledgeable and always willing to share their expertise. Much of what I have learned has
been through participation in this forum.

Jared Still

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.freelists.org/list/oracle-l

C H A P T E R 1

1

Core SQL

Karen Morton

Whether you’re relatively new to writing SQL or you’ve been writing it for years, learning to write
“good” SQL is a process that requires a strong foundation knowledge of core syntax and concepts. This
chapter provides a review of the core concepts of the SQL language and its capabilities along with
descriptions of the common SQL commands with which you should already be familiar. For those of
you who have worked with SQL previously and have a good grasp on the basics, this will be a brief
refresher, and it will prepare you for the more detailed treatment of SQL we’ll cover in the chapters
ahead. If you’re a new SQL user, you may want to read Beginning Oracle SQL first to make sure you’re
comfortable with the basics. Either way, Chapter 1 is intended to “level set” you with a whirlwind tour
of the five core SQL statements and provide a quick review of the tool we’ll be using to execute SQL,
SQL*Plus.

The SQL Language
The SQL language was originally developed in the 1970s by IBM and called Structured English QUEry
Language, or SEQUEL. The language was based on the model for relational database management
systems (RDBMS) developed by E.F. Codd in 1969. The acronym was later shortened to SQL due to a
trademark dispute. In 1986, ANSI adopted SQL as a standard, and in 1987, ISO did so as well. A piece of
not-so-common knowledge is that the official pronunciation of the language was declared to be “ess
queue ell” by ANSI. Most people, including me, still use the sequel pronunciation just because it flows a
bit easier linguistically.

The purpose of SQL is to simply provide an interface to the database, in our case, Oracle. Every
SQL statement is a command, or instruction, to the database. It differs from other programming
languages like C and Java in that it is intended to process data in sets, not individual rows. The
language also doesn’t require that you provide instructions on how to navigate to the data—that
happens transparently under the covers. But, as you’ll see in the chapters ahead, knowing about your
data and how and where it is stored can be very important if you want to write efficient SQL in Oracle.

While there are minor differences in how vendors (like Oracle, IBM and Microsoft) implement the
core functionality of SQL, the skills you learn in one database will transfer to another. You will be able
to use basically the same SQL statements to query, insert, update, and delete data and create, alter, and
drop objects regardless of the database vendor.

Although SQL is the standard for use with various RDBMS, it is not particularly relational in
practice. I’ll expand on this a bit later in the book; I would also recommend that you read C.J. Date’s
book entitled SQL and Relational Theory for a more detailed review. Keep in mind that the SQL
language doesn’t always follow the relational model precisely—it doesn’t implement some elements
of the relational model at all while implementing other elements improperly. The fact remains that

CHAPTER 1 CORE SQL

2

since SQL is based on this model you must not only understand SQL but you must understand the
relational model as well in order to write SQL as correctly and efficiently as possible.

Interfacing to the Database
Numerous ways have been developed over the years for transmitting SQL to a database and getting
results back. The native interface to the Oracle database is the Oracle Call Interface (OCI). The OCI
powers the queries that are sent by the Oracle kernel internally to the database. You use the OCI anytime
you use one of Oracle’s tools like SQL*Plus or SQL Developer. Various other Oracle tools like
SQL*Loader, Data Pump, and Real Application Testing (RAT) use OCI as well as language specific
interfaces such as Oracle JDBC-OCI, ODP.Net, Oracle Precompilers, Oracle ODBC, and the Oracle C++
Call Interface (OCCI) drivers.

When you use programming languages like COBOL or C, the statements you write are known as
Embedded SQL statements and are preprocessed by a SQL preprocessor before the application
program is compiled. Listing 1-1 shows an example of a SQL statement that could be used within a
C/C++ block.

Listing 1-1. Embedded SQL Statement Used Within C/C++ Block

{
int a;
/* ... */
EXEC SQL SELECT salary INTO :a

 FROM hr.employees
 WHERE employee_id = 108;

/* ... */
printf("The salary is %d\n", a);
/* ... */

}

Other tools, like SQL*Plus and SQL Developer, are interactive tools. You enter and execute
commands, and the output is displayed back to you. Interactive tools don’t require you to explicitly
compile your code before running it. You simply enter the command you wish to execute. Listing 1-2
shows an example of using SQL*Plus to execute a statement.

Listing 1-2. Using SQL*Plus to Execute a SQL Statement

SQL> select salary
 2 from hr.employees
 3 where employee_id = 108;

 SALARY

 12000

In this book, we’ll use SQL*Plus for our example listings just for consistency, but keep in mind that

whatever method or tool you use to enter and execute SQL statements, everything ultimately goes

CHAPTER 1 CORE SQL

3

through the OCI. The bottom line is that the tool you use doesn’t matter, the native interface is the
same for all.

Review of SQL*Plus
SQL*Plus is a command line tool provided with every Oracle installation regardless of platform
(Windows, Unix). It is used to enter and execute SQL commands and to display the resulting output in a
text-only environment. The tool allows you to enter and edit commands, save and execute commands
individually or via script files, and display the output in nicely formatted report form. To start
SQL*Plus you simply start sqlplus from your host’s command prompt.

Connect to a Database
There are multiple ways to connect to a database from SQL*Plus. Before you can connect however, you
will likely need to have entries for the databases you will need to connect to entered in the
$ORACLE_HOME/network/admin/tnsnames.ora file. Two common ways are to supply your connection
information when you start SQL*Plus, as shown in Listing 1-3; the other is to use the SQL*Plus connect
command after SQL*Plus starts, as shown in Listing 1-4.

Listing 1-3. Connecting to SQL*Plus from the Windows Command Prompt

E:\pro_oracle_sql>sqlplus hr@ora11r2

SQL*Plus: Release 11.2.0.1.0 - Production on Sun Jun 6 11:22:24 2010

Copyright (c) 1982, 2010, Oracle. All rights reserved.
Enter password:

Connected to:
Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production
With the Partitioning, OLAP and Data Mining and Real Appliation Testing
options

SQL>

To start SQL*Plus without being prompted to login to a database, you can start SQL*Plus with the

/nolog option.

Listing 1-4. Connecting to SQL*Plus and Logging into the Database from The SQL> Prompt

E:\pro_oracle_sql>sqlplus /nolog

SQL*Plus: Release 11.2.0.1.0 - Production on Sun Jun 6 11:22:24 2010

Copyright (c) 1982, 2010, Oracle. All rights reserved.

SQL> connect hr@ora11r2
Enter password:
Connected.
SQL>

CHAPTER 1 CORE SQL

4

Configuring the SQL*Plus environment
SQL*Plus has numerous commands that allow you to customize the working environment and display
options. Listing 1-5 shows the SQL*Plus commands available after entering the SQL*Plus help index
command at the SQL> prompt.

Listing 1-5. SQL*Plus Command List

SQL> help index

Enter Help [topic] for help.

@ COPY PAUSE SHUTDOWN
@@ DEFINE PRINT SPOOL
/ DEL PROMPT SQLPLUS
ACCEPT DESCRIBE QUIT START
APPEND DISCONNECT RECOVER STARTUP
ARCHIVE LOG EDIT REMARK STORE
ATTRIBUTE EXECUTE REPFOOTER TIMING
BREAK EXIT REPHEADER TTITLE
BTITLE GET RESERVED WORDS (SQL) UNDEFINE
CHANGE HELP RESERVED WORDS (PL/SQL) VARIABLE
CLEAR HOST RUN WHENEVER OSERROR
COLUMN INPUT SAVE WHENEVER SQLERROR
COMPUTE LIST SET XQUERY
CONNECT PASSWORD SHOW

The set command is the primary command used for customizing your environment settings.

Listing 1-6 shows the help text for the set command.

Listing 1-6. SQL*Plus SET Command

SQL> help set

 SET

 Sets a system variable to alter the SQL*Plus environment settings
 for your current session. For example, to:
 - set the display width for data
 - customize HTML formatting
 - enable or disable printing of column headings
 - set the number of lines per page

 SET system_variable value

CHAPTER 1 CORE SQL

5

 where system_variable and value represent one of the following clauses:

APPI[NFO]{OFF|ON|text} NEWP[AGE] {1|n|NONE}
ARRAY[SIZE] {15|n} NULL text
AUTO[COMMIT] {OFF|ON|IMM[EDIATE]|n} NUMF[ORMAT] format
AUTOP[RINT] {OFF|ON} NUM[WIDTH] {10|n}
AUTORECOVERY {OFF|ON} PAGES[IZE] {14|n}
AUTOT[RACE] {OFF|ON|TRACE[ONLY]} PAU[SE] {OFF|ON|text}
 [EXP[LAIN]] [STAT[ISTICS]] RECSEP {WR[APPED]|EA[CH]|OFF}
BLO[CKTERMINATOR] {.|c|ON|OFF} RECSEPCHAR {_|c}
CMDS[EP] {;|c|OFF|ON} SERVEROUT[PUT] {ON|OFF}
COLSEP {_|text} [SIZE {n | UNLIMITED}]
CON[CAT] {.|c|ON|OFF} [FOR[MAT] {WRA[PPED] |
COPYC[OMMIT] {0|n} WOR[D_WRAPPED] |
COPYTYPECHECK {ON|OFF} TRU[NCATED]}]
DEF[INE] {&|c|ON|OFF} SHIFT[INOUT] {VIS[IBLE] |
DESCRIBE [DEPTH {1|n|ALL}] INV[ISIBLE]}
 [LINENUM {OFF|ON}] [INDENT {OFF|ON}] SHOW[MODE] {OFF|ON}
ECHO {OFF|ON} SQLBL[ANKLINES] {OFF|ON}
EDITF[ILE] file_name[.ext] SQLC[ASE] {MIX[ED] |
EMB[EDDED] {OFF|ON} LO[WER] | UP[PER]}
ERRORL[OGGING] {ON|OFF} SQLCO[NTINUE] {> | text}
 [TABLE [schema.]tablename] SQLN[UMBER] {ON|OFF}
 [TRUNCATE] [IDENTIFIER identifier] SQLPLUSCOMPAT[IBILITY]
 {x.y[.z]}
ESC[APE] {\|c|OFF|ON} SQLPRE[FIX] {#|c}
ESCCHAR {@|?|%|$|OFF} SQLP[ROMPT] {SQL>|text}
EXITC[OMMIT] {ON|OFF} SQLT[ERMINATOR] {;|c|ON|OFF}
FEED[BACK] {6|n|ON|OFF} SUF[FIX] {SQL|text}
FLAGGER {OFF|ENTRY|INTERMED[IATE]|FULL} TAB {ON|OFF}
FLU[SH] {ON|OFF} TERM[OUT] {ON|OFF}
HEA[DING] {ON|OFF} TI[ME] {OFF|ON}
HEADS[EP] {||c|ON|OFF} TIMI[NG] {OFF|ON}
INSTANCE [instance_path|LOCAL] TRIM[OUT] {ON|OFF}
LIN[ESIZE] {80|n} TRIMS[POOL] {OFF|ON}
LOBOF[FSET] {1|n} UND[ERLINE] {-|c|ON|OFF}
LOGSOURCE [pathname] VER[IFY] {ON|OFF}
LONG {80|n} WRA[P] {ON|OFF}
LONGC[HUNKSIZE] {80|n} XQUERY {BASEURI text|
MARK[UP] HTML [OFF|ON] ORDERING{UNORDERED|
 [HEAD text] [BODY text] [TABLE text] ORDERED|DEFAULT}|
 [ENTMAP {ON|OFF}] NODE{BYVALUE|BYREFERENCE|
 [SPOOL {OFF|ON}] DEFAULT}|
 [PRE[FORMAT] {OFF|ON}] CONTEXT text}
SQL>

CHAPTER 1 CORE SQL

6

Given the number of commands available, you can easily customize your environment to best suit
you. One thing to keep in mind is that the set commands aren’t retained by SQL*Plus when you
exit/close the tool. Instead of typing in each of the set commands you want to apply each time you use
SQL*Plus, you can create a file named login.sql. There are actually two files which SQL*Plus reads by
default each time you start it. The first is glogin.sql and it can be found in the directory
$ORACLE_HOME/sqlplus/admin. If this file is found, it is read and the statements it contains are executed.
This will allow you to store the SQL*Plus commands and SQL statements that customize your
experience across SQL*Plus sessions.

After reading glogin.sql, SQL*Plus looks for the login.sql file. This file must exist in either the
directory from which SQL*Plus was started or in a directory included in the path the environment
variable SQLPATH points to. Any commands in login.sql will take precedence over those in
glogin.sql. Since 10g, Oracle reads both glogin.sql and login.sql each time you either start SQL*Plus
or execute the connect command from within SQL*Plus. Prior to 10g, the login.sql script was only
executed when SQL*Plus started. The contents of a common login.sql file are shown in Listing 1-7.

Listing 1-7. A Common login.sql File

SET LINES 3000
Sets width of display line (default 80 characters)
SET PAGES 1000
Sets number of lines per page (default 14 lines)
SET TIMING ON
Sets display of elapsed time (default OFF)
SET NULL <null>
Sets display of nulls to show <null> (default empty)
SET SQLPROMPT '&_user@&_connect_identifier> '
Sets the prompt to show connected user and instance

Note the use of the variables _user and _connect_identifier in the SET SQLPROMPT command.

These are two examples of predefined variables. You may use any of the following predefined
variables in your login.sql file or in any other script file you may create:

• _connect_identifier

• _date

• _editor (This variable specifies the editor which is started when you use the edit command.)

• _o_version

• _o_release

• _privilege

• _sqlplus_release

• _user

Executing Commands
There are two types of commands that can be executed within SQL*Plus: SQL statements and SQL*Plus
commands. The SQL*Plus commands shown in Listing 1-5 and 1-6 are specific to SQL*Plus and can be
used for customizing the environment and executing commands that are specific to SQL*Plus, like

CHAPTER 1 CORE SQL

7

DESCRIBE and CONNECT. Executing a SQL*Plus command requires only that you type the command at the
prompt and hit Enter. The command is automatically executed. On the other hand, in order to execute
SQL statements, you must use a special character to indicate you wish to execute the entered command.
You may use either a semi-colon (;) or a forward slash (/). A semi-colon may be placed directly at the
end of the typed command or on a following blank line. The forward slash must be placed on a blank
line in order to be recognized. Listing 1-8 shows how these two execution characters are used.

Listing 1-8. Execution Character Usage

SQL>select empno, deptno from scott.emp where ename = 'SMITH' ;
 EMPNO DEPTNO
---------- ----------
 7369 20
SQL>select empno, deptno from scott.emp where ename = 'SMITH'
 2 ;
 EMPNO DEPTNO
---------- ----------
 7369 20
SQL>select empno, deptno from scott.emp where ename = 'SMITH'
 2 /
 EMPNO DEPTNO
---------- ----------
 7369 20
SQL>select empno, deptno from scott.emp where ename = 'SMITH'
 2
SQL>/
 EMPNO DEPTNO
---------- ----------
 7369 20
SQL>select empno, deptno from scott.emp where ename = 'SMITH'/
 2
SQL>l
 1* select empno, deptno from scott.emp where ename = 'SMITH'/
SQL>/
select empno, deptno from scott.emp where ename = 'SMITH'/
 *
ERROR at line 1:
ORA-00936: missing expression

Notice the fifth example that puts the / at the end of the statement. The cursor moves to a new line
instead of executing the command immediately. Then, if you press Enter again, the statement is
entered into the SQL*Plus buffer but not executed. In order to view the contents of the SQL*Plus buffer,
the list command is used (abbreviated to only l). If you then attempt to execute the statement in the
buffer using /, which is how the / command is intended to be used, you get an error. That’s because you
had typed in the / on the end of the SQL statement line originally. The / is not a valid SQL command
and thus causes an error when the statement attempts to execute.

CHAPTER 1 CORE SQL

8

Another way to execute commands is to place them in a file. You can produce these files with the
text editor of your choice outside of SQL*Plus or you may invoke an editor directly from SQL*Plus using
the EDIT command. The EDIT command will either open a named file or create a file if it doesn’t exist.
The file must be in the default directory or you must specify the full path. To set the editor to one of
your choice, you simply set the predefined _editor variable using the following command: define
_editor=’/<full path>/myeditor.exe’. Files with the extension of .sql will execute without having to
include the extension and can be ran using either the @ or START command. Listing 1-9 shows the use of
both commands.

Listing 1-9. Executing .sql Script Files

SQL> @list_depts
 DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON
SQL>
SQL> start list_depts
DEPTNO DNAME LOC
---------- -------------- -------------
 10 ACCOUNTING NEW YORK
 20 RESEARCH DALLAS
 30 SALES CHICAGO
 40 OPERATIONS BOSTON
SQL>
SQL>l
 1* select * from scott.dept
SQL>

SQL*Plus has many features and options—way too many to cover here. For what we’ll need in this
book, this brief overview should suffice. However, the Oracle documentation provides guides for
SQL*Plus usage and there are numerous books, including Beginning Oracle SQL, that go into more
depth if you’re interested.

The Five Core SQL Statements
The SQL language contains many different statements. In your professional career you may end up
using just a small percentage of what is available to you. But isn’t that the case with almost any
product you use? I once heard a statistic quoted stating that most people use 20 percent or less of the
functionality available in the software products or programming languages they regularly use. I don’t
know if that’s actually true or not, but in my experience, it seems fairly accurate. I have found the same
basic SQL statement formats in use within most applications for almost 20 years. Very few people ever
use everything SQL has to offer—and often improperly implement those they do use frequently.
Obviously, we will not be able to cover all the statements and their options found in the SQL language.
This book is intended to provide you deeper insight into the most commonly used statements and help
you learn to apply them more effectively.

CHAPTER 1 CORE SQL

9

In this book, we will examine five of the most frequently used SQL statements. These statements
are SELECT, INSERT, UPDATE, DELETE, and MERGE. Although we’ll address each of these core statements in
some fashion, the focus will be primarily on the SELECT statement. Developing a good command of
these five statements will provide a strong foundation for your day-to-day work with the SQL
language.

The SELECT Statement
The SELECT statement is used to retrieve data from one or more tables or other database objects. You
should already be familiar with the basics of the SELECT statement so instead of reviewing the
statement from that beginner point of view, I wanted to review how a SELECT statement processes
logically. You should have already learned the basic clauses that form a common SELECT statement, but
in order to build the foundation mindset you’ll need to write well-formed and efficient SQL
consistently, you need to understand how SQL processes.

How a query statement is processed logically may be quite different from its actual physical
processing. The Oracle cost-based optimizer (CBO) is responsible for generating the actual execution
plan for a query and we will cover what the optimizer does, how it does it, and why in the chapters
ahead. For now, note that the optimizer will determine how to access tables and in which order to
process them, and how to join multiple tables and apply filters. The logical order of query processing
occurs in a very specific order. However, the steps the optimizer chooses for the physical execution
plan can end up actually processing the query in a very different order. Listing 1-10 shows a query
stub containing the main clauses of a SELECT statement with step numbers assigned to each clause in
the order it is logically processed.

Listing 1-10. Logical Query Processing Order

5 SELECT <column list>
1 FROM <source object list>
1.1 FROM <left source object> <join type>
 JOIN <right source object> ON <on predicates>
2 WHERE <where predicates>
3 GROUP BY <group by expression(s)>
4 HAVING <having predicates>
6 ORDER BY <order by list>

You should notice right away that SQL differs from other programming languages in that the first
written statement (the SELECT) is not the first line of code that is processed; the FROM clause is processed
first. Note that I have shown two different FROM clauses in this listing. The one marked as 1.1 is
provided to show the difference when ANSI syntax is used. It may be helpful to imagine that each step
in the processing order creates a temporary dataset. As each step is processed, the dataset is
manipulated until a final result is formulated. It is this final result set of data that the query returns to
the caller.

In order to walk through each part of the SELECT statement in more detail, you’ll use the query in
Listing 1-11 that returns a result set containing a list of female customers that have placed more than
four orders.

CHAPTER 1 CORE SQL

10

Listing 1-11. Female Customers Who Have Placed More Than Four Orders

SQL> select c.customer_id, count(o.order_id) as orders_ct
 2 from oe.customers c
 3 join oe.orders o
 4 on c.customer_id = o.customer_id
 5 where c.gender = 'F'
 6 group by c.customer_id
 7 having count(o.order_id) > 4
 8 order by orders_ct, c.customer_id
 9 /
CUSTOMER_ID ORDERS_CT
----------- ----------
 146 5
 147 5

The FROM Clause

The FROM clause lists the source objects from which data is selected. This clause can contain tables,
views, materialized views, partitions or subpartitions, or may specify a subquery that identifies objects.
If multiple source objects are used, this logical processing phase also applies each join type and ON
predicates (shown as step 1.1). You’ll cover join types in more detail later but note that as joins are
processed, they occur in the following order:

1. Cross join, also called a Cartesian product
2. Inner join
3. Outer join

In the example query in Listing 1-11, the FROM clause lists two tables: customers and orders. They
are joined on the customer_id column. So, when this information is processed, the initial dataset that
will be produced by the FROM clause will include rows where the customer_id matches in both tables.
The result set will contain 105 rows at this point. To verify this is true, simply execute only the first
four lines of the example query as shown in Listing 1-12.

Listing 1-12. Partial Query Execution Through the FROM Clause Only

SQL> select c.customer_id cust_id, o.order_id ord_id, c.gender
 2 from oe.customers c
 3 join oe.orders o
 4 on c.customer_id = o.customer_id;

CUST_ID ORD_ID G CUST_ID ORD_ID G CUST_ID ORD_ID G
------- ------ - ------- ------ - ------- ------ -
 147 2450 F 101 2430 M 109 2394 M
 147 2425 F 101 2413 M 116 2453 M
 147 2385 F 101 2447 M 116 2428 M
 147 2366 F 101 2458 M 116 2369 M
 147 2396 F 102 2431 M 116 2436 M

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1 CORE SQL

11

 148 2451 M 102 2414 M 117 2456 M
 148 2426 M 102 2432 M 117 2429 M
 148 2386 M 102 2397 M 117 2370 M
 148 2367 M 103 2437 F 117 2446 M
 148 2406 M 103 2415 F 118 2457 M
 149 2452 M 103 2433 F 118 2371 M
 149 2427 M 103 2454 F 120 2373 M
 149 2387 M 104 2438 F 121 2374 M
 149 2368 M 104 2416 F 122 2375 M
 149 2434 M 104 2355 F 123 2376 F
 150 2388 M 104 2354 F 141 2377 M
 151 2389 M 105 2439 F 143 2380 M
 152 2390 M 105 2417 F 144 2445 M
 153 2391 M 105 2356 F 144 2422 M
 154 2392 F 105 2358 F 144 2382 M
 155 2393 M 106 2441 M 144 2363 M
 156 2395 F 106 2418 M 144 2435 M
 157 2398 M 106 2359 M 145 2448 M
 158 2399 M 106 2381 M 145 2423 M
 159 2400 M 107 2442 F 145 2383 M
 160 2401 M 107 2419 F 145 2364 M
 161 2402 M 107 2360 F 145 2455 M
 162 2403 M 107 2440 F 119 2372 M
 163 2404 M 108 2443 M 142 2378 M
 164 2405 M 108 2420 M 146 2449 F
 165 2407 M 108 2361 M 146 2424 F
 166 2408 F 108 2357 M 146 2384 F
 167 2409 M 109 2444 M 146 2365 F
 169 2411 F 109 2421 M 146 2379 F
 170 2412 M 109 2362 M 168 2410 M
105 rows selected.

NOTE I formatted the result of this output manually to make it fit nicely on the page. The actual output was

displayed over 105 separate lines.

The WHERE Clause
The WHERE clause provides a way to conditionally limit the rows emitted to the query’s final result set.
Each condition, or predicate, is entered as a comparison of two values or expressions. The comparison
will match (evaluate to TRUE) or it will not match (evaluate to FALSE). If the comparison is FALSE, then
the row will not be included in the final result set.

I need to digress just a bit to cover an important aspect of SQL related to this step. Actually, the
possible values of a logical comparison in SQL are TRUE, FALSE, and UNKNOWN. The UNKNOWN value occurs

CHAPTER 1 CORE SQL

12

when a null is involved. Nulls compared to anything or nulls used in expressions evaluate to null, or
UNKNOWN. A null represents a missing value and can be confusing due to inconsistencies in how nulls
are treated within different elements of the SQL language. We’ll address how nulls effect the
execution of SQL statements throughout the book, but I didn’t want to ignore mentioning the topic at
this point. What I stated previously is still basically true, that comparisons will either return TRUE or
FALSE. What you’ll find is that when a null is involved in a filter comparison, it is treated as if it were
FALSE.

In our example, there is a single predicate used to limit the result to only females who have placed
orders. If you review the intermediate result after the FROM clause was processed (see Listing 1-12),
you’ll note that only 31 of the 105 rows were placed by female customers (gender = ‘F’). Therefore,
after the WHERE clause is applied, the intermediate result set would be reduced from 105 down to 31
rows.

After the WHERE clause is applied, the detailed result set is ready. Note that I use the phrase
“detailed result set.” What I mean is the rows that satisfy your query requirements are now available.
Other clauses may be applied (GROUP BY, HAVING) that will aggregate and further limit the final result set
that the caller will receive, but it is important to note that at this point, all the data your query needs to
compute the final answer is available.

The WHERE clause is intended to restrict, or reduce, the result set. The less restrictions you include,
the more data your final result set will contain. The more data you need to return, the longer the
query will take to execute.

The GROUP BY Clause
The GROUP BY clause aggregates the filtered result set available after processing the FROM and WHERE
clauses. The selected rows are grouped by the expression(s) listed in this clause to produce a single
row of summary information for each group. You may group by any column of any object listed in the
FROM clause even if you don’t intend to display that column in the list of output columns. Conversely,
any non-aggregate column in the select list must be included in the GROUP BY expression.

There are two additional operations that can be included in a GROUP BY clause: ROLLUP and CUBE.
The ROLLUP operation is used to produce subtotal values. The CUBE operation is used to produce cross-
tabulation values. If you use either of these operations, you’ll get more than one row of summary
information. Both of these operations will be discussed in detail in Chapter 7: Advanced Grouping.

In the example query, the requested grouping is by customer_id. This means that there will only be
one row for each distinct customer_id. Of the 31 rows that represent the females who have placed
orders that have made it through the WHERE clause processing, there are 11 distinct customer_id values,
as shown in Listing 1-13.

Listing 1-13. Partial Query Execution Through the GROUP BY Clause

SQL> select c.customer_id, count(o.order_id) as orders_ct
 2 from oe.customers c
 3 join oe.orders o
 4 on c.customer_id = o.customer_id
 5 where gender = ‘F’
 6 group by c.customer_id;

CUSTOMER_ID ORDERS_CT
----------- ----------
 156 1
 123 1
 166 1

CHAPTER 1 CORE SQL

13

 154 1
 169 1
 105 4
 103 4
 107 4
 104 4
 147 5
 146 5
11 rows selected.

You’ll notice that the output from the query, while grouped, is not ordered. The display makes it

appear as though the rows are ordered by order_ct, but this is more coincidence and not guaranteed
behavior. This is an important item to remember: the GROUP BY clause does not insure ordering of data.
If you want the list to display in a specific order, you have to specify an ORDER BY clause.

The HAVING Clause
The HAVING clause restricts the grouped summary rows to those where the condition(s) in the clause are
TRUE. Unless you include a HAVING clause, all summary rows are returned. The GROUP BY and HAVING
clauses are actually interchangeable positionally; it doesn’t matter which one comes first. However, it
seems to make more sense to code them with the GROUP BY first since GROUP BY is logically processed
first. Essentially, the HAVING clause is a second WHERE clause that is evaluated after the GROUP BY occurs
and is used to filter on grouped values.

In our example query, the HAVING clause, HAVING COUNT(o.order_id) > 4, limits the grouped result
data of 11 rows down to 2. You can confirm this by reviewing the list of rows returned after the GROUP
BY is applied, as shown in Listing 1-13. Note that only customers 146 and 147 have placed more than
four orders. The two rows that make up the final result set are now ready.

The SELECT List
The SELECT list is where the columns included in the final result set from your query are provided. A
column can be an actual column from a table, an expression, or even the result of a SELECT statement,
as shown in Listing 1-14.

Listing 1-14. Example Query Showing Select List Alternatives

SQL> select c.customer_id, c.cust_first_name||’ ‘||c.cust_last_name,
 2 (select e.last_name from hr.employees e where e.employee_id = c.account_mgr_id)
acct_mgr)
 3 from oe.customers c;

 CUSTOMER_ID CUST_NAME ACCT_MGR
--------------- --- --------------
 147 Ishwarya Roberts Russell
 148 Gustav Steenburgen Russell
...

CHAPTER 1 CORE SQL

14

 931 Buster Edwards Cambrault
 981 Daniel Gueney Cambrault
319 rows selected.

When another SELECT statement is used to produce the value of a column, the query must return
only one row and one column value. These types of subqueries are referred to as scalar subqueries.
While this can be very useful syntax, keep in mind that the scalar subquery will be executed once for
each row in the result set. There are optimizations available that may eliminate some duplicate
executions of the subquery, but the worse case scenario is that each row will require this scalar
subquery to be executed. Imagine the possible overhead involved if your result set had thousands, or
millions, of rows! We’ll review scalar subqueries later in the book and discuss how to use them
optimally.

Another option you may need to use in the SELECT list is the DISTINCT clause. The example doesn’t
use it, but I wanted to mention it briefly. The DISTINCT clause causes duplicate rows to be removed
from the data set produced after the other clauses have been processed.

After the select list is processed, you now have the final result set for your query. The only thing
that remains to be done, if it is included, is to sort the result set into a desired order.

The ORDER BY Clause
The ORDER BY clause is used to order the final set of rows returned by the statement. In this case, the
requested sort order was to be by orders_ct and customer_id. The orders_ct column is the value
computed using the COUNT aggregate function in the GROUP BY clause. As shown in Listing 1-13, there
were two customers that each placed more than four orders. Since each customer placed five orders,
the order_ct is the same, so the second ordering column determines the final display order. As shown
in Listing 1-15, the final sorted output of the query is a two row data set ordered by customer_id.

Listing 1-15. Example Query Final Output

SQL> select c.customer_id, count(o.order_id) as orders_ct
 2 from oe.customers c
 3 join oe.orders o
 4 on c.customer_id = o.customer_id
 5 where c.gender = 'F'
 6 group by c.customer_id
 7 having count(o.order_id) > 4
 8 order by orders_ct, c.customer_id
 9 /
CUSTOMER_ID ORDERS_CT
----------- ----------
 146 5
 147 5

When ordered output is requested, Oracle must take the final set of data after all other clauses

have been processed and sort them as specified. The size of the data that needs to be sorted is
important. When I say size, I mean total bytes of data that is in the result set. To estimate the size of
the data set, you multiply the number of rows by the number of bytes per row. The bytes per row are
determined by summing the average column lengths of each of the columns in the select list.

CHAPTER 1 CORE SQL

15

The example query requests only the customer_id and orders_ct column values in the select list.
Let’s use 10 as our estimated bytes per row value. I’ll show you in Chapter 6 where to find the
optimizer’s estimate for this value. So, given that we only have two rows in the result set, the sort size
is actually quite small, approximately 20 bytes. Remember that this is only an estimate, but the
estimate is an important one.

Small sorts should be accomplished entirely in memory while large sorts may have to use
temporary disk space to complete the sort. As you can likely deduce, a sort that occurs in memory will
be faster than a sort that must use disk. Therefore, when the optimizer estimates the effect of sorting
data, it has to consider how big the sort is in order to adjust how to accomplish getting the query result
in the most efficient way. In general, consider sorts as a fairly expensive overhead to your query
processing time, particularly if the size of your result set is large.

The INSERT Statement
The INSERT statement is used to add rows to a table, partition, or view. Rows can be inserted in either a
single-table or multi-table method. A single-table insert will insert values into one row of one table
by either explicitly specifying the values or by retrieving the values using a subquery. The multi-table
insert will insert rows into one or more tables and will compute the row values it inserts by retrieving
the values using a subquery.

Single-table Inserts
The first example in Listing 1-16 illustrates a single-table insert using the values clause. Each

column value is explicitly entered. The column list is optional if you include values for each column
defined in the table. However, if you only want to provide values for a subset of the columns, you must
specify the column names in the column list. A good practice is to include the column list regardless of
whether or not you specify values for all the columns. Doing so acts to self-document the statement
and also can help reduce possible errors that might happen in the future should someone add a new
column to the table.

Listing 1-16. Single-Table Insert

SQL> insert into hr.jobs (job_id, job_title, min_salary, max_salary)
 2 values (‘IT_PM’, ‘Project Manager’, 5000, 11000) ;

1 row created.

SQL> insert into scott.bonus (ename, job, sal)
 2 select ename, job, sal * .10
 3 from scott.emp;

14 rows created.

The second example illustrates an insert using a subquery. This is a very flexible option for
inserting rows. The subquery can be written to return one or more rows. Each row returned will be
used to supply column values for the new rows to be inserted. The subquery can be as simple or
complex as needed to satisfy your needs. In this example, we use the subquery to compute a 10% bonus
for each employee based on their current salary. The bonus table actually has four columns, but we
only populate three of them with this insert. The comm column isn’t populated with a value from the

CHAPTER 1 CORE SQL

16

subquery and we do not include it in the column list. Since we don’t include this column, the value for
that column will be null. Note that if the comm column had a not null constraint, you would have gotten
a constraint error and the statement would have failed.

Multi-table Inserts
The multi-table insert example in Listing 1-17 illustrates how rows returned from a single

subquery can be used to insert rows into more than one table. We start with three tables:
small_customers, medium_customers, and large_customers. We’d like to populate these tables with
customer data based on the total amount of orders a customer has placed. The subquery sums the
order_total column for each customer and then the insert conditionally places a row in the proper
table based on whether the customer is considered to be small (less than $10,000 of total orders),
medium (between $10,000 and $99,999.99), and large (greater than or equal to $100,000).

Listing 1-17. Multi-Table Insert

SQL> select * from small_customers ;

no rows selected

SQL> select * from medium_customers ;

no rows selected

SQL> select * from large_customers ;

no rows selected

SQL> insert all
 2 when sum_orders < 10000 then
 3 into small_customers
 4 when sum_orders >= 10000 and sum_orders < 100000 then
 5 into medium_customers
 6 else
 7 into large_customers
 8 select customer_id, sum(order_total) sum_orders
 9 from oe.orders
 10 group by customer_id ;

47 rows created.

SQL> select * from small_customers ;

CHAPTER 1 CORE SQL

17

CUSTOMER_ID SUM_ORDERS
----------- ----------
 120 416
 121 4797
 152 7616.8
 157 7110.3
 160 969.2
 161 600
 162 220
 163 510
 164 1233
 165 2519
 166 309
 167 48

12 rows selected.

SQL> select * from medium_customers ;

CUSTOMER_ID SUM_ORDERS
----------- ----------
 102 69211.4
 103 20591.4
 105 61376.5
 106 36199.5
 116 32307
 119 16447.2
 123 11006.2
 141 38017.8
 142 25691.3
 143 27132.6
 145 71717.9
 146 88462.6
 151 17620
 153 48070.6
 154 26632
 155 23431.9
 156 68501
 158 25270.3
 159 69286.4
 168 45175
 169 15760.5
 170 66816

22 rows selected.

CHAPTER 1 CORE SQL

18

SQL> select * from large_customers ;
CUSTOMER_ID SUM_ORDERS
----------- ----------
 101 190395.1
 104 146605.5
 107 155613.2
 108 213399.7
 109 265255.6
 117 157808.7
 118 100991.8
 122 103834.4
 144 160284.6
 147 371278.2
 148 185700.5
 149 403119.7
 150 282694.3

13 rows selected.

Note the use of the ALL clause following the INSERT keyword. When ALL is specified, the statement
will perform unconditional multi-table inserts. This means that each WHEN clause is evaluated for each
row returned by the subquery regardless of the outcome of a previous condition. Therefore, you need
to be careful about how you specify each condition. For example, if I had used WHEN sum_orders <
100000 instead of the range I specified, the medium_customers table would have included the rows that
were also inserted into small_customers.

You should specify the FIRST option to cause each WHEN to be evaluated in the order it appears in the
statement and to skip subsequent WHEN clause evaluations for a given subquery row. The key is to
remember which option, ALL or FIRST, best meets your needs and then use the one most suitable.

The UPDATE Statement
The UPDATE statement is used to change the column values of existing rows in a table. The syntax for
this statement is composed of three parts: UPDATE, SET, and WHERE. The UPDATE clause specifies the table
to update. The SET clause specifies which columns are changed and the modified values. The WHERE
clause is used to conditionally filter which rows will be updated. It is optional and if it is omitted, the
update operation will be applied to all rows of the specified table.

Listing 1-18 demonstrates several different ways an UPDATE statement can be written. First, I
create a duplicate of the employees table called employees2, then I execute several different updates that
accomplish basically the same task: the employees in department 90 are updated to have a 10% salary
increase and, in the case of Example 5, the commission_pct column is also updated. Following are the
different approaches taken:

CHAPTER 1 CORE SQL

19

Example 1: Update a single column value using an expression.

Example 2: Update a single column value using a subquery.

Example 3: Update single column using subquery in WHERE clause to determine which rows to
update.

Example 4: Update a table using a SELECT statement to define the table and column values.

Example 5: Update multiple columns using a subquery.

Listing 1-18. UPDATE Statement Examples

SQL> -- create a duplicate employees table
SQL> create table employees2 as select * from employees ;
Table created.

SQL> -- add a primary key
SQL> alter table employees2
 1 add constraint emp2_emp_id_pk primary key (employee_id) ;

Table altered.

SQL> -- retrieve list of employees in department 90
SQL> select employee_id, last_name, salary
 2 from employees where department_id = 90 ;

 EMPLOYEE_ID LAST_NAME SALARY
--------------- ------------------------- ---------------
 100 King 24000
 101 Kochhar 17000
 102 De Haan 17000

3 rows selected.

SQL> -- Example 1: Update a single column value using an expression

SQL> update employees2
 2 set salary = salary * 1.10 -- increase salary by 10%
 3 where department_id = 90 ;

3 rows updated.

SQL> commit ;

Commit complete.

CHAPTER 1 CORE SQL

20

SQL> select employee_id, last_name, salary
 2 from employees2 where department_id = 90 ;

EMPLOYEE_ID LAST_NAME SALARY
----------- ---------- ------
 100 King 26400 -- previous value 24000
 101 Kochhar 18700 -- previous value 17000
 102 De Haan 18700 -- previous value 17000

3 rows selected.

SQL> -- Example 2: Update a single column value using a subquery

SQL> update employees
 2 set salary = (select employees2.salary
 3 from employees2
 4 where employees2.employee_id = employees.employee_id
 5 and employees.salary != employees2.salary)
 6 where department_id = 90 ;

3 rows updated.

SQL> select employee_id, last_name, salary
 2 from employees where department_id = 90 ;

 EMPLOYEE_ID LAST_NAME SALARY
--------------- ------------------------- ---------------
 100 King 26400
 101 Kochhar 18700
 102 De Haan 18700

3 rows selected.

SQL> rollback ;

Rollback complete.

SQL> -- Example 3: Update single column using subquery in
SQL> -- WHERE clause to determine which rows to update

SQL> update employees
 2 set salary = salary * 1.10
 3 where department_id in (select department_id
 4 from departments
 5 where department_name = 'Executive') ;

3 rows updated.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 1 CORE SQL

21

SQL> select employee_id, last_name, salary
 2 from employees
 3 where department_id in (select department_id
 4 from departments
 5 where department_name = 'Executive') ;

 EMPLOYEE_ID LAST_NAME SALARY
--------------- ------------------------- ---------------
 100 King 26400
 101 Kochhar 18700
 102 De Haan 18700

3 rows selected.

SQL> rollback ;

Rollback complete.

SQL> -- Example 4: Update a table using a SELECT statement
SQL> -- to define the table and column values

SQL> update (select e1.salary, e2.salary new_sal
 2 from employees e1, employees2 e2
 3 where e1.employee_id = e2.employee_id
 4 and e1.department_id = 90)
 5 set salary = new_sal;

3 rows updated.

SQL> select employee_id, last_name, salary, commission_pct
 2 from employees where department_id = 90 ;

 EMPLOYEE_ID LAST_NAME SALARY COMMISSION_PCT
--------------- ------------------------- --------------- ---------------
 100 King 26400
 101 Kochhar 18700
 102 De Haan 18700

3 rows selected.

SQL> rollback ;

Rollback complete.

SQL> -- Example 5: Update multiple columns using a subquery

CHAPTER 1 CORE SQL

22

SQL> update employees
 2 set (salary, commission_pct) = (select employees2.salary, .10 comm_pct
 3 from employees2
 4 where employees2.employee_id = employees.employee_id
 5 and employees.salary != employees2.salary)
 6 where department_id = 90 ;

3 rows updated.
SQL> select employee_id, last_name, salary, commission_pct
 2 from employees where department_id = 90 ;

 EMPLOYEE_ID LAST_NAME SALARY COMMISSION_PCT
--------------- ------------------------- --------------- ---------------
 100 King 26400 .1
 101 Kochhar 18700 .1
 102 De Haan 18700 .1

3 rows selected.

SQL> rollback ;

Rollback complete.

SQL>

The DELETE Statement
The DELETE statement is used to remove rows from a table. The syntax for this statement is composed of
three parts: DELETE, FROM, and WHERE. The DELETE keyword stands alone. Unless you decide to use a hint,
which we’ll discuss later, there are no other options associated with the DELETE keyword. The FROM
clause identifies the table from which rows will be deleted. As the examples in Listing 1-19
demonstrate, the table can be specified directly or via a subquery. The WHERE clause provides any filter
conditions to help determine which rows are deleted. If the WHERE clause is omitted, the delete
operation will delete all rows in the specified table.

Listing 1-19 demonstrates several different ways a DELETE statement can be written. Note that I
am using the employees2 table created in Listing 1-18 for these examples. Here are the different delete
methods that you’ll see:

Example 1: Delete rows from specified table using a filter condition in the WHERE clause.

Example 2: Delete rows using a subquery in the FROM clause.

Example 3: Delete rows from specified table using a subquery in the WHERE clause.

Listing 1-19. DELETE Statement Examples

SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;

CHAPTER 1 CORE SQL

23

 EMPLOYEE_ID DEPARTMENT_ID LAST_NAME SALARY
--------------- --------------- ------------------------- ---------------
 100 90 King 26400
 101 90 Kochhar 18700
 102 90 De Haan 18700

3 rows selected.
SQL> -- Example 1: Delete rows from specified table using
SQL> -- a filter condition in the WHERE clause
SQL> delete from employees2
 2 where department_id = 90;

3 rows deleted.

SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;

no rows selected

SQL> rollback;

Rollback complete.

SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;

 EMPLOYEE_ID DEPARTMENT_ID LAST_NAME SALARY
--------------- --------------- ------------------------- ---------------
 100 90 King 26400
 101 90 Kochhar 18700
 102 90 De Haan 18700

3 rows selected.

SQL> -- Example 2: Delete rows using a subquery in the FROM clause
SQL> delete from (select * from employees2 where department_id = 90);

3 rows deleted.

SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;

no rows selected

CHAPTER 1 CORE SQL

24

SQL> rollback;

Rollback complete.

SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;
 EMPLOYEE_ID DEPARTMENT_ID LAST_NAME SALARY
--------------- --------------- ------------------------- ---------------
 100 90 King 26400
 101 90 Kochhar 18700
 102 90 De Haan 18700

3 rows selected.

SQL> -- Example 3: Delete rows from specified table using
SQL> -- a subquery in the WHERE clause
SQL> delete from employees2
 2 where department_id in (select department_id
 3 from departments
 4 where department_name = 'Executive');

3 rows deleted.

SQL> select employee_id, department_id, last_name, salary
 2 from employees2
 3 where department_id = 90;

no rows selected

SQL> rollback;

Rollback complete.

SQL>

The MERGE Statement
The MERGE statement is a single command that combines the ability to update or insert rows into a table
by conditionally deriving the rows to be updated or inserted from one or more sources. It is most
frequently used in data warehouses to move large amounts of data but its use is not limited to only
data warehouse environments. The big value-add this statement provides is that you have a
convenient way to combine multiple operations into one. This allows you to avoid issuing multiple
INSERT, UPDATE, and DELETE statements. And, as you’ll see later in the book, if you can avoid doing work
you really don’t have to do, your response times will likely improve.

CHAPTER 1 CORE SQL

25

The syntax for the MERGE statement is:

MERGE <hint>
INTO <table_name>
USING <table_view_or_query>
ON (<condition>)
WHEN MATCHED THEN <update_clause>
DELETE <where_clause>
WHEN NOT MATCHED THEN <insert_clause>
[LOG ERRORS <log_errors_clause> <reject limit <integer | unlimited>];

In order to demonstrate the use of the MERGE statement, Listing 1-20 shows how to create a test

table and then appropriately insert or update rows into that table based on the MERGE conditions.

Listing 1-20. MERGE Statement Example

SQL> create table dept60_bonuses
 2 (employee_id number
 3 ,bonus_amt number);

Table created.

SQL> insert into dept60_bonuses values (103, 0);

1 row created.

SQL> insert into dept60_bonuses values (104, 100);

1 row created.

SQL> insert into dept60_bonuses values (105, 0);

1 row created.

SQL> commit;

Commit complete.

SQL> select employee_id, last_name, salary
 2 from employees
 3 where department_id = 60 ;

 EMPLOYEE_ID LAST_NAME SALARY
--------------- ------------------------- ---------------
 103 Hunold 9000
 104 Ernst 6000
 105 Austin 4800

CHAPTER 1 CORE SQL

26

 106 Pataballa 4800
 107 Lorentz 4200

5 rows selected.

SQL> select * from dept60_bonuses;
 EMPLOYEE_ID BONUS_AMT
--------------- ---------------
 103 0
 104 100
 105 0

3 rows selected.

SQL> merge into dept60_bonuses b
 2 using (
 3 select employee_id, salary, department_id
 4 from employees
 5 where department_id = 60) e
 6 on (b.employee_id = e.employee_id)
 7 when matched then
 8 update set b.bonus_amt = e.salary * 0.2
 9 where b.bonus_amt = 0
 10 delete where (e.salary > 7500)
 11 when not matched then
 12 insert (b.employee_id, b.bonus_amt)
 13 values (e.employee_id, e.salary * 0.1)
 14 where (e.salary < 7500);

4 rows merged.

SQL> select * from dept60_bonuses;

 EMPLOYEE_ID BONUS_AMT
--------------- ---------------
 104 100
 105 960
 106 480
 107 420

4 rows selected.

SQL> rollback;

Rollback complete.

SQL>

CHAPTER 1 CORE SQL

27

The MERGE accomplished the following:

• Two rows were inserted (employee_ids 106 and 107).

• One row was updated (employee_id 105).

• One row was deleted (employee_id 103).

• One row remained unchanged (employee_id 104).

Without the MERGE statement, you would have had to write at least three different statements to

complete the same work.

Summary
As you can tell from the examples shown so far, the SQL language offers many alternatives that can
produce the same result set. What you may have also noticed is that each of the five core statements can
utilize similar constructs, like subqueries. The key is to learn which constructs are the most efficient
under various circumstances. We’ll cover how to do that later in the book.

If you had any trouble following the examples in this chapter, make sure to take the time to review
either Beginning Oracle SQL or the SQL Reference Guide in the Oracle documentation. The rest of the
book will assume you are comfortable with the basic constructs for each of the five core SQL
statements: SELECT, INSERT, UPDATE, DELETE, and MERGE.

C H A P T E R 2

■ ■ ■

29

SQL Execution

Karen Morton

You likely learned the mechanics of writing basic SQL in a relatively short period of time. Over the course
of a few weeks or few months, you became comfortable with the general statement structure and syntax,
how to filter, how to join tables, and how to group and order data. But, how far beyond that initial level
of proficiency have you traveled? Writing complex SQL that executes efficiently is a skill that requires
you to move beyond the basics. Just because your SQL gets the job done doesn't mean it does the job
well.

In this chapter, I’m going to raise the hood and look at how SQL executes from the inside-out. I’ll
discuss basic Oracle architecture and introduce the cost-based query optimizer. You’ll learn how and
why the way you formulate your SQL statements affects the optimizer's ability to produce the most
efficient execution plan possible. You may already know what to do, but understanding how SQL
execution works will help you help Oracle accomplish the results you need in less time and with fewer
resources required.

Oracle Architecture Basics
The SQL language is seemingly easy enough that you can learn to write simple SQL statements in fairly
short order. But, just because you can write SQL statements that are functionally correct (i.e. produce
the proper result set), that doesn’t mean you’ve accomplished the task in the most effective and efficient
way.

Moving beyond basic skills requires a deeper understanding of that skill. For instance, when I
learned to drive, my father taught me the basics. We walked around the car and discussed the parts of
the car that he thought were important to be aware of as the driver of the vehicle. We talked about the
type of gas I should put in the car, the proper air pressure the tires should have, and the importance of
getting regular oil changes. Being aware of these things would help make sure the vehicle would be in
good condition when I wanted to drive it.

He then taught me the mechanics of driving. I learned how to start the engine, shift gears, increase
and decrease my speed, use the brake, use turn signals, and so on. But, what he didn’t teach me was
specifically how the engine worked, how to change the oil myself, or anything else other than what I
needed to do to allow me to safely drive the vehicle from place to place. If I needed for my car to do
anything outside of what I learned, I’d have to take it to a professional mechanic.

This isn’t a bad thing. Not everyone needs to have the skills and knowledge of a professional
mechanic just to drive a car. But the analogy applies to anyone who writes SQL. You can learn the
basics and be able to get your applications from place to place. But, without extending your knowledge,
I don’t believe you’ll ever be more than an everyday driver. To really get the most out of SQL, you need
to understand how it does what it does. That means you need to understand the basics of the underlying
architecture on which the SQL you write will execute.

CHAPTER 2 ■ SQL EXECUTION

30

Figure 2-1 depicts how most people view the database when they first learn to write SQL. It is
simply a black box to which they direct SQL requests to and get data back from. The “machinery” inside
the database is a mystery.

Figure 2-1. Using SQL and the database

The term “Oracle database” is typically used to refer to both the files, stored on disk, where data
resides and the memory structures used to manage those files. In reality, the term “database” belongs to
the data files and the term “instance” belongs to the memory structures. An instance consists of the
system global area (SGA) and a set of background processes. Each user connection to the database is
managed via a client process. Client processes are associated with server processes which are each
allocated their own private memory area called the program, or process, global area (PGA). Figure 2-2
shows the Oracle Instance and Database diagram as found in the Oracle Concepts Guide.

Don’t get overwhelmed by how complex this looks. The Oracle Concepts Guide goes into detail
about each of the elements you see in Figure 2-1. I think it’s a great idea for everyone who will use
Oracle to read the Oracle Concepts Guide. But for our purposes, I want to limit the discussion to a few key
areas that will help you understand how SQL operates. Specifically, I want to review two areas of the
SGA, the shared pool (specifically, the library cache within the shared pool) and the database buffer
cache. Later in the book, I’ll also discuss some particulars about the PGA, but I’m going to keep our
review limited to the SGA for now. Note that these discussions will present a fairly broad picture. As I
said, I don’t want to overwhelm you, but I do think this is critical information to get a grasp on before
you go any further.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 ■ SQL EXECUTION

31

Figure 2-2. Oracle instance and database diagram from the Oracle Concepts Guide

SGA – The Shared Pool
The shared pool is one of the most critical memory components particularly when it comes to how SQL
executes. The way you write SQL doesn’t just effect the individual SQL statement itself. The

CHAPTER 2 ■ SQL EXECUTION

32

combination of all SQL that executes against the database has a tremendous effect on overall
performance and scalability due to how it affects the shared pool.

The shared pool is where Oracle caches program data. Every SQL statement executed will have its
parsed form stored in the shared pool. The area within the shared pool where statements are stored is
called the library cache. Even before any statement is parsed, Oracle will check the library cache to see if
that same statement already exists there. If it does exist, then Oracle will retrieve and use the cached
information instead of going through all the work to parse the same statement again. The same thing
goes for any PL/SQL code you run. The really nifty part is that no matter how many users may want to
execute the same SQL statement, Oracle will typically only parse that statement once and share it among
all users who want to use it. Maybe you can see where the shared pool gets its name.

SQL statements you write aren’t the only things stored in the shared pool. The system parameters
Oracle uses will be stored in the shared pool as well. In an area called the dictionary cache, Oracle will
also store information about all the database objects. In general, Oracle stores pretty much everything
you could think of in the shared pool. As you can imagine, that makes the shared pool a very busy and
important memory component.

Since the memory area allocated to the shared pool is finite, statements that originally get loaded
may not stay there for very long as new statements are executed. A Least Recently Used (LRU) algorithm
regulates how objects in the shared pool are managed. To borrow an accounting term, it’s similar to a
FIFO (First In First Out) system. The basic idea is that statements that are used most frequently and most
currently are what are retained. Unlike a straight FIFO method, how frequently the same statements are
used will effect how long they remain in the shared pool. If you execute a SELECT statement at 8
A.M.and then execute the same statement again at 4 P.M., the parsed version that was stored in the
shared pool at 8 A.M. may not still be there. Depending on the overall size of the shared pool and how
much activity it has between 8 A.M. and 4 P.M., as Oracle needs space to store the latest information
throughout the day, it will simply reuse older areas and overlay newer information into them. But, if you
execute a statement every few seconds throughout the day, the frequent reuse will cause Oracle to retain
that information over something else that may have originally been stored later than your statement but
hasn’t been executed frequently, or at all, since it was loaded.

One of the things you need to keep in mind as you write SQL is that in order to use the shared pool
most efficiently, statements need to be shareable. If every statement you write is unique, you basically
defeat the purpose of the shared pool. The less shareable it is, the more effect you’ll see to overall
response times. I’ll show you exactly how expensive parsing can be in the next section.

The Library Cache
The first thing that must happen to every SQL statement you execute is that it must be parsed and
loaded into the library cache. The library cache, as mentioned earlier, is the area within the shared pool
that holds previously parsed statements. Parsing involves verifying the statement syntax, validating
objects being referred to, and confirming user privileges on the objects. If those checks are passed, the
next step is for Oracle to see if that same statement has been executed previously. If it has, then Oracle
will grab the stored information from the previous parse and reuse it. This type of parse is called a soft
parse. If the statement hasn’t previously been executed, then Oracle will do all the work to develop the
execution plan for the current statement and then store it in the cache for later reuse. This type of parse
is called a hard parse.

Hard parses require Oracle to do a lot more work than soft parses. Every time a hard parse occurs,
Oracle must gather all the information it needs before it can actually execute the statement. In order to
get the information it needs, Oracle will execute a bunch of queries against the data dictionary. The
easiest way to see what Oracle does during a hard parse is to turn on extended SQL tracing, execute a
statement and then review the trace data. Extended SQL tracing captures every action that occurs so not
only will you see the statement you execute, but you’ll see every statement that Oracle must execute as
well. Since I haven’t covered the details of how tracing works and how to read a trace file, I’m not going

CHAPTER 2 ■ SQL EXECUTION

33

to show the detailed trace data. Instead, Table 2-1 provides the list of system tables that were queried
during a hard parse of select * from employees where department_id = 60.

Table 2-1. System Objects Queried During Hard Parse

Tables #Queries Purpose

access$ 1 Permissions used by a dependent object against its parent

ccol$ 10 Constraint column-specific data

cdef$ 3 Constraint-specific definition data

col$ 1 Table column-specific data

dependency$ 1 Interobject dependencies

hist_head$ 12 Histogram header data

histgrm$ 3 Histogram specifications

icol$ 6 Index columns

ind$, ind_stats$ 1 Indexes, index statistics

obj$ 8 Objects

objauth$ 2 Table authorizations

seg$ 7 Mapping of all database segments

syn$ 1 Synonyms

tab$, tab_stats$ 1 Tables, table statistics

user$ 2 User definitions

In total, there were 59 queries against system objects executed during the hard parse. The soft parse
of the same statement did not execute any queries against the system objects since all that work was
done during the initial hard parse. The elapsed time for the hard parse was .060374 seconds while the
elapsed time for the soft was was .000095 seconds. So, as you can see, soft parsing is a much more
desirable alternative to hard parsing. Don’t ever fool yourself into thinking hard parsing doesn’t matter.
As you can see, it does!

Identical Statements
In order for Oracle to determine if a statement has been previously executed, it will check the library
cache for the identical statement. You can see what statements are currently stored in the library cache
by querying the v$sql view. This view lists statistics on the shared SQL area and contains one row for
each child of the original SQL text entered. Listing 2-1 shows three different executions of a query
against the employees table followed by a query against v$sql showing information about the three
queries that have been stored in the library cache.

CHAPTER 2 ■ SQL EXECUTION

34

Listing 2-1. Queries Against Employees and v$sql Contents

SQL> select * from employees where department_id = 60;

 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL ...
--------------- -------------------- ------------------------- ----------- ...
 103 Alexander Hunold AHUNOLD ...
 104 Bruce Ernst BERNST ...
 105 David Austin DAUSTIN ...
 106 Valli Pataballa VPATABAL ...
 107 Diana Lorentz DLORENTZ ...

SQL> SELECT * FROM EMPLOYEES WHERE DEPARTMENT_ID = 60;

 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL ...
--------------- -------------------- ------------------------- ----------- ...
 103 Alexander Hunold AHUNOLD ...
 104 Bruce Ernst BERNST ...
 105 David Austin DAUSTIN ...
 106 Valli Pataballa VPATABAL ...
 107 Diana Lorentz DLORENTZ ...

SQL> select /* a_comment */ * from employees where department_id = 60;

 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL ...
--------------- -------------------- ------------------------- ----------- ...
 103 Alexander Hunold AHUNOLD ...
 104 Bruce Ernst BERNST ...
 105 David Austin DAUSTIN ...
 106 Valli Pataballa VPATABAL ...
 107 Diana Lorentz DLORENTZ ...

SQL> select sql_text, sql_id, child_number, hash_value, address, executions
 2 from v$sql where upper(sql_text) like '%EMPLOYEES%';

SQL_TEXT SQL_ID CHILD_NUMBER HASH_VALUE ADDRESS EXECUTIONS
--------------------------- ------------- ------------ ---------- -------- ----------
select * from employees 0svc967bxf4yu 0 3621196762 67197BC4 1
 where department_id = 60
SELECT * FROM EMPLOYEES cq7t1xq95bpm8 0 2455098984 671A3034 1
 WHERE DEPARTMENT_ID = 60
select /* a_comment */ * 2dkt13j0cyjzq 0 1087326198 671A2E18 1
 from employees
 where department_id = 60

CHAPTER 2 ■ SQL EXECUTION

35

Although all three statements return the exact same result, Oracle considers them to be different.
This is because when a statement is executed, Oracle first converts the string to a hash value. That hash
value is used as the key for that statement when it is stored in the library cache. As other statements are
executed, their hash values are compared to the existing hash values to find a match.

So, why would these three statements produce different hash values, even though they return the
same result? It’s because the statements are not exactly identical. Lower case text is different from
upper case text. Adding a comment into the statement makes it different from the statements that don’t
have a comment. Any differences will cause a different hash value for the statement and cause Oracle to
hard parse the statement.

This is why using bind variables instead literals in your SQL statements is so important. When you
use a bind variable, Oracle will be able to share the statement even as you change the values of the bind
variables, as shown in Listing 2-2.

Listing 2-2. The Effect of Using Bind Variables on Parsing

SQL> variable v_dept number
SQL> exec :v_dept := 10
SQL> select * from employees where department_id = :v_dept;

 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL ...
--------------- -------------------- ------------------------- ----------- ...
 200 Jennifer Whalen JWHALEN ...

1 row selected.

SQL> exec :v_dept := 20

PL/SQL procedure successfully completed.

SQL> select * from employees where department_id = :v_dept;

 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL ...
--------------- -------------------- ------------------------- ----------- ...
 201 Michael Hartstein MHARTSTE ...
 202 Pat Fay PFAY ...

2 rows selected.

SQL> exec :v_dept := 30

PL/SQL procedure successfully completed.

SQL> select * from employees where department_id = :v_dept;

 EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL ...
--------------- -------------------- ------------------------- ----------- ...
 114 Den Raphaely DRAPHEAL ...
 115 Alexander Khoo AKHOO ...
 116 Shelli Baida SBAIDA ...

CHAPTER 2 ■ SQL EXECUTION

36

 117 Sigal Tobias STOBIAS ...
 118 Guy Himuro GHIMURO ...
 119 Karen Colmenares KCOLMENA ...

6 rows selected.

SQL> select sql_text, sql_id, child_number, hash_value, address, executions
 2 from v$sql where sql_text like '%v_dept';

SQL_TEXT SQL_ID CHILD_NUMBER HASH_VALUE ADDRESS EXECUTIONS
------------------------------- ------------- ------------ ----------- -------- ----------
select * from employees 72k66s55jqk1j 0 1260079153 6726254C 3
 where department_id = :v_dept

1 row selected.

Notice how there is only one statement stored in the library cache with three executions. If I had
executed the queries using the literal values (10, 20, 30), there would have been three different
statements. Always keep this in mind and try to write SQL that takes advantage of bind variables and
uses exactly the same SQL. The less hard parsing that is required will mean your applications will
perform better and be more scalable.

One last mechanism that is important to understand is something called a latch. A latch is a type of
lock that Oracle must acquire in order to read information stored in the library cache as well as other
memory structures. Latches protect the library cache from becoming corrupted by concurrent
modifications by two sessions or by one session trying to read information that is being modified by
another one. Prior to reading any information from the library cache, Oracle will acquire a latch that will
then cause all other sessions to have to wait until that latch is released before they can acquire the latch
and do the work they need to complete.

Latches, unlike typical locks, are not queued. In other words, if Oracle attempts to acquire a latch
on the library cache in order to check to see if the statement you are executing already exists, it will
check to see if the latch is available. If the latch is available, it will acquire the latch, do the work it needs
to, then release the latch. However, if the latch is already in use, Oracle will do something called
spinning. Think of spinning like a kid in the backseat of a car that asks “Are we there yet?” over and over
and over. Oracle will basically iterate in a loop and continue to check to see if the latch is available.
During this time, Oracle is actively using CPU to do these checks, but your query is actually “on hold”
and not really doing anything until the latch can be acquired.

If the latch is not acquired after spinning for a while (Oracle will spin up to the number of times
indicated by the _spin_count hidden parameter, which is set to 2000 by default), then the request will be
halted temporarily and your session will have to get in line behind other sessions that need to use the
CPU. It must wait its turn to use the CPU again in order to check to see if the latch is available. This
iterative process will continue until the latch can be acquired. You don’t just get in line and wait on the
latch to become available, so it’s entirely possible that another session can acquire the latch while your
session is waiting in line to get back on the CPU to check the latch again. As you can imagine, this could
be quite time-consuming if many sessions all need to acquire the latch concurrently.

The main thing to remember is that latches are serialization devices. The more frequently Oracle
needs to acquire a latch, the more likely it is that contention will occur, and the longer you’ll have to
wait. The effects on performance and scalability can be dramatic. So, writing your code in such a way as
to require fewer latches (i.e. less hard parsing) is critical.

CHAPTER 2 ■ SQL EXECUTION

37

SGA – The Buffer Cache
The buffer cache is one of the largest components of the SGA. It stores database blocks after they have
been read from disk or before they are written to disk. A block is the smallest unit that Oracle will work
with. Blocks contain rows of table data or index entries, and some blocks will contain temporary data for
sorts. The key thing to remember is that Oracle must read blocks in order to get to the rows of data
needed to satisfy a SQL statement. Blocks are typically either 4KB, 8KB, or 16KB in size, although the
only restricting factor to the size of a block depends on your operating system.

Each block has a certain structure. Within the block there are a few areas of block overhead that
contain information about the block itself that Oracle uses to manage the block. There is information
that indicates the type of block it is (table, index, etc.), a bit of information about transactions against the
block, the address where the block physically resides on the disk, information about the tables that store
data in the block, and information about the row data contained in the block. The rest of the block
contains the actual data or free space where new data can be stored. There’s more detail about how the
buffer cache can be divided into multiple pools and have varying block sizes, but I’m going to keep it
simple for this discussion and just consider one big default buffer pool with a single block size.

At any given time, the blocks in the buffer cache will either be dirty, which means they have been
modified and need to be written into a physical location on disk, or not dirty. In the discussion on the
shared pool, I mentioned the Least Recently Used (LRU) algorithm employed by Oracle to manage the
information there. The buffer cache also uses a LRU list to help Oracle know which blocks are most
recently used in order to know how to make room for new blocks as needed. Besides just the LRU list,
Oracle maintains a touch count for each block in the buffer cache. This count indicates how frequently a
block is used; blocks with higher touch counts will remain in the cache longer than those with lower
touch counts.

Also like in the shared pool, latches must be acquired to verify if blocks are in the buffer cache and
to update the LRU information and touch counts. One of the ways you can help Oracle use less latches is
to write your SQL in such a way that it accesses the fewest blocks possible when trying to retrieve the
rows needed to satisfy your query. I’ll discuss how you can do this throughout the rest of the book, but
for now, keep in mind that if all you think about when writing a SQL statement is getting the functionally
correct answer, you may write your SQL in such a way that it inefficiently access blocks and therefore
uses more latches than needed. The more latches required, the more chance for contention and the
more likely your application will be less responsive and less scalable.

Executing a query whose blocks are not in the buffer cache requires Oracle to make a call to the
operating system to retrieve those blocks and then place them in the buffer cache before returning the
result set to you. In general, any block that contains rows that will be needed to satisfy a query must be
present in the buffer cache. When Oracle determines that a block already exists in the buffer cache, such
access is referred to as a logical read. If the block must be retrieved from disk, it is referred to as a
physical read. As you can imagine, since the block is already in memory, response times to complete a
logical read is faster than physical reads. Listing 2-3 shows the differences between executing the same
statement multiple times under three scenarios. First, the statement is executed after clearing both the
shared pool and the buffer cache. This means that the statement will be hard parsed, and the blocks that
contain the data to satisfy the query (and all the queries from the system objects to handle the hard
parse) will have to be physically read from disk. The second example shows what happens if only the
buffer cache is cleared. The final example shows what happens if both the shared pool and buffer cache
are populated.

CHAPTER 2 ■ SQL EXECUTION

38

Listing 2-3. Hard Parsing and Physical Reads vs. Soft Parsing and Logical Reads

SQL> alter system set events 'immediate trace name flush_cache';

System altered.

SQL> alter system flush shared_pool;

System altered.

SQL> set autotrace traceonly statistics
SQL>
SQL> select * from employees where department_id = 60;

5 rows selected.

Statistics
--
 951 recursive calls
 0 db block gets
 237 consistent gets
 27 physical reads
 0 redo size
 1386 bytes sent via SQL*Net to client
 381 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 9 sorts (memory)
 0 sorts (disk)
 5 rows processed

SQL> set autotrace off
SQL>
SQL> alter system set events 'immediate trace name flush_cache';

System altered.

SQL> set autotrace traceonly statistics
SQL>
SQL> select * from employees where department_id = 60;

5 rows selected.

CHAPTER 2 ■ SQL EXECUTION

39

Statistics
--
 0 recursive calls
 0 db block gets
 4 consistent gets
 2 physical reads
 0 redo size
 1386 bytes sent via SQL*Net to client
 381 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 5 rows processed

SQL> select * from employees where department_id = 60;

5 rows selected.

Statistics
--
 0 recursive calls
 0 db block gets
 4 consistent gets
 0 physical reads
 0 redo size
 1386 bytes sent via SQL*Net to client
 381 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 5 rows processed

SQL> set autotrace off

You can see from the statistics that when a query is executed and does only a soft parse and finds

the blocks in the buffer cache, the work done is at a minimum. Your goal should always be to develop
code that will promote reusability in both the shared pool and buffer cache.

Query Transformation
Prior to the development of the execution plan, a step called query transformation occurs. This step
happens just after a query is checked for syntax and permissions and just before the optimizer computes
cost estimates for the various plan operations it considers when determining the final execution plan. In
other words, transformation and optimization are two different tasks.

After your query passes the syntactical and permissions checks, the query enters the transform
phase in a set of query blocks. A query block is defined by the keyword SELECT. For example, select

CHAPTER 2 ■ SQL EXECUTION

40

* from employees where department_id = 60 has a single query block. However, select * from
employees where department_id in (select department_id from departments) has two query blocks.
Each query block is either nested within another or interrelated to another in some way. The way the
query is written determines the relationships between query blocks. It is the query transformer’s main
objective to determine if changing the way the query is written will provide a better query plan.

Make sure you caught that last sentence. The query transformer can, and will, rewrite your query.
This is something you may have never realized. What you write may not end up being the exact
statement for which the execution plan is developed. Many times this is a good thing. The query
transformer knows how the optimizer deals with certain syntax and will do everything it can to render
your SQL in a way that helps the optimizer to come up with the best, most efficient execution plan.
However, the fact that what you write can be changed may mean that a behavior you expected,
particularly the order in which certain parts of the statement occur, doesn’t happen the way you
intended. Therefore, you really need to understand how query transformation works so that you can
make sure to write your SQL properly to get the behaviors you intend.

The query transformer may change the way you originally formulated your query as long as the
change does not affect the result set. Any change that might cause the result set to differ from the
original query syntax will not be considered. The change that is most often made is to transform
separate query blocks into straight joins. For example, this statement

select * from employees where department_id in (select department_id from departments)

will likely be transformed into this statement

select e.* from employees e, departments d where e.department_id = d.department_id

The result set doesn’t change, but the execution plan choices for the transformed version would be
better from the optimizer’s point of view.

Once you learn what to look for, you can usually tell by looking at the execution plan if a
transformation occurs. You can also execute your query using the NO_QUERY_TRANSFORMATION hint and
compare the execution plan from this query with the plan from the query without the hint. If the two
plans are not the same, the differences can be attributed to query transformation. When using the hint,
all query transformations with the exception of predicate pushing (which I’ll review shortly) will be
prohibited.

There are several basic transformations that can be applied to a given query:

• View merging

• Subquery unnesting

• Predicate pushing

• Query rewrite with materialized views

View Merging
As the name implies, view merging is a transformation that expands views, either in-line views or stored
views, into separate query blocks that can either be analyzed separately or that can be merged with the
rest of the query to form a single overall execution plan. Basically, the statement is rewritten without the
view. A statement like select * from my_view would be rewritten as if you had simply typed in the view
source. View merging usually occurs when the outer query block’s predicate contains:

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 ■ SQL EXECUTION

41

• a column that can be used in an index within another query block.

• a column that can be used for partition pruning within another query block.

• a condition that limitis the rows returned from one of the tables in a joined view.

Most people believe that a view will always be treated as a separate query block and will always have
its own subplan and be executed prior to joining to other query blocks. That is not true due to the
actions of the query transformer. The truth is that sometimes views will be analyzed separately and have
their own subplan, but more often than not, merging views with the rest of the query provides a greater
performance benefit. For example, the following query might use resources quite differently depending
on whether or not the view is merged:

select *
from orders o,
 (select sales_rep_id
 from orders
) o_view
where o.sales_rep_id = o_view.sales_rep_id(+)
and o.order_total > 100000;

Listing 2-4 shows the execution plans for this query when view merging occurs and when it doesn’t.

Notice the plan operations chosen and the A-Rows count (actual rows retrieved in that step of the plan)
in each step.

Listing 2-4. View Merging Plan Comparison

-- View merging occurs

--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
1	NESTED LOOPS OUTER		1	413	31
* 2	TABLE ACCESS FULL	ORDERS	1	70	7
* 3	INDEX RANGE SCAN	ORD_SALES_REP_IX	7	6	26
--

Predicate Information (identified by operation id):

 2 - filter("O"."ORDER_TOTAL">100000)
 3 - access("O"."SALES_REP_ID"="SALES_REP_ID")
 filter("SALES_REP_ID" IS NOT NULL)

CHAPTER 2 ■ SQL EXECUTION

42

-- View merging does not occur

| Id | Operation | Name | Starts | E-Rows | A-Rows |

* 1	HASH JOIN OUTER		1	413	31
* 2	TABLE ACCESS FULL	ORDERS	1	70	7
3	VIEW		1	105	104
4	TABLE ACCESS FULL	ORDERS	1	105	104

Predicate Information (identified by operation id):

 1 - access("O"."SALES_REP_ID"="O_VIEW"."SALES_REP_ID")
 2 - filter("O"."ORDER_TOTAL">100000)

Did you notice how in the second, non-merged plan, the view is handled separately? The plan even

indicates the view was kept “as is” by showing the VIEW keyword in line 3 of the plan. By treating the
view separately, a full scan of the orders table occurs before it is joined with the outer orders table. But,
in the merged version, the plan operations are merged into a single plan instead of keeping the in-line
view separate. This results in a more efficient index access operation being chosen and requires fewer
rows to be processed (26 vs 104). This example uses small tables, so imagine how much work would
occur if you had really large tables involved in the query. The transformation to merge the view makes
the plan perform more optimally overall.

The misconception that an in-line or normal view will be considered first and separately from the
rest of the query often comes from our education about execution order in mathematics. Let’s consider
the following examples:

6 + 4 / 2 = 8
(6 + 4) / 2 = 5

The parenthesis in the second example cause the addition to happen first, whereas in the first
example the division would happen first based on the rules of precedence order. We are trained to know
that when we use parenthesis, that action will happen first. But the SQL language doesn’t follow the
same rules that mathematical expressions do. Using parenthesis to set a query block apart from another
does not in any way guarantee that block will be executed separately or first. If you have written your
statement to include an in-line view because you intend for that view to be considered separately, you
may need to add the NO_MERGE hint to that query block to prevent it from being rewritten. As a matter of
fact, using the NO_MERGE hint is how I was able to produce the non-merged plan in Listing 2-4. With this
hint, I was able to tell the query transformer that I wanted the o_view query block to be considered
independently from the outer query block. The query using the hint actually looked like this:

CHAPTER 2 ■ SQL EXECUTION

43

select *
from orders o,
 (select /*+ NO_MERGE */ sales_rep_id
 from orders
) o_view
where o.sales_rep_id = o_view.sales_rep_id(+)
and o.order_total > 100000;

There are some conditions that, if present, will also prevent view merging from occurring. If a query

block contains analytic or aggregate functions, set operations (such as UNION, INTERSECT, MINUS), an ORDER
BY clause, or uses ROWNUM, view merging will be prohibited or limited. Even if some of these conditions are
present, you can force view merging to take place by using the MERGE hint. If you force view merging to
occur by using the hint, you must make sure that the query result set is still correct after the merge. If
view merging was not going to occur, it was likely due to the fact that the merge might cause the query
result to be different. By using the hint, you are indicating the merge will not affect the answer. Listing
2-5 shows a statement with an aggregate function that does not view merge and how the use of a MERGE
hint can force view merging to occur.

Listing 2-5. The MERGE Hint

SQL> SELECT e1.last_name, e1.salary, v.avg_salary
 2 FROM employees e1,
 3 (SELECT department_id, avg(salary) avg_salary
 4 FROM employees e2
 5 GROUP BY department_id) v
 6 WHERE e1.department_id = v.department_id AND e1.salary > v.avg_salary;

...

38 rows selected.

Execution Plan
--
Plan hash value: 2695105989

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		17	697	8 (25)	00:00:01
* 1	HASH JOIN		17	697	8 (25)	00:00:01
2	VIEW		11	286	4 (25)	00:00:01
3	HASH GROUP BY		11	77	4 (25)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	749	3 (0)	00:00:01
5	TABLE ACCESS FULL	EMPLOYEES	107	1605	3 (0)	00:00:01
--

Predicate Information (identified by operation id):

1 - access("E1"."DEPARTMENT_ID"="V"."DEPARTMENT_ID")
 filter("E1"."SALARY">"V"."AVG_SALARY")

CHAPTER 2 ■ SQL EXECUTION

44

SQL> SELECT /*+ MERGE(v) */ e1.last_name, e1.salary, v.avg_salary
 2 FROM employees e1,
 3 (SELECT department_id, avg(salary) avg_salary
 4 FROM employees e2
 5 GROUP BY department_id) v
 6 WHERE e1.department_id = v.department_id AND e1.salary > v.avg_salary;

...

38 rows selected.

Execution Plan
--
Plan hash value: 3553954154

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		165	5610	8 (25)	00:00:01
* 1	FILTER					
2	HASH GROUP BY		165	5610	8 (25)	00:00:01
* 3	HASH JOIN		3296	109K	7 (15)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	2889	3 (0)	00:00:01
5	TABLE ACCESS FULL	EMPLOYEES	107	749	3 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - filter("E1"."SALARY">SUM("SALARY")/COUNT("SALARY"))
 3 - access("E1"."DEPARTMENT_ID"="DEPARTMENT_ID")

View merging behavior is controlled by the hidden parameter _complex_view_merging that defaults

to TRUE in version 9 and above. Starting in version 10, transformed queries are reviewed by the optimizer
and the costs of both the merged and non-merged plans are evaluated. The optimizer will then choose
the plan that is the least costly.

Subquery Unnesting
Subquery unnesting is similar to view merging in that just like a view a subquery is represented by a
separate query block. The main difference between mergeable views and subqueries that can be
unnested is location: Subqueries located within the WHERE clause are reviewed for unnesting by the
transformer. The most typical transformation is to convert the subquery into a join. If a subquery isn’t
unnested, a separate subplan will be generated for it and executed in an order within the overall plan
that allows for optimal execution speed.

When the subquery is not correlated, the transformed query is very straightforward, as shown in
Listing 2-6.

CHAPTER 2 ■ SQL EXECUTION

45

Listing 2-6. Unnesting Transformation of an Uncorrelated Subquery

SQL> set autotrace traceonly explain
SQL>
SQL> select * from employees where department_id in (select department_id from departments);

Execution Plan
--
Plan hash value: 169719308

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		106	7632	3 (0)	00:00:01
1	NESTED LOOPS		106	7632	3 (0)	00:00:01
2	TABLE ACCESS FULL	EMPLOYEES	107	7276	3 (0)	00:00:01
* 3	INDEX UNIQUE SCAN	DEPT_ID_PK	1	4	0 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("DEPARTMENT_ID"="DEPARTMENT_ID")

The subquery in this case is simply merged into the main query block and converted to a table join.
The query plan is derived as if the statement were written as follows:

select e.*
from employees e, departments d
where e.department_id = d.department_id

Using the NO_UNNEST hint, I could have forced the query to be optimized as written, which would

mean that a separate subplan would be created for the subquery (as shown in Listing 2-7).

Listing 2-7. Using the NO_UNNEST Hint

SQL> select employee_id, last_name, salary, department_id
 2 from employees
 3 where department_id in
 4 (select /*+ NO_UNNEST */department_id
 5 from departments where location_id > 1700);

Execution Plan
--
Plan hash value: 4233807898

CHAPTER 2 ■ SQL EXECUTION

46

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		10	190	14 (0)	00:00:01
* 1	FILTER					
2	TABLE ACCESS FULL	EMPLOYEES	107	2033	3 (0)	00:00:01
* 3	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	1	7	1 (0)	00:00:01
* 4	INDEX UNIQUE SCAN	DEPT_ID_PK	1		0 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - filter(EXISTS (SELECT /*+ NO_UNNEST */ 0 FROM "HR"."DEPARTMENTS"
 "DEPARTMENTS" WHERE "DEPARTMENT_ID"=:B1 AND "LOCATION_ID">1700))
 3 - filter("LOCATION_ID">1700)
 4 - access("DEPARTMENT_ID"=:B1)

The main difference between the plans is that without query transformation, a FILTER operation is

chosen instead of a NESTED LOOPS join. I’ll discuss both of these operations in detail in Chapters 3 and 6,
but for now just note that the FILTER operation typically represents a less efficient way of accomplishing
a match, or join, between two tables. You can see that the subquery remains intact if you look at the
Predicate Information for step 1. What happens with this “as is” version is that for each row in the
employees table, the subquery must execute using the employees table department_id column as a bind
variable for comparison with the list of department_ids returned from the execution of the subquery.
Since there are 107 rows in the employees table, the subquery will execute once for each row. That’s not
precisely what happens due to a nice optimization feature Oracle uses called subquery caching, but
hopefully you can see that executing the query for each row isn’t as efficient as joining the two tables. I’ll
discuss the details of these operations and review why the choice of a NESTED LOOPS join is more efficient
than the FILTER operation in the chapters ahead.

The subquery unnesting transformation is a bit more complicated when a correlated subquery is
involved. In this case, the correlated subquery is typically transformed into a view, unnested, and then
joined to the table in the main query block. Listing 2-8 shows an example of subquery unnesting of a
correlated subquery.

Listing 2-8. Unnesting Transformation of a Correlated Subquery

SQL> select outer.employee_id, outer.last_name, outer.salary, outer.department_id
 2 from employees outer
 3 where outer.salary >
 4 (select avg(inner.salary)
 5 from employees inner
 6 where inner.department_id = outer.department_id)
 7 ;

Execution Plan
--
Plan hash value: 2167610409

CHAPTER 2 ■ SQL EXECUTION

47

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		17	765	8 (25)	00:00:01
* 1	HASH JOIN		17	765	8 (25)	00:00:01
2	VIEW	VW_SQ_1	11	286	4 (25)	00:00:01
3	HASH GROUP BY		11	77	4 (25)	00:00:01
4	TABLE ACCESS FULL	EMPLOYEES	107	749	3 (0)	00:00:01
5	TABLE ACCESS FULL	EMPLOYEES	107	2033	3 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - access("DEPARTMENT_ID"="OUTER"."DEPARTMENT_ID")
 filter("OUTER"."SALARY">"VW_COL_1")

Notice in this example how the subquery is transformed into an in-line view, then merged with the

outer query and joined. The correlated column becomes the join condition and the rest of the subquery
is used to formulate an inline view. The rewritten version of the query would look something like this:

select outer.employee_id, outer.last_name, outer.salary, outer.department_id
 from employees outer,
 (select department_id, avg(salary) avg_sal
 from employees
 group by department_id) inner
 where outer.department_id = inner.department_id

Subquery unnesting behavior is controlled by the hidden parameter _unnest_subquery that defaults

to TRUE in version 9 and above. This parameter is specifically described as controlling unnesting
behavior for correlated subqueries. Just like with view merging, starting in version 10, transformed
queries are reviewed by the optimizer, and the costs are evaluated to determine whether or not an
unnested version would be the least costly.

Predicate Pushing
Predicate pushing is used to apply the predicates from a containing query block into a non-mergeable
query block. The goal is to allow an index to be used or allow for other filtering of the data set earlier in
the query plan rather than later. In general, it is always a good idea to filter out rows that aren’t needed
as soon as possible. Always think: filter early.

A real life example where the downside of filtering late is readily apparent is moving to another city.
Let’s say you are moving from Portland, Oregon to Jacksonville, Florida. If you hire a moving company
to pack and move you—and they charge by the pound—it wouldn’t be a very good idea to realize that
you really didn’t need or want 80% of the stuff that was moved. If you’d just taken the time to check out
everything before the movers packed you up in Portland, you could have saved yourself a lot of money!

That’s the idea with predicate pushing. If a predicate can be applied earlier by pushing it into a
non-mergeable query block, there will be less data to carry through the rest of the plan. Less data means
less work. Less work means less time. Listing 2-9 shows the difference between when predicate pushing
happens and when it doesn’t.

CHAPTER 2 ■ SQL EXECUTION

48

Listing 2-9. Predicate Pushing

SQL> set autotrace traceonly explain
SQL>
SQL> SELECT e1.last_name, e1.salary, v.avg_salary
 2 FROM employees e1,
 3 (SELECT department_id, avg(salary) avg_salary
 4 FROM employees e2
 5 GROUP BY department_id) v
 6 WHERE e1.department_id = v.department_id
 7 AND e1.salary > v.avg_salary
 8 AND e1.department_id = 60;

Execution Plan
--
Plan hash value: 2684380651

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		1	41	3 (0)
* 1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1	15	1 (0)
2	NESTED LOOPS		1	41	3 (0)
3	VIEW		1	26	2 (0)
4	HASH GROUP BY		1	7	2 (0)
5	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	5	35	2 (0)
* 6	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	5		1 (0)
* 7	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	5		0 (0)
--

Predicate Information (identified by operation id):

 1 - filter("E1"."SALARY">"V"."AVG_SALARY")
 6 - access("DEPARTMENT_ID"=60)
 7 - access("E1"."DEPARTMENT_ID"=60)

SQL> SELECT e1.last_name, e1.salary, v.avg_salary
 2 FROM employees e1,
 3 (SELECT department_id, avg(salary) avg_salary
 4 FROM employees e2
 5 WHERE rownum > 1 -- rownum prohibits predicate pushing!
 6 GROUP BY department_id) v
 7 WHERE e1.department_id = v.department_id
 8 AND e1.salary > v.avg_salary
 9 AND e1.department_id = 60;

CHAPTER 2 ■ SQL EXECUTION

49

Execution Plan
--
Plan hash value: 3834222907

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		3	123	7 (29)
* 1	HASH JOIN		3	123	7 (29)
2	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	5	75	2 (0)
* 3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	5		1 (0)
* 4	VIEW		11	286	4 (25)
5	HASH GROUP BY		11	77	4 (25)
6	COUNT				
* 7	FILTER				
8	TABLE ACCESS FULL	EMPLOYEES	107	749	3 (0)

Predicate Information (identified by operation id):

 1 - access("E1"."DEPARTMENT_ID"="V"."DEPARTMENT_ID")
 filter("E1"."SALARY">"V"."AVG_SALARY")
 3 - access("E1"."DEPARTMENT_ID"=60)
 4 - filter("V"."DEPARTMENT_ID"=60)
 7 - filter(ROWNUM>1)

Notice step 6 of the first plan. The WHERE department_id = 60 predicate was pushed into the view,

allowing the average salary to only be determined for one department. When the predicate is not
pushed, as shown in the second plan, the average salary must be computed for every department. Then,
when the outer query block and inner query blocks are joined, all the rows that are not department_id 60
get thrown away. You can tell from the Rows estimates as well as by the cost of the second plan that the
optimizer realizes that having to wait to apply the predicate requires more work and therefore is a more
expensive and time-consuming operation.

I used a little trick to stop predicate pushing in this example that I want to point out. The use of the
rownum pseudocolumn in the second query (I added the predicate WHERE rownum > 1) acted to prohibit
predicate pushing. As a matter of fact, rownum not only prohibits predicate pushing but it prohibits view
merging as well. Using rownum is like adding the NO_MERGE and NO_PUSH_PRED hints to the query. In this
case, it allowed me to point out the ill effects that occur when predicate pushing doesn’t happen, but I
also want to make sure you realize that using rownum will affect the choices the optimizer has available
when determining the execution plan. Be careful when you use rownum—it will make any query block it
appears in both non-mergeable and unable to have predicates pushed into it.

Other than through the use of rownum or a NO_PUSH_PRED hint, predicate pushing will happen without
any special action on your part. And that’s just what you want! While there may be a few corner cases
where predicate pushing might be less advantageous, those cases are few and far between. So, make
sure to check execution plans to ensure predicate pushing happens as expected.

CHAPTER 2 ■ SQL EXECUTION

50

Query Rewrite with Materialized Views
Query rewrite is a transformation that occurs when a query, or a portion of a query, has been saved as a
materialized view and the transformer can rewrite the query to use the precomputed materialized view
data instead of executing the current query. A materialized view is like a normal view except that the
query has been executed and its result set has been stored in a table. What this does is to precompute
the result of the query and make it available whenever the specific query is executed. That means that all
the work to determine the plan, execute it, and gather up all the data has already been done. So, when
the same query is executed again, there is no need to go through all that effort again.

The query transformer will match a query with available materialized views and then rewrite the
query to simply select from the materialized result set. Listing 2-10 walks through creating a
materialized view and how the transformer would rewrite the query to use the materialized view result
set.

Listing 2-10. Query Rewrite with Materialized Views

SQL> set autotrace traceonly explain
SQL>
SQL> SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 2 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
 3 FROM sales s, products p, times t
 4 WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;

Execution Plan
--
Plan hash value: 1109402314

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Pstart| Pstop |

0	SELECT STATEMENT		918K	65M	485 (17)		
* 1	HASH JOIN		918K	65M	485 (17)		
2	TABLE ACCESS FULL	TIMES	1826	29216	15 (0)		
* 3	HASH JOIN		918K	51M	453 (14)		
4	TABLE ACCESS FULL	PRODUCTS	72	2160	3 (0)		
5	PARTITION RANGE ALL		918K	25M	434 (11)	1	28
6	TABLE ACCESS FULL	SALES	918K	25M	434 (11)	1	28

Predicate Information (identified by operation id):

 1 - access("S"."TIME_ID"="T"."TIME_ID")
 3 - access("S"."PROD_ID"="P"."PROD_ID")
SQL>
SQL> set autotrace off

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 2 ■ SQL EXECUTION

51

SQL>
SQL> CREATE MATERIALIZED VIEW sales_time_product_mv
 2 ENABLE QUERY REWRITE AS
 3 SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 4 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
 5 FROM sales s, products p, times t
 6 WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;
SQL>
SQL> set autotrace traceonly explain
SQL>
SQL> SELECT p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 2 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
 3 FROM sales s, products p, times t
 4 WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;

Execution Plan
--
Plan hash value: 1109402314

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Pstart| Pstop |

0	SELECT STATEMENT		918K	65M	485 (17)		
* 1	HASH JOIN		918K	65M	485 (17)		
2	TABLE ACCESS FULL	TIMES	1826	29216	15 (0)		
* 3	HASH JOIN		918K	51M	453 (14)		
4	TABLE ACCESS FULL	PRODUCTS	72	2160	3 (0)		
5	PARTITION RANGE ALL		918K	25M	434 (11)	1	28
6	TABLE ACCESS FULL	SALES	918K	25M	434 (11)	1	28

Predicate Information (identified by operation id):

 1 - access("S"."TIME_ID"="T"."TIME_ID")
 3 - access("S"."PROD_ID"="P"."PROD_ID")

Note

 - dynamic sampling used for this statement

SQL>
SQL> SELECT /*+ rewrite(sales_time_product_mv) */
 2 p.prod_id, p.prod_name, t.time_id, t.week_ending_day,
 3 s.channel_id, s.promo_id, s.cust_id, s.amount_sold
 4 FROM sales s, products p, times t
 5 WHERE s.time_id=t.time_id AND s.prod_id = p.prod_id;

CHAPTER 2 ■ SQL EXECUTION

52

Execution Plan
--
Plan hash value: 663088863

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 909K| 95M| 1935 (3)|
| 1 | MAT_VIEW REWRITE ACCESS FULL| SALES_TIME_PRODUCT_MV | 909K| 95M| 1935 (3)|

Note

 - dynamic sampling used for this statement

In order to keep the example simple, I used a REWRITE hint to turn on the query rewrite
transformation. You can enable query rewrite to happen automatically as well. But as you notice in the
example, when the rewrite does occur, the plan simply shows a full access on the materialized view
instead of the entire set of operations required to produce the result set originally. As you can imagine,
the time savings can be substantial for complicated queries with large results sets, particularly if the
query contains aggregations. For more information on query rewrite and materialized views, refer to
The Oracle Data Warehousing Guide where you’ll find an entire chapter on advanced query rewrite.

Determining the Execution Plan
When a hard parse occurs, Oracle will determine which execution plan is best for the query. An
execution plan is simply the set of steps that Oracle will take to access the objects used by your query
and return the data that satisfies your query’s question. In order to determine the plan, Oracle will
gather and use lots of information, as you’ve already seen. One of the key pieces of information that
Oracle will use to determine the plan is statistics. Statistics can be gathered on objects, such as tables
and indexes; system statistics can be gathered as well. System statistics provide Oracle data about
average speeds for block reads and much more. All this information is used to help Oracle review
different scenarios for how a query could execute and to determine which of these scenarios is likely to
result in the best performance.

Understanding how Oracle determines execution plans will not only help you write better SQL but
will help you to understand how and why performance is affected by certain execution plan choices.
After Oracle verifies the syntax and permissions for a SQL statement, it uses the statisics information it
collects from the data dictionary to compute a cost for each operation and combination of operations
that could be used in order to get the result set your query needs. Cost is an internal value Oracle uses to
compare different plan operations for the same query to each other with the lowest costed option being
considered best. For example, a statement could be executed using a full table scan or an index. Using
the statistics, parameters, and other information, Oracle determines which method will result in the
fastest execution time.

Since Oracle’s main goal in determining an execution plan is to choose a set of operations that will
result in the fastest response time possible for the SQL statement being parsed, the more accurate
statistics are, the more likely Oracle will be to compute the best execution plan. In the chapters ahead,
I’ll review details about the various access methods and join methods available and how to review
execution plans in detail. For now, I want to make sure you understand what statistics are, why they’re
important, and how to review them for yourself.

CHAPTER 2 ■ SQL EXECUTION

53

The optimizer is the code path within the Oracle kernel that is responsible for determining the
optimal execution plan for a query. So, when I talk about statistics, I’m talking about how the optimizer
uses statistics. I use the script named st-all.sql to display statistics for the employees table, as shown in
Listing 2-11. I’ll use this information to discuss how statistics are used by the optimizer.

Listing 2-11. Statistics for the Employees Table

SQL> @st-all
Enter the owner name: hr
Enter the table name: employees
==
 TABLE STATISTICS
==
Owner : hr
Table name : employees
Tablespace : example
Partitioned : no
Last analyzed : 06/21/2010 17:27:14
Degree : 1
Rows : 107
Blocks : 5
Empty Blocks : 0
Avg Space : 0
Avg Row Length: 68
Monitoring? : yes
Status : valid

==
 COLUMN STATISTICS
==
 Name Null? NDV # Nulls # Buckets AvgLen Lo-Hi Values
==
commission_pct Y 7 72 1 2 .1 | .4
department_id Y 11 1 11 3 10 | 110
email N 107 0 1 8 ABANDA | WTAYLOR
employee_id N 107 0 1 4 100 | 206
first_name Y 91 0 1 7 Adam | Winston
hire_date N 98 0 1 8 06/17/1987 | 04/21/2000
job_id N 19 0 19 9 AC_ACCOUNT | ST_MAN
last_name N 102 0 1 8 Abel | Zlotkey
manager_id Y 18 1 18 4 100 | 205
phone_number Y 107 0 1 15 011.44.1343.329268 | 650.509.4876
salary Y 57 0 1 4 2100 | 24000

CHAPTER 2 ■ SQL EXECUTION

54

==
 INDEX INFORMATION
==

Index Name BLevel Leaf Blks #Rows Dist Keys LB/Key DB/Key ClustFactor Uniq?
----------------- ------ --------- ----- --------- ------ ------ ----------- -----
EMP_DEPARTMENT_IX 0 1 106 11 1 1 7 NO
EMP_EMAIL_UK 0 1 107 107 1 1 19 YES
EMP_EMP_ID_PK 0 1 107 107 1 1 2 YES
EMP_JOB_IX 0 1 107 19 1 1 8 NO
EMP_MANAGER_IX 0 1 106 18 1 1 7 NO
EMP_NAME_IX 0 1 107 107 1 1 15 NO

Index Name Pos# Order Column Name
------------------ ---------- ----- ------------------------------
emp_department_ix 1 ASC department_id

emp_email_uk 1 ASC email

emp_emp_id_pk 1 ASC employee_id

emp_job_ix 1 ASC job_id

emp_manager_ix 1 ASC manager_id

emp_name_ix 1 ASC last_name

The first set of statistics shown in Listing 2-11 is table statistics. These values can be queried from
the all_tables view (or dba_tables or user_tables as well). The next section lists column statistics and
can be queried from the all_tab_cols view. The final section lists index statistics and can be queried
from the all_indexes and all_ind_columns views.

Just like statistics in baseball, the statistics the optimizer uses are intended to be predictive. For
example, if a baseball player has a batting average of .333, you’d expect that he’d get a hit about 1 out of
every 3 times. That won’t always be true, but it is an indicator that most people rely on. Likewise, the
optimizer relies on the num_distinct column statistic to compute how frequently values within a column
will occur. By default, the assumption is that any value will occur in the same proportion as any other
value. If you were looking at the num_distinct statistic for a column named color and it was set to 10, it
means that the optimizer is going to expect there to be 10 possible colors and that each color would be
present in one tenth of the total rows of the table.

So, let’s say that the optimizer was parsing the following query:

select * from widgets where color = ‘BLUE’

The optimizer could choose to read the entire table (TABLE ACCESS FULL operation) or it could
choose to use an index (TABLE ACCESS BY INDEX ROWID). But how does it decide which one is best? It
uses statistics. I’m just going to use two statistics for this example. I’ll use the statistic that indicates the
number of rows in the widgets table (num_rows = 1000) and the statistic that indicates how many distinct
values are in the color column (num_distinct = 10). The math is quite simple in this case:

CHAPTER 2 ■ SQL EXECUTION

55

Number of rows query should return = (1 / num_distinct) x num_rows
 = (1 / 10) x 1000
 = 100

If you think about it for a second, it makes perfect sense. If there are 1000 rows in the table and

there are 10 distinct colors present in the table, then if your query only wants rows where the color is
blue, you’ll be asking for only one tenth of the data, or 100 rows. This computed value is called
selectivity. By dividing the number of distinct values into 1, you will determine how selectivity any single
value is. Easy, right?

Well, as you can imagine, the computations do get more complex, but I hope this simple example
helps you see how the optimizer is doing nothing more than some fairly straightforward calculations.
No rocket science…really! But, as you can see, even something so simple can be dramatically affected if
the values used aren’t accurate.

What if, at the time the optimizer parsed this query, the statistics were out of date or missing? For
example, let’s say that instead of indicating there were 1000 rows and 10 colors, the statistics showed 100
rows in the table and 1 color. Using these values, the number of rows the query should return would be
computed to be 100 (1 / 1 x 100). The number of rows is the same as our original computation, but is it
really the same? No, it’s very different. In the case of the first calcuation, the optimizer would have
assumed 10% of 1000 rows were returned while in the second case the 100 rows returned represent all
the rows in the table (at least according to the statistics). Can you see how this would influence the
optimizer’s decision about what operation to choose to retrieve the data?

Understanding the importance of statistics will help you know how to identify performance
problems that are not necessarily related to the way you wrote the SQL but instead rooted in issues with
the statistics. You could have done everything right, but if the statistics are wrong or inaccurate enough
that they don’t accurately reflect the reality of your data, you need to be able to pinpoint that quickly—
and not spend hours or days trying to fix a code problem that really isn’t a code problem.

But just to keep you from getting too happy that you’ve now got a way to point the finger of blame
away from yourself, let me show you an example of how you can write SQL in such a way that the
optimizer can’t use the statistics properly. In this case, you write a very simple query as follows:

select * from car_purchases where manufacturer = ‘Ford’ and make = ‘Focus’

The query uses a table containing information about car purchases for all American model cars. For

the sake of this example, let’s assert that each make of car is only produced by one manufacturer. That
means that only Ford will have a Focus. So, what’s the problem with the way this query is written? It will
certainly return the correct result set, but that’s not the only question that needs to be answered. You
also need to determine if the optimizer will be able to accurately understand the data given this query
formulation. So, let’s look at the statistics:

num_rows (car_purchases): 1,000,000
num_distinct (manufacturer): 4
num_distinct (make): 1000

Since there are two different conditions (or predicates) to apply, you need to first figure out the

selectivities of each one by itself. The selectivity of manufacturer would be 1/4 or .25. The selectivity of
make would be 1/1000 or .001. Since the predicates are combined with an AND, the two selectivities will
be multiplied together to get the correct overall selectivity for both combined. So, the final selectivity
would be .00025 (.25 x .001). That means the optimizer will determine that the query will return 250
rows (.00025 X 1,000,000).

Remember that I started by asserting that only one manufacturer would produce a certain make of
car. That means that since none of the other three manufacturers could have possibily produced a
Focus, the calculation that includes the selectivity for manufacturer is flawed. The truth is that we know

CHAPTER 2 ■ SQL EXECUTION

56

all Focus model vehicles have to be manufacturered by Ford. Including the condition where
manufacturer = ‘Ford’ reduces the overall selectivity by 25%. In this case, the true selectivity should
have been only the selectivity for the model column alone. If just that predicate had been written, then
the selectivity would have been 1/1000 or .001, and the optimizer would have computed that 1,000 rows
would be returned by the query instead of 250. That means the answer the optimizer came up with was
“off” by a factor of 4. You may look at the difference between 250 and 1,000 and think “so what’s the big
deal; that’s not that far off, is it?” Let’s go back to the baseball example and apply this same logic to see if
it stands out more to you. If a player normally has a .333 average and you were to tack on another
meaningless condition that would require you to multiply his average by .25 as well, what happens? All
of a sudden, the high-paid professional athlete looks like a sandlot wanna-be with an average of .083
(.333 x .25)!

Numbers can change everything—and not just in baseball. The calculations the optimizer makes
will drastically affect the choice of execution plan operations. Those choices can make the difference
between response times of a few seconds to response times of several hours. In this particular example,
you get to see what happens when the optimizer doesn’t know something that you do. All the optimizer
can do is to plug in the statistics values and come up with an answer. If you know something about your
data that the optimizer can’t know, make sure you code your SQL accordingly and don’t lead the
optimizer astray.

Executing the Plan and Fetching Rows
After the optimizer determines the plan and stores it in the library cache for later reuse, the next step is
to actually execute the plan and fetch the rows of data that satisfy your query. I’m going to cover much
more on plan operations and how to read and understand execution plan output in the chapters ahead,
but for now, let’s talk about what happens after the plan is chosen.

An execution plan is just a set of instructions that tell Oracle which access method to use for each
table object and which order and join method to use to join multiple table objects together. Each step in
the plan produces a row source that is then joined with another row source until all objects have been
accessed and joined. As rows are retrieved that satisfy the query, they must be returned from the
database to the application. For result sets of any size, the rows that need to be returned will very likely
not all be passed to the application in a single roundtrip. Packets of data will be transmitted from the
database and across the network until all rows ultimately arrive back to the user/requestor.

When you execute a query, what appears to you to be a single response consisting of the rows that
satisfy your query is really a series of calls executed independently. Your query will complete PARSE,
BIND, EXEC and FETCH steps in order to complete. One or more FETCH calls will occur for a query that each
return a portion of the rows that satisfy the query. Figure 2-3 shows the steps that actually occur “under
the covers” when a SELECT statement is executed.

The network roundtrip between the client and the database for each call will contribute to the
overall response time of the statement. There will be only one of each type of database call except for
FETCH. As previously mentioned, Oracle will need to execute as many FETCH calls as necessary to retrieve
and return all the rows required to satisfy your query.

A single FETCH call will access one or more blocks of data from the buffer cache. Each time a block is
accessed, Oracle will take rows from the block and return them to the client in one roundtrip. The
number of rows that are returned is a configurable setting called arraysize. The arraysize is the number
of rows that will be transmitted in a single network roundtrip, if possible. If the size of the rows is too
large to fit in a single packet, Oracle will break up the rows into multiple packets, but even then, only a
single FETCH call will be needed to provide the specified number of rows.

CHAPTER 2 ■ SQL EXECUTION

57

Figure 2-3. Under the covers of a SELECT statement execution

CHAPTER 2 ■ SQL EXECUTION

58

The arraysize setting is set programmatically; how it is accomplished will depend on which calling
application environment you use. In SQL*Plus, where the default arraysize is 15, you change the arraysize
setting using the command SET ARRAYSIZE n. The JDBC default is 10 and may be changed using
((OracleConnection)conn).setDefaultRowPrefetch (n). Make sure to discover your application’s arraysize
setting and increase it as necessary. The benefit to having a larger arraysize is two-fold: reduction of FETCH
calls and reduction of network roundtrips. It may not seem like much, but the impact can be quite stunning.
Listing 2-12 demonstrates how logical reads for the same query are reduced by simply changing the
arraysize. Note that logical reads are labeled as consistent gets in the autotrace output.

Listing 2-12. How Arraysize Setting Affects Logical Reads

SQL> set arraysize 15
SQL>
SQL> set autotrace traceonly statistics
SQL>
SQL> select * from order_items ;

Statistics
--
 0 recursive calls
 0 db block gets
 52 consistent gets
 0 physical reads
 0 redo size
 18815 bytes sent via SQL*Net to client
 865 bytes received via SQL*Net from client
 46 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 664 rows processed

SQL>
SQL> set arraysize 45
SQL> /

Statistics
--
 0 recursive calls
 0 db block gets
 22 consistent gets
 0 physical reads
 0 redo size
 15026 bytes sent via SQL*Net to client
 535 bytes received via SQL*Net from client
 16 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 664 rows processed

CHAPTER 2 ■ SQL EXECUTION

59

Even for this small result set of 664 rows, the difference that increasing the arraysize setting
produces is clearly visible. I increased the setting from 15 to 45 and reduced the logical reads from 52 to
22 and reduced the number of network roundtrips from 46 to 16! This change had nothing to do with
the SQL statement and everything to do with how Oracle was able to access and return the rows to you.
This is just one more example of how understanding how things work can help you help Oracle use less
resources and time to do what you ask of it.

SQL Execution – Putting It All Together
Now that I’ve covered the details, I’m ready to put the whole picture of how a SQL statement executes
together. Figure 2-4 shows the steps that are involved when a SQL statement executes.

Figure 2-4. Overview of steps that occur when a SQL statement is executed

This is a simplified view, but it encapsulates the view of the process. From a big picture perspective,
every query must complete PARSE, EXECUTE and FETCH steps. DML statements (INSERT, UPDATE, DELETE)

CHAPTER 2 ■ SQL EXECUTION

60

will only need to parse and execute. In addition to these steps, statements that use bind variables will
also include a step to read the bind values as part of the parse component.

Summary
Understanding how SQL executes will enable you to write it more effectively. The optimizer is at the
heart of every SQL statement you write; writing SQL with the optimizer in mind will help you more than
you can imagine. On this point, I’ll ask you to trust me for now. I can assure you that understanding the
optimizer has been one of the most beneficial pieces of knowledge I’ve gained. So, don’t get frustrated if
you’re itching to just start looking at syntax and specific SQL code. What you’ll end up with by the end of
this journey will be well worth it.

At this point, I hope you feel more comfortable with at least some of the key parts of Oracle’s
architecture that are involved in the execution of the SQL you send to the database. You should also
have a flavor for the power of statistics and how they are used by the optimizer. It is outside the scope of
this book to go into more detail about this topic, but I’d highly recommend picking up Jonathan Lewis’
Cost-Based Oracle Fundamentals if you really want to take a deep dive into this subject matter. The
more you know, the better equipped you’ll be to write SQL that works with the optimizer and not
against it.

In the chapter ahead, I’m going to cover the access and join methods the optimizer can choose and
review numerous examples of how and why the optimizer does what it does. What I’ve covered so far
has built the foundation for what I’ll cover next and each chapter will continue to add to the foundation.
The goal is to shed some light on the black box into which you’ve been throwing SQL and to help you
develop an enriched perspective on the importance of what’s under the covers of Oracle, in particular
the optimizer, and how to properly interact with it.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 3

61

Access and Join Methods

Karen Morton

The optimizer must determine how to access the data your SQL statements require. You formulate your
statement and the optimizer, during a hard parse, will figure out which operations should provide the
data in the most effective way possible. Using statistics as the primary guide, the optimizer will
compute the cost of the possible alternatives to first access data and then join multiple tables to get the
final result set. The more you understand about the different access and join methods the optimizer
will consider, the more likely you will be to formulate your SQL to help the optimizer make the best
choices. And, when the operation chosen by the optimizer doesn’t provide the performance you need,
you can more accurately determine which operations would be more suited to produce the response
times you want.

After your SQL statement’s expressions and conditions are evaluated and any query
transformation that might help it more accurately develop the execution plan are complete, the next
step in the development of the execution plan is for the optimizer to determine which method of
accessing the data will be best. In general, there are only two basic ways to access data: either via a
full scan or an index scan. During a full scan (which, by the way, can be a full table scan or a fast full
index scan) multiple blocks are read in a single IO operation. Index scans first scan index leaf blocks
to retrieve specific rowids and then hand those rowids to the parent table access step to retrieve the
actual row data. These accesses are performed via single block reads. If there are additional filters
that need to be applied to the data after the table access step, the rows will pass through that filter
before being included in the final result set from that step.

The access method that is chosen for a table is used to determine the join methods and join orders
that will be used in the final plan. So, if the access method chosen for a table is suboptimal, the
likelihood that the whole plan is faulty is high. As discussed in Chapter 2, statistics play a vital role in
how accurate the optimizer is in determining the best method. Along with representative statistics, the
optimizer will use your query to figure out how much data you are requesting and which access method
will provide that data as quickly as possible. Each table in the query will first be evaluated
independently from the others to determine its optimal access path. In the next sections, I’ll review
each of the access methods in detail.

Full Scan Access Methods
When full scanning an object, all the blocks associated with that object must be retrieved and
processed to determine if rows in a block match your query’s needs. Remember that Oracle must read
an entire block into memory in order to get to the row data stored in that block. So, when a full scan
occurs, there are actually two things the optimizer (and you) needs to consider: how many blocks must
be read and how much data in each block will be thrown away. The idea I want you to grab on to at this

CHAPTER 3 ACCESS AND JOIN METHODS

62

point is that the decision as to whether a full scan is the right choice isn’t just based on how many rows
your query will return. There have been many “rules of thumb” published that state things like “if your
query will retrieve more than x% of rows from the table, then a full scan should be chosen.” There’s
more to the decision than just that ROT (Rule Of Thumb = ROT) and I don’t want you to get stuck on a
rule that limits the consideration that should be given to the choice.

I’m not saying the theory behind the rule of thumb doesn’t make logical sense. I’m just saying that
it isn’t everything that must be considered. In a case where the query will return a very high
percentage of rows, the likelihood that a full scan should be use is certainly high, but the trouble with a
generalized rule is that the percentage of rows chosen is somewhat arbitrary. Over the years, I’ve
seen this rule published in various books, articles, and forums with percentages varying from 20% to
70%. Why should it change?

How Full Scan Operations are Chosen
At this point, now that I’ve briefly discussed the problem with generalizing how full table scans are
chosen, I can continue with the rest of the story. It’s not just about rows, it’s also about blocks and about
throwaway. The combination of all of these pieces of information may lead to a conclusion that it
makes sense to do a full scan even when the percentage of rows is quite small. On the other hand, a
full scan may not be chosen even when a large percentage of the rows are returned. Let’s walk
through an example in Listing 3-1 showing how even when a small percentage of rows satisfies the
query, the optimizer may choose a full table scan plan. First, two tables are created that contain the
exact same 10,000 rows. Next, the execution plans for the same query against each table are shown.
Notice how even though the query returns 100 rows (only 1% of the total data), a full scan plan can be
chosen.

Listing 3-1. Creating Two Test Tables

SQL> create table t1 as
 2 select trunc((rownum-1)/100) id,
 3 rpad(rownum,100) t_pad
 4 from dba_source
 5 where rownum <= 10000;

Table created.

SQL> create index t1_idx1 on t1(id);

Index created.

SQL> exec dbms_stats.gather_table_stats(user,'t1',method_opt=>'FOR ALL COLUMNS SIZE
1',cascade=>TRUE);

PL/SQL procedure successfully completed.

CHAPTER 3 ACCESS AND JOIN METHODS

63

SQL> create table t2 as
 2 select mod(rownum,100) id,
 3 rpad(rownum,100) t_pad
 4 from dba_source
 5 where rownum <= 10000;

Table created.

SQL> create index t2_idx1 on t2(id);

Index created.

SQL> exec dbms_stats.gather_table_stats(user,'t2',method_opt=>'FOR ALL COLUMNS SIZE
1',cascade=>TRUE);

PL/SQL procedure successfully completed.

Both tables will have 10,000 rows. The id columns in both tables will have 100 rows for each value
between 0 and 99. So, in terms of the data content, the tables are identical. However, notice that for
t1, the id column was populated using the expression trunc((rownum-1)/100) while for t2 the id column
was populated using mod(rownum,100). Figure 3-1 shows how the rows might be stored physically in the
table’s data blocks.

Figure 3-1. Diagram of random vs. sequentially stored row values

Given what you just inserted, you’d expect to get a result set of 100 rows if you executed a query for
any single value of either table. You know how many rows you should get because you just created the
tables yourself. But, how could you get an idea of what the tables contained and how those rows were

CHAPTER 3 ACCESS AND JOIN METHODS

64

stored otherwise? One way is to run a query and use the COUNT aggregate function, as shown in
Listing 3-2.

Listing 3-2. Count(*) Queries Against Tables T1 and T2

SQL> select count(*) ct from t1 where id = 1 ;

 CT

 100

1 row selected.

SQL> select count(*) ct from t2 where id = 1 ;

 CT

 100

1 row selected.

Notice that, as expected, you get 100 rows from both tables. If it is reasonable to query actual data

to determine the result set sizes, this is a great way to know what to expect from your query. For each
table involved in the query you write, you can execute individual queries that apply the predicates for
that table and count the number of rows returned. This will help you estimate which access method
will likely be best suited for your final query. But, knowing row counts is only part of the information
you need. Now, you need to go back to how the data is stored.

Out of 10,000 total rows in each table, if you query for a single value (where id = 1), you know
you’ll get back 100 rows. That’s just 1% of the total rows. Given that small percentage, you’d also then
likely expect that the optimizer would choose to use the index on id to access those rows, right? That
certainly seems like a logical conclusion, but here is where knowing how your data is stored comes in.
If your data is stored sequentially with most of the rows where id = 1 stored physically in just a few
blocks, like is the case with table t1, this conclusion is correct, as shown in the explain plan in
Listing 3-3.

Listing 3-3. EXPLAIN PLAN for Query Against T1

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		100	10300	3 (0)	00:00:01
1	TABLE ACCESS BY INDEX ROWID	T1	100	10300	3 (0)	00:00:01
* 2	INDEX RANGE SCAN	T1_IDX1	100		1 (0)	00:00:01

Predicate Information (identified by operation id):

 2 - access("ID"=1)

CHAPTER 3 ACCESS AND JOIN METHODS

65

So, wouldn’t you expect the query against t2 to do exactly the same thing since it will return the
same 100 rows? As you can see from the explain plan shown in Listing 3-4, that is not the case at all.

Listing 3-4. EXPLAIN PLAN for Query Against T2

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 100 | 10300 | 39 (3)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| T2 | 100 | 10300 | 39 (3)| 00:00:01 |
--

Predicate Information (identified by operation id):

 1 - filter("ID"=1)

Why didn’t the optimizer make the same plan choice for both queries? It’s because of how the data
is stored in each table. The query against table t1 will require that Oracle access only a few blocks to
get the 100 rows needed to satisfy the query. Therefore, the index costs out to be the most attractive
option. But, the query against table t2 will end up having to read practically every block in the table to
get the same 100 rows since the rows are physically scattered throughout all the table blocks. The
optimizer calculates that the time to read every block in the table using an index would likely be more
than just reading all the blocks in the table using a full table scan and simply throwing away rows that
aren’t needed from each block. Retrieving the rows from an index would require approximately 200
block accesses. I’ll discuss why it’s 200 in the next section when I cover index scans. So, the query
against t2 will use a TABLE ACCESS FULL operation instead of an index.

This demonstration shows you that there can be differences in the optimizer’s plan choices based
on how the data is stored. While knowing this may not necessarily make a difference in how you end
up writing a query, it can make a difference in how you determine if the performance of the query will
meet your SLAs. If you kept seeing a full table scan plan operation, you may think you needed to
change or hint your query to force the use of the index. But, doing so might make performance worse
in the long term. If you don’t understand how the data is stored, you can make poor decisions about
what should happen when your query executes.

Full Scans and Throwaway
Always remember that whether or not a full scan will be an effective choice depends on the number of
blocks that will need to be read as much as on how many rows will end up in the final result set. How
the data is stored plays an important role in the decision, as demonstrated in this example. However,
the other key factor in whether or not a full scan is an effective choice is throwaway. Throwaway rows
are those rows that are checked against a filter predicate and don’t match the filter and are thus
rejected from the final result set.

In the previous example, the full table scan operation would have to check all 10,000 rows in the
table and throw away 9,900 of them to end up with the final result set of 100 rows. The check on each
row is simply the filter predicate on id = 1 (seen in Listing 3-4 in the Predicate Information section
for step 1). In order to execute this filter, the CPU will be utilized for each check. That means that while
the number of blocks accessed will be limited, there will be quite a bit of CPU resources used to
complete the filter checks for each row. The use of the CPU will be factored into the cost of the full scan.

CHAPTER 3 ACCESS AND JOIN METHODS

66

As the number of blocks accessed and the amount of throwaway increases, the more costly the full
scan will become. Listing 3-5 is a simple query to show the number of rows and number of blocks for
table T2 in your example. Based on the number of blocks shown, the full table scan would access
approximately 164 blocks.

Listing 3-5. Rows and Blocks Statistics for Tables T1 and T2

SQL> select table_name, num_rows, blocks from user_tables where table_name = 'T2' ;

TABLE_NAME NUM_ROWS BLOCKS
------------------------------ --------------- ---------------
T2 10000 164

1 rows selected.

Over time, as rows are added to the table and the table grows larger, the cost of throwing away so
many rows would increase enough to cause the optimizer to switch to an index scan operation instead.
The point where the optimizer decides to switch over may not necessarily be the point where you
achieve optimal performance. You can use hints to force the optimizer to use an index and test to see at
what point it might make more sense to use an index, and if the optimizer doesn’t choose that path, you
can consider using hints or SQL profiles to help. Chapter 16 will cover using hints and profiles so
you’ll be prepared to use them if you ever need to do so.

Full Scans and Multiblock Reads
Another thing you need to know about full scans is how blocks are read. A full scan operation makes
multiblock reads. This means that a single IO call will request several blocks instead of just one. The
number of blocks requested will vary and can actually range anywhere from one to the number of
blocks specified in the db_file_multiblock_read_count parameter. For example, if the parameter is set
to 16 and there are 160 blocks in the table, there could be only 10 calls made to get all the blocks.

I say that only 10 calls could be made because of the following limitations on multiblock read calls.
Oracle will read db_file_multiblock_read_count blocks unless reading the full number of blocks

• causes Oracle to have to read blocks that cross an extent boundary. In this case, Oracle will
read the blocks up to the extent boundary in one call, then issue another call to read the
remainder.

• means a block already in the buffer cache would be read again as part of the multiblock read.
Oracle will simply read the blocks up to those not already in memory, then issue another read
call that skips those blocks to read the rest. This could mean that a multiblock read might only
read one block at a time. For example, let’s say the multiblock read count was 16 and the
range of blocks to be read was between block number 1 and 16. If the even numbered blocks
had already been placed into the buffer cache, individual single block reads would be done for
each odd numbered block in that range. In that case, 8 read calls would be made—one for
each block in that range not already in the buffer cache.

• would exceed an operating system limit for multiblock read sizes. This is dependent on your
operating system so it can vary.

CHAPTER 3 ACCESS AND JOIN METHODS

67

Full Scans and the Highwater Mark
A final point of note regarding full table scans is that as the multiblock read calls for the scan are
made, Oracle will read blocks up to the highwater mark in the table. The highwater mark marks the
last block in the table that has ever had data written to it. To be technically correct, this is actually
called the low highwater mark. For your purposes, the low highwater mark is what I’ll be discussing
and I’ll refer to it generically as the highwater mark. For a more detailed discussion, please see the
Oracle documentation.

When rows are inserted into a table, blocks are allocated and the rows are placed in the blocks.
Figure 3-2 shows how a table might look after a large insert to populate the table.

Figure 3-2. Blocks allocated to a table with rows indicated with a +

Over the course of normal operations, rows are deleted from the blocks. Figure 3-3 shows how the
table might look after a large number of rows have been deleted from the table.

Figure 3-3. The blocks after rows have been deleted. The HWM remains unchanged.

Even though almost all the rows have been deleted and some blocks have actually become totally
unused, the highwater mark remains the same. When a full scan operation occurs, all blocks up to the
highwater mark will be read in and scanned, even if they are empty. This means that many blocks that
don’t need to be read because they are empty will still be read. Listing 3-6 shows an example of how
highwater mark doesn’t change, even if all the rows in the table are deleted.

CHAPTER 3 ACCESS AND JOIN METHODS

68

Listing 3-6. Highwater Mark

SQL> -- List number of allocated blocks (table has 800,000 rows)
SQL> -- The highwater mark is the last block containing data.
SQL> -- While this query doesn’t specifically show the HWM, it gives you an idea.
SQL>
SQL> select blocks from user_segments where segment_name = 'T2';

 BLOCKS

 12288

1 row selected.

SQL> -- List how many blocks contain data
SQL>
SQL> select count(distinct (dbms_rowid.rowid_block_number(rowid))) block_ct from t2 ;

 BLOCK_CT

 12122

1 row selected.

SQL> -- List the lowest and highest block numbers for this table
SQL>
SQL> select min(dbms_rowid.rowid_block_number(rowid)) min_blk,
max(dbms_rowid.rowid_block_number(rowid)) max_blk from t2 ;

 MIN_BLK MAX_BLK
--------------- ---------------
 1302492 1386248

1 row selected.

SQL> -- Check the space usage in the table
SQL> get space_usage.sql
 1 declare
 2 l_tabname varchar2(30) := '&1';
 3 l_fs1_bytes number;
 4 l_fs2_bytes number;
 5 l_fs3_bytes number;
 6 l_fs4_bytes number;
 7 l_fs1_blocks number;
 8 l_fs2_blocks number;
 9 l_fs3_blocks number;
 10 l_fs4_blocks number;

CHAPTER 3 ACCESS AND JOIN METHODS

69

 11 l_full_bytes number;
 12 l_full_blocks number;
 13 l_unformatted_bytes number;
 14 l_unformatted_blocks number;
 15 begin
 16 dbms_space.space_usage(
 17 segment_owner => user,
 18 segment_name => l_tabname,
 19 segment_type => 'TABLE',
 20 fs1_bytes => l_fs1_bytes,
 21 fs1_blocks => l_fs1_blocks,
 22 fs2_bytes => l_fs2_bytes,
 23 fs2_blocks => l_fs2_blocks,
 24 fs3_bytes => l_fs3_bytes,
 25 fs3_blocks => l_fs3_blocks,
 26 fs4_bytes => l_fs4_bytes,
 27 fs4_blocks => l_fs4_blocks,
 28 full_bytes => l_full_bytes,
 29 full_blocks => l_full_blocks,
 30 unformatted_blocks => l_unformatted_blocks,
 31 unformatted_bytes => l_unformatted_bytes
 32);
 33 dbms_output.put_line('0-25% Free = '||l_fs1_blocks||' Bytes = '||l_fs1_bytes);
 34 dbms_output.put_line('25-50% Free = '||l_fs2_blocks||' Bytes = '||l_fs2_bytes);
 35 dbms_output.put_line('50-75% Free = '||l_fs3_blocks||' Bytes = '||l_fs3_bytes);
 36 dbms_output.put_line('75-100% Free = '||l_fs4_blocks||' Bytes = '||l_fs4_bytes);
 37 dbms_output.put_line('Full Blocks = '||l_full_blocks||' Bytes = '||l_full_bytes);
 38* end;
SQL>
SQL> @space_usage T2
0-25% Free = 0 Bytes = 0
25-50% Free = 0 Bytes = 0
50-75% Free = 0 Bytes = 0
75-100% Free = 16 Bytes = 131072
Full Blocks = 12121 Bytes = 99295232

PL/SQL procedure successfully completed.

SQL> -- Note that most blocks are full
SQL> -- A full table scan would have to read all the blocks (12137 total)
SQL>
SQL> -- Delete all the rows from the table
SQL> delete from t2 ;

800000 rows deleted.

CHAPTER 3 ACCESS AND JOIN METHODS

70

SQL>
SQL> commit ;

Commit complete.

SQL> -- Check the space usage after all rows are deleted
SQL> @space_usage T2
0-25% Free = 0 Bytes = 0
25-50% Free = 0 Bytes = 0
50-75% Free = 0 Bytes = 0
75-100% Free = 12137 Bytes = 99426304
Full Blocks = 0 Bytes = 0

PL/SQL procedure successfully completed.

SQL> -- Note that blocks are now free but the same space is still consumed
SQL> -- A full table scan would still read 12137 blocks
SQL> -- List number of blocks (table has 0 rows)
SQL> select blocks from user_segments where segment_name = 'T2';

 BLOCKS

 12288

1 row selected.

SQL> -- List how many blocks contain data
SQL> select count(distinct (dbms_rowid.rowid_block_number(rowid))) block_ct from t2 ;

 BLOCK_CT

 0

1 row selected.

SQL> -- Execute a full table scan and note the consistent gets (logical block reads)
SQL>
SQL> set autotrace traceonly
SQL> select * from t2 ;

no rows selected

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 ACCESS AND JOIN METHODS

71

Execution Plan
--
Plan hash value: 1513984157

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 65 | 2674 (1)| 00:00:33 |
| 1 | TABLE ACCESS FULL| T2 | 1 | 65 | 2674 (1)| 00:00:33 |
--
Statistics
--
 0 recursive calls
 0 db block gets
 12148 consistent gets
 11310 physical reads
 0 redo size
 332 bytes sent via SQL*Net to client
 370 bytes received via SQL*Net from client
 1 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 0 rows processed

SQL> set autotrace off
SQL>

SQL> -- Truncate the table to deallocate the space and reset the HWM
SQL> truncate table t2 ;

Table truncated.

SQL> -- Check the space usage after table is truncated
SQL> @space_usage T2
0-25% Free = 0 Bytes = 0
25-50% Free = 0 Bytes = 0
50-75% Free = 0 Bytes = 0
75-100% Free = 0 Bytes = 0
Full Blocks = 0 Bytes = 0

PL/SQL procedure successfully completed.

SQL> -- Note that the space has been deallocated
SQL>
SQL> -- List number of blocks (table has 0 rows and all space recovered)
SQL> select blocks from user_segments where segment_name = 'T2';

CHAPTER 3 ACCESS AND JOIN METHODS

72

 BLOCKS

 8

1 row selected.

SQL> set autotrace traceonly
SQL> select * from t2 ;

no rows selected

Execution Plan
--
Plan hash value: 1513984157

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 1 | 65 | 2674 (1)| 00:00:33 |
| 1 | TABLE ACCESS FULL| T2 | 1 | 65 | 2674 (1)| 00:00:33 |
--

Statistics
--
 0 recursive calls
 0 db block gets
 3 consistent gets
 0 physical reads
 0 redo size
 332 bytes sent via SQL*Net to client
 370 bytes received via SQL*Net from client
 1 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 0 rows processed

SQL> set autotrace off

I hope this example illustrates that even when a full table scan is the “right” plan operation choice,
the overhead of reading additional empty blocks can mean performance takes a significant hit. For
tables that are frequently loaded and unloaded (using DELETE instead of TRUNCATE), you may discover
that response time suffers. This occurs often with tables that are used for ETL or any form of
load/process/unload activity. Now that you know how full scan behavior can be affected, you will be
able to diagnose and correct related performance problems more easily.

CHAPTER 3 ACCESS AND JOIN METHODS

73

Index Scan Access Methods
If you have a book about U.S. Presidents and want to find information on Jimmy Carter, you could start
on the first page and visually scan each page until you came to the section of the book about Carter.
However, it would take a lot of time to do that scan so you might find it more expedient to look up
Carter in the book’s index. Once you have the page number, you can go directly to that location. An
index scan operation is conceptually similar to using an index in a book.

The default index type is a B-tree index and is the only type I am going to discuss in this chapter.
Indexes are created on one or more table columns or column expressions and store the column values
along with a rowid. There are other pieces of information stored in the index entry, but for your
purposes you’re only going to concern yourselves with the column value and the rowid. The rowid is a
pseudocolumn that uniquely identifies a row within a table. It is the internal address of a physical
table row and consists of an address that points to the data file that contains the table block that
contains the row and the address of the row within the block that leads directly to the row itself.
Listing 3-7 shows how to decode the rowid into a readable form.

Listing 3-7. Decoding rowid

SQL> column filen format a50 head 'File Name'
SQL>
SQL> select e.rowid ,
 2 (select file_name
 3 from dba_data_files
 4 where file_id = dbms_rowid.rowid_to_absolute_fno(e.rowid, user, 'EMP'))
filen,
 5 dbms_rowid.rowid_block_number(e.rowid) block_no,
 6 dbms_rowid.rowid_row_number(e.rowid) row_no
 7 from emp e
 8 where e.ename = 'KING' ;

ROWID File Name BLOCK_NO ROW_NO
------------------ --- --------- --------
AAANprAAEAAAWVvAAI C:\ORACLE\PRODUCT\11.2.0\ORADATA\DB\USERS01.DBF 91503 8

1 row selected.

As you can see, the rowid points to the exact location of a particular row. Therefore, when an index
is used to access a row, all that happens is that a match is made on the access criteria provided in the
predicate, then the rowid is used to access the specific file/block/row of data. Block accesses made via
an index scan are made using single-block reads. That makes sense when you consider how the rowid
is used. Once the index entry is read, only the single block of data identified by that rowid is retrieved;
once it is retrieved, only the row specified by the rowid is accessed.

What this means is that for each row that will be retrieved via an index scan, at least two block
accesses will be required: at least one index block and one data block. If your final result set contains
100 rows and those 100 rows are retrieved using an index scan, there would be at least 200 block
accesses required. I keep saying “at least” because depending on the size of the index, Oracle may
have to access several index blocks initially in order to get to the first matching column value needed.

CHAPTER 3 ACCESS AND JOIN METHODS

74

Index Structure
An index is logically structured, as shown in Figure 3-4. Indexes are comprised of one or more levels
of branch blocks and a single level of leaf blocks. Branch blocks hold information about the range of
values contained in the next level of branch blocks and are used to search the index structure to find
the needed leaf blocks. The height of an index is the number of branch levels between the initial
branch block (referred to as the root block) and the leaf blocks. The leaf blocks contain the indexed
values and the rowid for each in sorted order as mentioned previously.

If you start with a newly created, empty table and create an index on that table, the index consists
of one, empty block. In this case, the single block acts as both a root block and a leaf block. The height
of the index will be 1. There is another statistic called blevel that represents the number of branch
levels present in an index. In this case, the blevel would be 0.

Figure 3-4. Logical view of an index structure

As new rows are added to the table, new index entries are added to the block, and it will fill to the
point where additional entries won’t fit. At this point, Oracle will allocate two new index blocks and
place all the index entries into these two new leaf blocks. The previously filled single root block is
now replaced with pointers to the two new blocks. The pointers are made up of the Relative Block
Address (RBA) to the new index blocks and a value indicating the lowest indexed value (i.e. lowest in
sorted order) found in the referenced leaf block. With this information in the root block, Oracle can
now search the index to find specific leaf blocks that hold a requested value. At this point, the index
now has a height of 2 and a blevel of 1.

Over time, as more rows are inserted into the table, index entries are added into the two leaf
blocks that were just created. As these leaf blocks fill up, Oracle will add one leaf block and allocate the
index entries between the full and new leaf blocks. Every time a leaf block fills up and splits, a new
pointer for this new leaf block will be added to the root block. Eventually, the root block will fill up and
the process repeats with the root being split into two new branch blocks. When this split occurs, the
height of the index will increase to 3 and the blevel to 2.

CHAPTER 3 ACCESS AND JOIN METHODS

75

At this point, as new index entries are made, the leaf blocks will fill and split, but instead of a new
pointer being added to the root block, the pointer will be added to the corresponding branch block.
Eventually the branch blocks will fill and split. It is at this point that a new entry gets added to the root
block. As this process continues, eventually the root block will fill up and split increasing the height of
the index once again. Just remember that the only time the height of an index increases is when the
root block splits. For that reason, all leaf blocks will always be at the same distance from the root block.
This is why you’ll hear the term balanced used in regard to Oracle B-tree indexes. Indexes are
guaranteed to remain height-balanced.

Why go through all this detail? Understanding how an index structure is created and maintained
will help you understand how the various types of index scans work. Now that you have an
understanding of how indexes are structured, you’re ready to discover how the different index scans
traverse that structure to retrieve row data that your query needs.

Index Scan Types
There are several different types of index scans but each share some common ground in how they must
traverse the index structure to access the leaf block entries that match the values being searched. First,
the root block of the index is accessed with a single block read. The next step is to read a branch block.
Depending on the height of the index, one or more branch blocks may need to be read. Each read is for
a separate single block. Finally, the first index leaf block that contains the start of the index entries
needed is read. If the height of an index is 4, to get to the leaf block needed, 4 single block reads will be
performed. At this point, the rowid for the first matching index value in the leaf block is read and used
to make a single block read call to retrieve the table block where the entire row resides. Therefore, in
this example, to retrieve a single row from a table using an index, Oracle would have to read 5 blocks: 4
index blocks and 1 table block.

The various index scan types you will review are index range scan, index unique scan, index full
scan, index skip scan, and index fast full scan. An index fast full scan is actually more like a full table
scan, but since they are scans against an index structure I’ll cover them in this section.

Before I review the different scan types, I want to point out a very important index statistic called
clustering factor. The clustering factor statistic of an index helps the optimizer generate the cost of
using the index and is a measure of how well ordered the table data is as related to the indexed values.
Recall that index entries are stored in sorted order while table data is stored in random order. Unless
an effort has been made to specifically load data into a table in a specific order, you are not
guaranteed where individual rows of data will end up. For example, rows from the orders table that
share the same order_date may not all reside in the same blocks. They are likely to be scattered
randomly across the blocks in the table.

The clustering factor of an index indicates to the optimizer if data rows containing the same
indexed values will be located in the same or a small set of contiguous blocks, or if rows will be
scattered across numerous table blocks. Figure 3-5 shows how the rows might be stored physically in
the table’s data blocks.

In the diagram showing table T1, you see how rows containing the value 2 were loaded into the
same block. But, in table T2, rows with a value of 2 are not loaded in contiguous blocks. In this
example, an index on this column for table T1 would have a lower clustering factor. Lower numbers
that are closer to the number of table blocks are used to indicate highly ordered, or clustered, rows of
data based on the indexed value. The clustering factor for this column in table T2, however, would be
higher and typically closer to the number of rows in the table. Listing 3-8 shows the clustering factor
statistic for each of these two tables.

CHAPTER 3 ACCESS AND JOIN METHODS

76

Figure 3-5. Diagram of random vs. sequentially loaded row values

Listing 3-8. Index clustering_factor

SQL> select t.table_name||'.'||i.index_name idx_name,
 2 i.clustering_factor, t.blocks, t.num_rows
 3 from user_indexes i, user_tables t
 4 where i.table_name = t.table_name
 5 and t.table_name in ('T1','T2')
 6 order by t.table_name, i.index_name;

IDX_NAME CLUSTERING_FACTOR BLOCKS NUM_ROWS
--------------- ----------------- --------------- ---------------
T1.T1_N1 152 164 10000
T2.T2_N1 10000 164 10000

2 rows selected.

As demonstrated earlier in this chapter (see Listings 3-3 and 3-4), the optimizer would choose an
index scan when querying table T1 but a full table scan when querying table T2. The clustering_factor
was the key piece of information that helped the optimizer make that decision.

So, while clustering factor is a statistic associated with an index, it is computed by looking at the
blocks of data in the table. When computing clustering factor, Oracle will do something similar to what
is shown in Listing 3-9.

CHAPTER 3 ACCESS AND JOIN METHODS

77

Listing 3-9. Computing Index clustering_factor

SQL> select t.table_name||'.'||i.index_name idx_name,
 2 i.clustering_factor, t.blocks, t.num_rows
 3 from all_indexes i, all_tables t
 4 where i.table_name = t.table_name
 5 and t.table_name = 'EMPLOYEES'
 6 and t.owner = 'HR'
 7 and i.index_name = 'EMP_DEPARTMENT_IX'
 8 order by t.table_name, i.index_name;

IDX_NAME CLUSTERING_FACTOR BLOCKS NUM_ROWS
------------------------------- ----------------- ------ --------
EMPLOYEES.EMP_DEPARTMENT_IX 7 5 107

1 row selected.
SQL> select department_id, last_name, blk_no,
 2 lag (blk_no,1,blk_no) over (order by department_id) prev_blk_no,
 3 case when blk_no != lag (blk_no,1,blk_no) over (order by department_id)
 4 or rownum = 1
 5 then '*** +1'
 6 else null
 7 end cluf_ct
 8 from (
 9 select department_id, last_name,
 10 dbms_rowid.rowid_block_number(rowid) blk_no
 11 from hr.employees
 12 where department_id is not null
 13 order by department_id
 14);

DEPARTMENT_ID LAST_NAME BLK_NO PREV_BLK_NO CLUF_CT
------------- --------------- ------- ------------ -------
 10 Whalen 84 84 *** +1
 20 Hartstein 84 84
 20 Fay 84 84
 30 Raphaely 88 84 *** +1
 30 Colmenares 88 88
...

 30 Himuro 88 88
 40 Mavris 84 88 *** +1
 50 OConnell 84 84
 50 Grant 84 84
 50 Weiss 88 84 *** +1
 50 Fripp 88 88
 50 Kaufling 88 88
...

CHAPTER 3 ACCESS AND JOIN METHODS

78

 70 Baer 84 88 *** +1
 80 Bates 88 84 *** +1
 80 Smith 88 88

 100 Sciarra 88 88
 110 Gietz 84 88 *** +1
 110 Higgins 84 84

106 rows selected.

As I mentioned, this isn’t precisely how the clustering factor is computed, but this query can help
you see how it is done in general terms. Note that I deleted some of the output rows for brevity, but left
enough of the output so you could see where the block number for the row changed from the previous
row’s block number. Clustering factor is computed by adding one to a counter each time the block
number for the current row is different from the previous row. In this example, that happens seven
times. What this number is supposed to represent is seven different table blocks that hold data for this
table. As you can see from the output, there are really only two blocks that contain data (block
numbers 84 and 88). In reality, the clustering factor isn’t exactly accurate. In this case, it is off by a
factor of 3.5.

Although most of the time this inaccuracy in the way clustering_factor is computed won’t make
enough difference to cause the optimizer to over-cost the index enough to prevent it from being
chosen, it is possible that situation could occur. If the optimizer doesn’t choose the index you expect, it
may choose another index that can satisfy the predicate that contains similar columns. In these
situations, you may need to do a careful analysis of the indexes you have created to see if there is a way
to consolidate several indexes into a single compound index. Do not make the mistake of rebuilding
the index thinking it will help “fix” the clustering_factor. As I have demonstrated here, the
clustering_factor is related to the table data, not the index. So, rebuilding the index won’t have any
effect on it.

On the other hand, if you start to consider rebuilding the table to improve the clustering_factor,
proceed with caution. Tables typically have numerous indexes. You can’t rebuild the table to make the
order match one index without causing it to be less ordered by other columns. So, a rebuild may help in
relation to one index but hurt others. Also, rebuilding tables is typically a time-consuming and
resource-intensive process. Just because you rebuild the table in a particular order today doesn’t
mean it’s going to stay in that order over time as rows are inserted, updated, and deleted. As you
proceed through the rest of the book, you’ll learn enough to understand when clustering_factor may
be part of a problem and you’ll likely be able to find ways to adjust for it if needed.

NOTE In each of the following examples that explain plan output, the output has been edited; I’ve removed the

Time column for brevity.

Index Unique Scan
An index unique scan is chosen when a predicate contains a condition using a column defined with a
UNIQUE or PRIMARY KEY index. These types of indexes guarantee that only one row will ever be returned
for a specified value. In this cases, the index structure will be traversed from root to leaf block to a
single entry, retrieve the rowid, and use it to access the table data block containing the one row. The

CHAPTER 3 ACCESS AND JOIN METHODS

79

TABLE ACCESS BY INDEX ROWID step in the plan indicates the table data block access. The number of
block accesses required will always be equal to the height of the index plus one unless there are special
circumstances like the row is chained or contains a LOB that is stored elsewhere. Listing 3-10 shows
an example query that will produce an index unique scan plan.

Listing 3-10. Index Unique Scan

SQL> set autotrace traceonly explain
SQL>
SQL> select * from hr.employees where employee_id = 100;

Execution Plan
--
Plan hash value: 1833546154

--
|Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		1	82	2 (0)
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1	82	2 (0)
* 2	INDEX UNIQUE SCAN	EMP_EMP_ID_PK	1		1 (0)
--

Predicate Information (identified by operation id):

 2 - access("EMPLOYEE_ID"=100)

Index range scan
An index range scan is chosen when a predicate contains a condition that will return a range of data.
The index can be unique or non-unique as it is the condition that determines whether or not multiple
rows will be returned or not. The conditions specified can use operators such as <, >, LIKE, BETWEEN and
even =. In order for a range scan to be selected, the range will need to be fairly selective. The larger
the range, the more likely a full scan operation will be chosen instead. Listing 3-11 shows an example
of a query that will produce an index range scan plan.

Listing 3-11. Index Range Scan

SQL> set autotrace traceonly explain
SQL>
SQL> select * from hr.employees where department_id = 60 ;

Execution Plan
--
Plan hash value: 2056577954

CHAPTER 3 ACCESS AND JOIN METHODS

80

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		5	340	2 (0)
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	5	340	2 (0)
* 2	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	5		1 (0)
--

Predicate Information (identified by operation id):

 2 - access("DEPARTMENT_ID"=60)

A range scan will traverse the index structure from the root block to the first leaf block containing
an entry matching the specified condition. From that starting point, a rowid will be retrieved from the
index entry and the table data block will be retrieved (TABLE ACCESS BY INDEX ROWID). After the first
row is retrieved, the index leaf block will be accessed again and the next entry will be read to retrieve
the next rowid. This back-and-forth between the index leaf blocks and the data blocks will continue
until all the matching index entries have been read. Therefore, the number of block accesses required
will include the number of branch blocks in the index (this can be found using the blevel statistic for
the index) plus the number of index entries that match the condition multiplied by two. You have to
multiply by two because each retrieval of a single row in the table will require that the index leaf block
be accessed to retrieve the rowid and then the table data block will be accessed using that rowid.
Therefore, if the example returned 5 rows and the blevel was 3, the total block accesses required would
(5 rows x 2) + 3 = 13.

If the range of entries matching the condition is large enough, it is likely that more than one leaf
block will have to be accessed. When that is the case, the next leaf block needed can be read using a
pointer stored in the current leaf block that leads to the next leaf block (there’s also a pointer to the
previous leaf block). Since these pointers exist, there is no need to go back up to the branch block to
determine where to go next.

When an index range scan is chosen, the predicate information in the plan will show the condition
used to access the index. In the example, step 2 in the plan has an asterisk beside it. This is an
indicator that predicate information for that step is listed below the plan. In that section, you see an
entry showing that the index entry access was determined using the condition DEPARTMENT_ID = 60.

There are cases when predicates that you might think should use index range scans do not. For
example, if you use a LIKE operator with a condition that starts with a wildcard such as ‘%abc’, the
optimizer will not choose a range scan on an index for that column because the condition is too broad.
Another similar case is when you have a predicate that uses a column that isn’t the leading column in a
compound index. In that case, as I’ll discuss shortly, it is more likely for an index skip scan to be chosen
instead.

One final nuance of an index range scan that I’d like to note is the ability of an ascending ordered
index (the default) to return rows in descending sorted order. The optimizer may choose to use an
index to access rows via an index even if a full scan might be warranted. This may occur when the
query includes an ORDER BY clause on a column that is indexed. Since the index is stored in sorted
order, reading rows using the index will mean the rows are retrieved in sorted order and the need to
do a separate sort step can be avoided. But, what if the ORDER BY clause is requested in descending
order? Since the index is stored in ascending order, the index couldn’t be used for a descending order
request, could it? Listing 3-12 shows an example of this behavior and the special range scan operation
used to handle it.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 ACCESS AND JOIN METHODS

81

Listing 3-12. An Index Range Scan Used to Avoid a Sort

SQL> set autotrace traceonly explain
SQL>
SQL> select * from hr.employees
 2 where department_id in (90, 100)
 3 order by department_id desc;

Execution Plan
--
Plan hash value: 3707994525

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		9	612	2 (0)
1	INLIST ITERATOR				
2	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	9	612	2 (0)
* 3	INDEX RANGE SCAN DESCENDING	EMP_DEPARTMENT_IX	9		1 (0)
--

Predicate Information (identified by operation id):

 3 - access("DEPARTMENT_ID"=90 OR "DEPARTMENT_ID"=100)
 filter("DEPARTMENT_ID"=90 OR "DEPARTMENT_ID"=100)

In this case, the index entries are actually read in reverse order to avoid the need for a separate sort.

Index Full Scan
An index full scan is chosen under several conditions including: when there is no predicate but the
column list can be satisfied through an index on a column, the predicate contains a condition on a
non-leading column in an index, or the data can be retrieved via an index in sorted order and save the
need for a separate sort step. Listing 3-13 shows an example of each of these cases.

Listing 3-13. Index Full Scan Examples

SQL> set autotrace traceonly explain
SQL> select email from hr.employees ;

Execution Plan
--
Plan hash value: 2196514524

CHAPTER 3 ACCESS AND JOIN METHODS

82

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | 107 | 856 | 1 (0)|
| 1 | INDEX FULL SCAN | EMP_EMAIL_UK | 107 | 856 | 1 (0)|
--

SQL>
SQL> select first_name, last_name from hr.employees
 2 where first_name like 'A%' ;

Execution Plan
--
Plan hash value: 2228653197

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 3 | 45 | 1 (0)|
|* 1 | INDEX FULL SCAN | EMP_NAME_IX | 3 | 45 | 1 (0)|

Predicate Information (identified by operation id):

 1 - access("FIRST_NAME" LIKE 'A%')
 filter("FIRST_NAME" LIKE 'A%')

SQL> select * from hr.employees order by employee_id ;

Execution Plan
--
Plan hash value: 2186312383

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		107	7276	3 (0)
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	107	7276	3 (0)
2	INDEX FULL SCAN	EMP_EMP_ID_PK	107		1 (0)
--

SQL> select * from hr.employees order by employee_id desc ;

Execution Plan
--
Plan hash value: 2761389396

CHAPTER 3 ACCESS AND JOIN METHODS

83

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		107	7276	3 (0)
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	107	7276	3 (0)
2	INDEX FULL SCAN DESCENDING	EMP_EMP_ID_PK	107		1 (0)
--

An index full scan operation will scan every leaf block in the index structure, read the rowids for
each entry, and retrieve the table rows. Every leaf block is accessed. This is often more efficient than
doing a full table scan as the index blocks will contain more entries than the table blocks will,
therefore fewer overall blocks may need to be accessed. In cases where the columns needed to satisfy
the column list are all present as part of the index entry, the table access step is avoided as well. This
means that choosing an index full scan operation will be more efficient than reading all the table
blocks.

You may have noticed in the last example that the index full scan operation also has the ability to
read in descending order to avoid the need for a separate descending ordered sort request. There is
another optimization for index full scans. This optimization occurs when a query requests the
minimum or maximum column value and that column is indexed. Listing 3-14 shows an example of
this operation choice.

Listing 3-14. Index Full Scan Min/Max Optimization

SQL> set autotrace traceonly explain
SQL> select min(department_id) from hr.employees ;

Execution Plan
--
Plan hash value: 613773769

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		1	3	3 (0)
1	SORT AGGREGATE		1	3	
2	INDEX FULL SCAN (MIN/MAX)	EMP_DEPARTMENT_IX	107	321	

SQL> select max(department_id) from hr.employees ;

Execution Plan
--
Plan hash value: 613773769

CHAPTER 3 ACCESS AND JOIN METHODS

84

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		1	3	3 (0)
1	SORT AGGREGATE		1	3	
2	INDEX FULL SCAN (MIN/MAX)	EMP_DEPARTMENT_IX	107	321	

SQL> select min(department_id), max(department_id) from hr.employees ;

Execution Plan
--
Plan hash value: 1756381138

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		1	3	3 (0)
1	SORT AGGREGATE		1	3	
2	TABLE ACCESS FULL	EMPLOYEES	107	321	3 (0)

SQL> select (select min(department_id) from hr.employees) min_id,
 2 (select max(department_id) from hr.employees) max_id
 3 from dual
 4

Execution Plan
--
Plan hash value: 2189307159

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		1		2 (0)
1	SORT AGGREGATE		1	3	
2	INDEX FULL SCAN (MIN/MAX)	EMP_DEPARTMENT_IX	107	321	
3	SORT AGGREGATE		1	3	
4	INDEX FULL SCAN (MIN/MAX)	EMP_DEPARTMENT_IX	107	321	
5	FAST DUAL		1		2 (0)

As the example shows, when a MIN or MAX aggregate is requested, the optimizer can choose a special
optimized version of the index full scan operation. In these special cases, when the index is used to
quickly retrieve the minimum value, it will be the first entry in the first index leaf block; when it
retrieves the maximum value, it will be the last entry in the last index leaf block. This makes perfect
sense as the index is stored in sorted order so the minimum and maximum values have to be at either
end of the first and last leaf blocks. But the really great part is that in these special cases, the index full

CHAPTER 3 ACCESS AND JOIN METHODS

85

scan isn’t really a full scan—it is a scan of only root block, one or more branch blocks, and first or last
leaf blocks. This means that finding these values is very fast and very low cost in terms of the number
of block accesses required. While the index full scan operation title may make it seem a bit confusing
as index full scans typically read all the index leaf blocks, this optimization is a nice win in terms of
performance.

I did include an example of where the query included both a MIN and a MAX aggregate, and as you
may have noticed, the optimizer chose to do a full table scan with a sort instead of the nice optimized
index full scan operation. While I think this is a short-coming in the way the optimizer handles this
situation, there is a fairly easy way to get the same optimized behavior. Just code the two queries
separately. In this way, you get the benefits of the optimization.

Index Skip Scan
An index skip scan is chosen when the predicate contains a condition on a non-leading column in an
index and the leading columns are fairly distinct. In earlier releases of Oracle, if a predicate used a
column that wasn’t the leading column in an index, the index couldn’t be chosen. This behavior
changed in Oracle version 9 with the introduction of the index skip scan. A skip scan works by logically
splitting a multi-column index into smaller subindexes. The number of logical subindexes is
determined by the number of distinct values in the leading columns of the index. Therefore, the more
distinct the leading columns are, the more logical subindexes would need to be created. If too many
subindexes would be required, the operation won’t be as efficient as simply doing a full scan.
However, in the cases where the number of subindexes needed would be smaller, the operation can be
many times more efficient than a full scan as scanning smaller index blocks can be more efficient
than scanning larger table blocks. Listing 3-15 shows an example of an index skip scan plan (Note: For
this example, I used a copy of the hr.employees table which had nearly 28,000 rows).

Listing 3-15. Index Skip Scan Examples

SQL> create index emp_jobfname_ix on employees(job_id, first_name, salary);

Index created.

SQL> set autotrace traceonly
SQL>
SQL> select * from employees where first_name = 'William';

Execution Plan
--
Plan hash value: 3440948136

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		1	82	21 (0)
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1	82	21 (0)
* 2	INDEX SKIP SCAN	EMP_JOBFNAME_IX	1		20 (0)
--

CHAPTER 3 ACCESS AND JOIN METHODS

86

Predicate Information (identified by operation id):

 2 - access("FIRST_NAME"='William')
 filter("FIRST_NAME"='William')

Statistics

 0 recursive calls
 0 db block gets
 50 consistent gets
 0 physical reads
 0 redo size
 2362 bytes sent via SQL*Net to client
 392 bytes received via SQL*Net from client
 3 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 23 rows processed

SQL> select /*+ full(employees) */ * from employees where first_name = 'William';

23 rows selected.

Execution Plan
--
Plan hash value: 1445457117

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 82 | 84 (2)| 00:00:02 |
|* 1 | TABLE ACCESS FULL| EMPLOYEES | 1 | 82 | 84 (2)| 00:00:02 |

Predicate Information (identified by operation id):

 1 - filter("FIRST_NAME"='William')

CHAPTER 3 ACCESS AND JOIN METHODS

87

Statistics
--
 0 recursive calls
 0 db block gets
 376 consistent gets
 0 physical reads
 0 redo size
 2735 bytes sent via SQL*Net to client
 392 bytes received via SQL*Net from client
 3 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 23 rows processed

SQL> -- How many distinct values of job_id?
SQL> select count(distinct job_id) ct from employees ;

 CT

 19

In this example, the leading column of the index, job_id, has 19 distinct values. Using an index

skip scan to access the 23 rows that match the condition (first_name = ‘William’), there are 50
consistent gets (logical block accesses). However, if a full table scan is used, 376 blocks are accessed.
As you can see, the skip scan is much more efficient. What happened was that the index was logically
divided into 19 subindexes and each subindex was scanned for a match for first_name = ‘William’.
For this index scan type, just keep in mind that the fewer distinct values the leading column (or
columns) have, the fewer logical subindexes will be needed and therefore the fewer total block
accesses required.

Index Fast Full Scan
An index fast full scan is more like a full table scan than like other index scan types. When an index
fast full scan operation is chosen, all the index blocks are read using multiblock reads. This type of
scan is chosen as an alternative to a full table scan when all the columns needed to satisfy the query’s
column list are included in the index and at least one column in the index has the NOT NULL constraint.
In this case, the data is accessed from the index instead of having to access table blocks. Unlike other
index scan types, the index fast full scan cannot be used to avoid a sort since the blocks are read using
unordered multiblock reads. Listing 3-16 shows an example of an index fast full scan plan.

Listing 3-16. Index Fast Full Scan

SQL> alter table hr.employees modify (email null) ;

Table altered.

SQL> set autotrace traceonly explain
SQL> select email from hr.employees ;

CHAPTER 3 ACCESS AND JOIN METHODS

88

Execution Plan
--
Plan hash value: 1445457117

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | 107 | 856 | 3 (0)|
| 1 | TABLE ACCESS FULL| EMPLOYEES | 107 | 856 | 3 (0)|
--

SQL> set autotrace off
SQL>
SQL> alter table hr.employees modify (email not null) ;

Table altered.

SQL> set autotrace traceonly explain
SQL> select email from hr.employees ;

Execution Plan
--
Plan hash value: 2196514524

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | 107 | 856 | 1 (0)|
| 1 | INDEX FULL SCAN | EMP_EMAIL_UK | 107 | 856 | 1 (0)|
--

This example demonstrates how the index fast full scan operation relies on the NOT NULL

constraint in order to be chosen. Without the constraint, a full scan operation is chosen instead.

Join Methods
If there are multiple tables in your query, after the optimizer determines the access methods most
appropriate for each of the tables, the next step is to determine the way the tables can best be joined
together and the proper order in which to join them. Anytime you have multiple tables in the FROM
clause, you will have a join. Tables relationships are defined with a condition in the WHERE clause. If no
condition is specified, the join will be implicitly defined such that each row in one table will be
matched with every row in the other table. This is called a Cartesian join and I will discuss it in further
detail later in this section.

Joins occur between pairs of tables or row sources. When multiple tables exist in the FROM clause,
the optimizer will determine which join operation is most efficient for each pair. The join methods
are: nested loops joins, hash joins, sort-merge joins, and Cartesian joins. Each join method has
specific conditions to which it is best suited. For each pair, the optimizer must also determine the order

CHAPTER 3 ACCESS AND JOIN METHODS

89

in which the tables are joined. Figure 3-6 shows a diagram of how a query with four tables might be
joined.

Notice that after the first pair of tables is joined, the next table is joined to the resulting row source
from the first join. After that join is made, the next table is joined to that row source. This continues
until all tables have been joined.

Each join method will have two children. The first table accessed is typically called the driving
table and the second table is called the inner or driven-to table. The optimizer determines the driving
table by using the statistics and the filter conditions in the WHERE clause to calculate how many rows
will be returned from each table. The table with the smallest estimated size (in terms of blocks, rows,
and bytes) will typically be the driving table. This is true particularly if the optimizer can determine
that one of the tables will return at most one row based on a UNIQUE or PRIMARY KEY constraint. These
tables are placed first in the join. Tables with outer join operators (which I’ll discuss later) must come
after the table to which it is joined. Other than these two specific cases, the join order of the other
tables is evaluated based on their computed selectivities based on the optimizer’s calculations using
available table, column, and index statistics.

Figure 3-6. Join order example diagram

Nested Loops Joins
Nested loops joins use each row of the query result reached through one access operation to drive into
another table. These joins are typically most effective if the result set is limited in size and indexes
are present on the columns used for the join. With nested loops, the cost of the operation is based on
reading each row of the outer row source and joining it with the matching row of the inner row source.

A nested loops join is, as its name implies, a loop inside a loop. The outer loop is basically a query
against the driving table that uses only the conditions from the WHERE clause that pertain to that table.
As rows pass the outer conditional check and are confirmed to match the request, they are passed into

CHAPTER 3 ACCESS AND JOIN METHODS

90

the second inner loop one at a time. Each row is then checked to see if it matches the joined-to table
based on the join column. If the row matches this second check, it is then passed on to the next step in
the plan or is included in the final result set if no further steps are present.

These kinds of joins are quite robust in that they use very little memory. Since row sets are built
one row at a time, there is little overhead required. For that reason, they are actually good for huge
result sets except for the fact that building a huge result set one row at a time can take quite a long
time. That’s why I mentioned earlier that nested loops are typically best when the result sets are
smaller. The primary measurement for nested loops is the number of block accesses required to
prepare the final result set.

Let’s take a simple query and break it down into how the nested loop join would be processed.

select empno, ename, dname, loc
from emp, dept
where emp.deptno = dept.deptno

This query would be processed as if it were written like the following pseudocode:

for each row in (select empno, ename, deptno from emp) loop
for (select dname, loc from dept where deptno = outer.deptno) loop

If match then pass the row on to the next step
If inner join and no match then discard the row
If outer join and no match set inner column values to null

and pass the row on to the next step
 end loop
end loop

Listing 3-17 shows the plan for this query.

Listing 3-17. Nested Loops

SQL> set autotrace traceonly explain
SQL>
SQL> select empno, ename, dname, loc
 2 from emp, dept
 3 where emp.deptno = dept.deptno;

Execution Plan
--
Plan hash value: 351108634

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		14	462	4 (0)
1	NESTED LOOPS		14	462	4 (0)
2	TABLE ACCESS FULL	EMP	14	182	3 (0)
3	TABLE ACCESS BY INDEX ROWID	DEPT	1	20	1 (0)
* 4	INDEX UNIQUE SCAN	PK_DEPT	1		0 (0)

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 ACCESS AND JOIN METHODS

91

Predicate Information (identified by operation id):

 4 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")

The plan shows the nested loops method with the emp table as the driving table and the dept table
as the inner (or driven-to) table. With a nested loops plan, the first table listed after the NESTED LOOPS
operation is the driving table. That table will be accessed via the method chosen for it. In this case, it is
a full table scan on emp. That means that all the blocks in the emp table are read using multiblock reads,
then each row is accessed one at a time, and the deptno (the join column) is passed to the inner loop
query against the dept table. For an inner join, each row where there is a match on the dept table’s
deptno column, the row will be returned. For an outer join, each row from emp will be returned and null
values will be used to populate the columns from dept.

If you’re wondering why the emp table was chosen as the driving table, just take a second to think
about the query. The query is asking for all rows where there is a match between the two tables on
deptno. In my test, the emp table did not have an index on deptno so the only way it could be accessed
was with a full table scan. Since the way a nested loops join works is to process the inner join for each
row of the outer table, if the dept table had been the driving table, for every row in dept a full table
scan on emp would have occurred. On the other hand, driving the join with the emp table means that
only one full table scan is needed, and since there is an index on deptno in the dept table (it’s the
primary key), the inner loop can directly access the row it needs from dept. Listing 3-18 shows the
comparison of the autotrace statistics output for both join orders.

Listing 3-18. Nested Loops Join Order Comparison

SQL> set autotrace traceonly statistics
SQL>
SQL> select empno, ename, dname, loc
 2 from scott.emp, scott.dept
 3 where emp.deptno = dept.deptno;

Statistics
--
 0 recursive calls
 0 db block gets
 24 consistent gets
 0 physical reads
 0 redo size
 999 bytes sent via SQL*Net to client
 381 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 14 rows processed

SQL> select /*+ ordered use_nl (dept emp) */ empno, ename, dname, loc
 2 from scott.dept, scott.emp
 3 where emp.deptno = dept.deptno;

CHAPTER 3 ACCESS AND JOIN METHODS

92

Statistics

 0 recursive calls
 0 db block gets
 37 consistent gets
 0 physical reads
 0 redo size
 853 bytes sent via SQL*Net to client
 381 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 14 rows processed

I had to use hints (hints will be covered later in the book) to force the optimizer to choose a plan
with the dept table as the driving table. Notice that when the join is driven by dept, the logical reads
(consistent gets) are higher than when the join is driven by the emp table. So, the optimizer made the
correct join order choice by choosing to lead with emp. One of the keys to optimizing performance is to
make sure that only work that needs to happen is done. The extra work (i.e. extra logical reads) that
would have occurred if the dept table had been the driving table was avoided with this join order
choice.

Sort-Merge Joins
Sort-merge joins read the two tables to be joined independently, sorts the rows from each table (but
only those rows that meet the conditions for the table in the WHERE clause) in order by the join key, and
then merges the sorted rowsets. The sort operations are the expensive part for this join method. For
large row sources that won’t fit into memory, the sorts will end up using temporary disk space to
complete. This can be quite memory and time-consuming to complete. But once the rowsets are
sorted, the merge happens quickly. To merge, the database alternates down the two lists, compares the
top rows, discards rows that are earlier in the sort order than the top of the other list, and only returns
matching rows.

Let’s use the same query used earlier and break it down into how the sort-merge join would be
processed.

select empno, ename, dname, loc
from emp, dept
where emp.deptno = dept.deptno

This query would be processed as if it were written like the following pseudocode:

select empno, ename, deptno from emp order by deptno

select dname, loc, deptno from dept order by deptno

compare the rowsets and return rows where deptno in both lists match

for an outer join, compare the rowsets and return all rows from the first list

setting column values for the other table to null

CHAPTER 3 ACCESS AND JOIN METHODS

93

Listing 3-19 shows the plan for this query.

Listing 3-19. Sort-Merge Join

SQL> select /*+ ordered */ empno, ename, dname, loc
 2 from scott.dept, scott.emp
 3 where emp.deptno = dept.deptno;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		14	462	6 (17)
1	MERGE JOIN		14	462	6 (17)
2	TABLE ACCESS BY INDEX ROWID	DEPT	4	80	2 (0)
3	INDEX FULL SCAN	PK_DEPT	4		1 (0)
* 4	SORT JOIN		14	182	4 (25)
5	TABLE ACCESS FULL	EMP	14	182	3 (0)

Predicate Information (identified by operation id):

 4 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")
 filter("EMP"."DEPTNO"="DEPT"."DEPTNO")

I used the same query as before but had to force the plan with an ordered hint. Notice how the plan

operations show a MERGE JOIN operation followed by an index access on the dept table and a SORT JOIN
operation of a full table scan on the emp table. The first thing to note is the use of the index scan on
dept. In this case, the optimizer chose to read the table data from the index since the index would
return the data in sorted order. That means a separate sort step could be avoided. The emp table was
full scanned and required a separate sort step since there was no index on deptno that could be used.
After both rowsets were ready and in sorted order, they were merged together.

A sort-merge join will access the blocks needed and then do the work to sort and merge them in
memory (or by using temp disk space if there isn’t enough memory). So, when you do a comparison of
logical reads for a sort-merge join to a nested loops join, particularly for a query against a larger row
source, you will likely find that there are more block accesses required for the nested loops join. Does
that mean that the sort-merge is a better choice? It depends. You have to take into account all the work
required to complete the sort and merge steps and realize that work may end up taking much more
time than doing more block accesses might.

Sort-merge joins are typically best suited to queries that have limited data filtering and return lots of
rows. They are also often a better choice if there are no suitable indexes that can be used to access the
data more directly. Finally, a sort-merge is often the best choice when the join is an inequality. For
example, a join condition of WHERE table1.column1 between table2.column1 and table2.column2 would
be a candidate for a sort-merge. As you’ll see in the next section, a hash join is not possible for such a
join; if the row sources are large, the sort-merge will likely be the only viable choice.

CHAPTER 3 ACCESS AND JOIN METHODS

94

Hash Joins
Hash joins, like sort-merge joins, first reads the two tables to be joined independently and applies the
criteria in the WHERE clause. Based on table and index statistics, the table that is determined to return the
fewest rows will be hashed in its entirety into memory. This hash table includes all the row data for that
table and is loaded into hash buckets based on a randomizing function that converts the join key to a hash
value. As long as there is enough memory available, this hash table will reside in memory. However, if
there is not enough memory available, the hash table may be written to temp disk space.

The next step is for the other larger table to be read and the hash function is applied to the join key
column. That hash value is then used to probe the smaller in memory hash table for the matching hash
bucket where the row data for the first table resides. Each bucket has a list (represented by a bitmap) of
the rows in that bucket. That list is checked for matches with the probing row. If a match is made, the
row is returned; otherwise it is discarded. The larger table is read only once and each row is checked
for a match. This is different from the nested loops join where the inner table is read multiple times.
So really in this case, the larger table is the driving table as it is read only once and the smaller hashed
table is probed many times. Unlike a nested loops join plan, however, the tables are listed in the plan
output with the smaller hashed table first and the larger probe table second.

Let’s use the same query used earlier and break it down into how the hash join would be processed.

select empno, ename, dname, loc
from emp, dept
where emp.deptno = dept.deptno

This query would be processed as if it were written like the following pseudocode:

determine the smaller row set, or in the case of an outer join,
 use the outer joined table

select dname, loc, deptno from dept

hash the deptno column and build a hash table

select empno, ename, deptno from emp

hash the deptno column and probe the hash table

if match made, check bitmap to confirm row match

if no match made, discard the row

Listing 3-20 shows the plan for this query.

Listing 3-20. Hash Join

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		14	462	7 (15)
* 1	HASH JOIN		14	462	7 (15)
2	TABLE ACCESS FULL	DEPT	4	80	3 (0)
3	TABLE ACCESS FULL	EMP	14	182	3 (0)
--

CHAPTER 3 ACCESS AND JOIN METHODS

95

Predicate Information (identified by operation id):

 1 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")

In the hash join plan, the smaller hash table is listed first and the probe table is listed second.
Keep in mind that the decision as to which table is smallest depends not just on the number of rows but
the size of those rows as well, since the entire row must be stored in the hash table.

Hash joins are considered more preferable when the row sources are larger and the result set is
larger as well. Also, if one of the tables in the join is determined to always return the same row source,
a hash join would be preferable since it would only access that table once. If a nested loops join was
chosen in that case, the row source would be accessed over and over again, requiring more work than a
single independent access. Finally, if the smaller table can fit in memory, a hash join may be favored.

Blocks are accessed for hash joins similar to how they are accessed for a sort-merge join. The
blocks needed to build the hash table will be read and then the rest of the work will be done against the
hashed data stored in memory (from temp disk space if there isn’t enough memory). So, when you do a
comparison of logical reads for a hash join to a sort-merge join, the block accesses will be
approximately identical. But the logical reads as compared to a nested loops join will be less since the
blocks are read once and either placed into memory (for the hash table) where they are then accessed
or only read once (for the probe table).

Hash joins are only possible if the join is an equi-join. As mentioned previously, a sort-merge
join can be used to handle joins specified with an inequality condition. The reason why hash joins
can’t be chosen unless the join is an equi-join is that the matches are made on hashed values and it
doesn’t make sense to consider hashed values in a range. Listing 3-21 demonstrates how a computed
hash value doesn’t necessarily correspond to the key value being hashed (in terms of its numeric
value, in this case).

Listing 3-21. Hash Values

SQL> select distinct deptno,
 2 ora_hash(deptno,1000) hv
 3 from scott.emp
 4 order by deptno;

 DEPTNO HV
--------------- ---------------
 10 547
 20 486
 30 613
SQL>
SQL> select deptno
 2 from
 3 (
 4 select distinct deptno,
 5 ora_hash(deptno,1000) hv
 6 from scott.emp
 7 order by deptno
 8)
 9 where hv between 100 and 500;

3

CHAPTER 3 ACCESS AND JOIN METHODS

96

 DEPTNO

 20
SQL>
SQL> select distinct deptno,
 2 ora_hash(deptno,1000,50) hv
 3 from scott.emp
 4 order by deptno;

 DEPTNO HV
--------------- ---------------
 10 839
 20 850
 30 290
SQL>
SQL> select deptno
 2 from
 3 (
 4 select distinct deptno,
 5 ora_hash(deptno,1000,50) hv
 6 from scott.emp
 7 order by deptno
 8)
 9 where hv between 100 and 500;

 DEPTNO

 30

I used the ora_hash function to demonstrate how a hash value might be generated. The ora_hash
function takes up to three parameters: an input value of any base type, the maximum hash bucket value
(the minimum value is zero), and a seed value (also defaults to zero). So, for example,
ora_hash(10,1000) will return an integer value between zero and 1000.

In the two examples, I use the default seed in the first and a seed value of 50 for the second. Notice
how the hash values for each deptno are quite different in each query. So when I try to query a range of
hash values for each, I get a different result. However, in both cases, if I was simply querying a range
of the column values, I could easily formulate what I wanted and be assured of always getting the right
answer. This example is a bit forced, but I wanted to give you a visual on hash value comparisons so
you could better understand why they don’t work with inequality joins.

Cartesian Joins
Cartesian joins occur when all the rows from one table are joined to all the rows of another table.
Therefore, the total number of rows resulting from the join equals the number of rows from one table
(A) multiplied by the number of rows in the other table (B) such that A x B = total rows in the result
set. Cartesian joins often occur when a join condition is overlooked or left out such that there isn’t a
specified join column so the only operation possible is to simply join everything from one row source
to everything from the other.

CHAPTER 3 ACCESS AND JOIN METHODS

97

Let’s use the same query used earlier, but leave off the WHERE clause, and break it down into how
the Cartesian join would be processed.

select empno, ename, dname, loc
from emp, dept

This query would be processed as if it were written like the following pseudocode:

determine the smaller table

select dname, loc from dept

select empno, ename from emp

for each row in dept match it to every row in emp retaining all rows

Listing 3-22 shows the plan for this query.

Listing 3-22. Cartesian Join

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		56	1568	9 (0)
1	MERGE JOIN CARTESIAN		56	1568	9 (0)
2	TABLE ACCESS FULL	DEPT	4	72	3 (0)
3	BUFFER SORT		14	140	6 (0)
4	TABLE ACCESS FULL	EMP	14	140	2 (0)
--

Notice the rows estimates in the plan and how the final row estimate is the product of the rows
from the two tables (4 x 14 = 56). What you end up with in this case is likely a result set that has a whole
lot more rows than you want or intended to have. When plans aren’t checked properly while
developing SQL, Cartesian joins may end up causing the result set to appear to have numerous
duplicate rows. And, unfortunately, the first thing many people will do is to add a distinct operator to
the SQL. This has the effect of getting rid of the duplicates so that the result set is correct, but at a
significant cost. The duplicates shouldn’t have been there in the first place but since they’re there,
adding distinct will cause a sort to occur and then all the duplicates will be eliminated. That’s a lot of
wasted work. So, make sure to always verify the plan for Cartesian joins if you end up with unexpected
duplicate rows in your result set before you simply add distinct out of hand.

One thing you’ll notice about the Cartesian join plan is the presence of the BUFFER SORT operation.
This isn’t really a sort but since Oracle is joining every row to every row, using the buffer sort
mechanism to copy the blocks from the second row source out of the buffer cache and into private
memory has the benefit of not requiring the same blocks in the buffer cache to be revisited over and
over. These revisits would require a lot more logical reads and would also create more opportunity for
contention on these blocks in the buffer cache. So, buffering the blocks into a private memory area can
be a much more efficient way to accomplish the repeated join.

CHAPTER 3 ACCESS AND JOIN METHODS

98

Outer Joins
An outer join returns all rows from one table and only those rows from the joined table where the join
condition is met. Oracle uses the + character to indicate an outer join. The + is placed in parentheses
on the side of the join condition with the table where only rows that match is located. As I’ve indicated
in each of the join method overviews, outer joins will require that the outer joined table be the driving
table. This can mean that join orders that might be more optimal will not be used. So, use outer joins
properly with care since their use has implications related to performance of the overall plan.

Listing 3-23 shows an example of how outer joins work. In the example, you have been asked to
produce a count of how many customers have placed between $0 and $5000 in orders.

Listing 3-23. Outer Join

SQL> -- Query to show customers with total orders between $0 and $5000
SQL> select c.cust_last_name, nvl(sum(o.order_total),0) tot_orders
 2 from customers c, orders o
 3 where c.customer_id = o.customer_id
 4 group by c.cust_last_name
 5 having nvl(sum(o.order_total),0) between 0 and 5000
 6 order by c.cust_last_name ;

CUST_LAST_NAME TOT_ORDERS
-------------------- ---------------
Alexander 309
Chandar 510
George 220
Higgins 416
Kazan 1233
Sen 4797
Stern 969.2
Weaver 600

8 rows selected.

SQL> -- To produce just a count, modify the query slightly
SQL> select count(*) ct
 2 from
 3 (
 4 select c.cust_last_name, nvl(sum(o.order_total),0) tot_orders
 5 from customers c, orders o
 6 where c.customer_id = o.customer_id
 7 group by c.cust_last_name
 8 having nvl(sum(o.order_total),0) between 0 and 5000
 9 order by c.cust_last_name
 10);

CHAPTER 3 ACCESS AND JOIN METHODS

99

 CT

 8

1 row selected.

SQL> -- What about customers who haven’t placed orders (they would have $0 order amount)?
SQL> -- Change the query to an outer join to include customers without orders
SQL> select count(*) ct
 2 from
 3 (
 4 select c.cust_last_name, nvl(sum(o.order_total),0) tot_orders
 5 from customers c, orders o
 6 where c.customer_id = o.customer_id(+)
 7 group by c.cust_last_name
 8 having nvl(sum(o.order_total),0) between 0 and 5000
 9 order by c.cust_last_name
 10);

 CT

 140

1 row selected.

SQL> set autotrace traceonly explain
SQL> /

Execution Plan
--
Plan hash value: 3042670853

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		1		5 (20)
1	SORT AGGREGATE		1		
2	VIEW		1		5 (20)
* 3	FILTER				
4	HASH GROUP BY		1	22	5 (20)
5	NESTED LOOPS OUTER		319	7018	4 (0)
6	VIEW	index$_join$_002	319	3828	3 (0)
* 7	HASH JOIN				
8	INDEX FAST FULL SCAN	CUSTOMERS_PK	319	3828	1 (0)
9	INDEX FAST FULL SCAN	CUST_LNAME_IX	319	3828	1 (0)
10	TABLE ACCESS BY INDEX ROWID	ORDERS	1	10	1 (0)
* 11	INDEX RANGE SCAN	ORD_CUSTOMER_IX	2		0 (0)
--

CHAPTER 3 ACCESS AND JOIN METHODS

100

Predicate Information (identified by operation id):

 3 - filter(NVL(SUM("O"."ORDER_TOTAL"),0)>=0 AND NVL(SUM("O"."ORDER_TOTAL"),0)<=5000)
 7 - access(ROWID=ROWID)
 11 - access("C"."CUSTOMER_ID"="O"."CUSTOMER_ID"(+))
 filter("O"."CUSTOMER_ID"(+)>0)

The example shows how the original answer wasn’t exactly correct without using an outer join.
Since customers who haven’t yet placed orders would not have rows in the order table, they would not
be included in the query result set. Changing the query to be an outer join will cause those customers
to be included. Also notice the plan operation on line 5 that specifies the NESTED LOOPS OUTER. Outer
joins can be used with any join method (nested loops, hash, sort-merge) and will be denoted with the
word OUTER at the end of the normal operation name.

As mentioned earlier, the use of the (+) operator to denote an outer join is Oracle-specific syntax.
The same thing can be accomplished using ANSI join syntax as well, as shown in Listing 3-24.

Listing 3-24. Outer Join Using ANSI Join Syntax

SQL> select count(*) ct
 2 from
 3 (
 4 select c.cust_last_name, nvl(sum(o.order_total),0) tot_orders
 5 from customers c
 6 left outer join
 7 orders o
 8 on (c.customer_id = o.customer_id)
 9 group by c.cust_last_name
 10 having nvl(sum(o.order_total),0) between 0 and 5000
 11 order by c.cust_last_name
 12);

 CT

 140

1 row selected.

With ANSI syntax, you simply use the keywords LEFT OUTER JOIN. This indicates that the table on
the left (i.e. the first table listed) is the one that you want to have all rows included even if a match on
the join condition isn’t found. You could use RIGHT OUTER JOIN if you wanted to have all rows from
orders included even if there was no match in customers.

When you use the Oracle (+) operator, you have some limitations that do not exist if you use ANSI
syntax. Oracle will throw an error if you attempt to outer join the same table to more than one other
table. The error message you get is “ORA-01417: a table may be outer joined to at most one other
table". With ANSI syntax, there is no limit on the number of tables to which a single table can be outer-
joined.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 3 ACCESS AND JOIN METHODS

101

Another limitation of Oracle’s outer join syntax is that it doesn’t support full outer joins. A full
outer join will join two tables from left-to-right and right-to-left. Records that join in both directions
are output once to avoid duplication. To demonstrate a full outer join, Listing 3-25 shows the creation
of two tables that contain a small subset of common data but have some data that is only present in the
single table. The full outer join will return all the rows from both tables that match plus the rows that
are unique to each table.

Listing 3-25. Full Outer Join Using ANSI Join Syntax

SQL> create table e1 as select * from emp where deptno in (10,20);

Table created.

SQL> create table e2 as select * from emp where deptno in (20,30);

Table created.

SQL> select e1.ename, e1.deptno, e1.job
 2 ,e2.ename, e2.deptno, e2.job
 3 from e1
 4 full outer join
 5 e2
 6 on (e1.empno = e2.empno);

ENAME DEPTNO JOB ENAME DEPTNO JOB
---------- --------------- --------- ---------- --------------- ---------
SMITH 20 CLERK SMITH 20 CLERK
JONES 20 MANAGER JONES 20 MANAGER
SCOTT 20 ANALYST SCOTT 20 ANALYST
ADAMS 20 CLERK ADAMS 20 CLERK
FORD 20 ANALYST FORD 20 ANALYST
CLARK 10 MANAGER
MILLER 10 CLERK
 TURNER 30 SALESMAN
 BLAKE 30 MANAGER
 ALLEN 30 SALESMAN
 WARD 30 SALESMAN
 MARTIN 30 SALESMAN
 JAMES 30 CLERK

13 rows selected.

SQL> set autotrace traceonly explain
SQL> /

CHAPTER 3 ACCESS AND JOIN METHODS

102

Execution Plan
--
Plan hash value: 3117905978

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		11	572	13 (8)	00:00:01
1	VIEW		11	572	13 (8)	00:00:01
2	UNION-ALL					
* 3	HASH JOIN OUTER		7	448	7 (15)	00:00:01
4	TABLE ACCESS FULL	E1	7	245	3 (0)	00:00:01
5	TABLE ACCESS FULL	E2	11	319	3 (0)	00:00:01
* 6	HASH JOIN ANTI		4	100	7 (15)	00:00:01
7	TABLE ACCESS FULL	E2	11	231	3 (0)	00:00:01
8	TABLE ACCESS FULL	E1	7	28	3 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("E1"."EMPNO"="E2"."EMPNO"(+))
 6 - access("E1"."EMPNO"="E2"."EMPNO")

Note that rows from both tables appear in the output, even if they do not have a match in the

opposite table. This is what a full outer join does and can be useful when partial datasets need to be
joined. As you can see from the plan, the full outer join actually executed two separate query blocks
(one HASH JOIN OUTER and one HASH JOIN ANTI) and appended the results with UNION ALL.

Using the plan from the ANSI full outer join example, you could write an equivalent statement
using Oracle’s syntax that would result in the same final result set. Listing 3-26 shows how the
statement would be coded.

Listing 3-26. Oracle Equivalent Syntax for Full Outer Join Functionality

SQL> select e1.ename, e1.deptno, e1.job,
 2 e2.ename, e2.deptno, e2.job
 3 from e1,
 4 e2
 5 where e1.empno (+) = e2.empno
 6 union
 7 select e1.ename, e1.deptno, e1.job,
 8 e2.ename, e2.deptno, e2.job
 9 from e1,
 10 e2
 11 where e1.empno = e2.empno (+);

CHAPTER 3 ACCESS AND JOIN METHODS

103

ENAME DEPTNO JOB ENAME DEPTNO JOB
---------- --------------- --------- ---------- --------------- ---------
ADAMS 20 CLERK ADAMS 20 CLERK
CLARK 10 MANAGER
FORD 20 ANALYST FORD 20 ANALYST
JONES 20 MANAGER JONES 20 MANAGER
MILLER 10 CLERK
SCOTT 20 ANALYST SCOTT 20 ANALYST
SMITH 20 CLERK SMITH 20 CLERK
 ALLEN 30 SALESMAN
 BLAKE 30 MANAGER
 JAMES 30 CLERK
 MARTIN 30 SALESMAN
 TURNER 30 SALESMAN
 WARD 30 SALESMAN

13 rows selected.

SQL> set autotrace traceonly explain
SQL> /

Execution Plan
--
Plan hash value: 3941775845

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		18	756	15 (60)	00:00:01
1	SORT UNIQUE		18	756	15 (60)	00:00:01
2	UNION-ALL					
* 3	HASH JOIN OUTER		11	462	7 (15)	00:00:01
4	TABLE ACCESS FULL	E2	11	231	3 (0)	00:00:01
5	TABLE ACCESS FULL	E1	7	147	3 (0)	00:00:01
* 6	HASH JOIN OUTER		7	294	7 (15)	00:00:01
7	TABLE ACCESS FULL	E1	7	147	3 (0)	00:00:01
8	TABLE ACCESS FULL	E2	11	231	3 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("E1"."EMPNO"(+)="E2"."EMPNO")
 6 - access("E1"."EMPNO"="E2"."EMPNO"(+))

You may have noticed that the Oracle equivalent plan is just a bit different from the ANSI plan.
Oracle uses two outer joins, one in each direction, which is exactly what you asked it to do. So you could

CHAPTER 3 ACCESS AND JOIN METHODS

104

use Oracle syntax to accomplish a full outer join, but the ANSI syntax is certainly more straightforward.
Also keep in mind that full outer joins can be quite costly in terms of the amount of resources required
to execute. Always be careful to understand the implications of coding such queries and note the
performance implications.

Summary
The optimizer must make a few key choices when determining the execution plan for any SQL
statement. First, the best way to access each table used in the statement has to be determined. There
are basically two choices: an index or a full table scan. Each access method works differently to access
the blocks containing the row data your SQL statement needs. Once the optimizer chooses the access
methods, the join methods have to be selected. Tables will be joined together in pairs with the row
source from one join result being used to join to another table until all the tables are joined to produce
the final result set.

Understanding how each access and join method works can help you write your SQL so that the
optimizer can make the most efficient choices. Being able to review the execution plans, understand
the operations chosen, and how those operations work will also help you notice areas where
performance problems might occur. Once again, knowing what is under the hood will help you write
better, faster SQL.

C H A P T E R 4

■ ■ ■

105

SQL is About Sets

Karen Morton

One of the most difficult transitions to make in order to become highly proficient at writing SQL well is
to shift from thinking procedurally to thinking declaratively (or in sets). It is often hardest to learn to
think in sets if you’ve spent time working with virtually any programming language. If this is the case for
you, you are likely very comfortable with constructs such as IF-THEN-ELSE, WHILE-DO, LOOP-END
LOOP, and BEGIN-END. These constructs support working with logic and data in a very procedural,
step-by-step, top-down type approach. The SQL language is not intended to be implemented from a
procedural point of view, but from a set-oriented one. The longer it takes you to shift to a set-oriented
point of view, the longer it will be before you are truly proficient at writing SQL that is functionally
correct and also highly optimized to perform well.

In this chapter, you’re going to explore common areas where you may need to shift your procedural
way of thinking to non-procedural. You’ll begin to understand how to work with sets of data elements
versus sequential steps. You’ll also look at several specific set operations (UNION, INTERSECT, MINUS)
and how nulls affect set-thinking.

Thinking in Sets
As a fun way to help you start thinking in sets, I’m going to review one of my favorite games, SET. You
can play it online at www.setgame.com/puzzle/set.htm where a new SET puzzle is posted every day. The
SET game is a puzzle that uses cards with four features on them: colors, symbols, shadings, and the
number of symbols. The colors are red, green, or purple. Symbols can be squiggles, diamonds, or ovals.
Shadings can be solid, striped, or outlined. As for numbers, each card has one, two, or three symbols on
it. There is only one rule to make a SET. A SET is three cards in which each individual feature is either all
the same on each card or all different on each card. So, an example of a valid SET would be three cards
that all have the same symbol (diamonds, for example), all three cards have two symbols, all three cards
were different colors, and all three cards had solid shading. Any combination where all the cards have
the same feature or different features makes a SET. The object is to find a SET in twelve cards. Once a
SET is found, those three cards are removed and three more are added. In the online version, there will
always be six SETs in the layout of twelve cards and your goal is to find all six.

Figure 4-1 shows a 12 card layout where you should be able to find six SETs. The letter in the upper
left of each box indicates color (R = red, G = green, P = purple). Give it a try.

http://www.setgame.com/puzzle/set.htm

CHAPTER 4 ■ SQL IS ABOUT SETS

106

Figure 4-1. A valid SET

The solution grid is at the end of this chapter (no cheating!). I’ll give you the first set to get you
started: Row 1 Column 2 (solid green squiggles), Row 3 Column 2 (solid red squiggles) and Row 3
Column 4 (solid purple squiggles). This game forces you to think in sets. There’s no other way to play. If
you find it hard to make a SET, I’ll bet you’ll find it harder to think in sets when writing SQL. Writing SQL
works under the same premise (set-thinking is a must!); it’s just a different game. Now that you’re
warmed up to think in sets, let’s look at several ways to switch procedural thinking to set thinking.

Moving from Procedural to Set-based Thinking
The first thing you need to do is to stop thinking about process steps that handle data one row at a time.
If you’re thinking one row at a time, your thinking will use phrases like “for each row do x” or “while
value is y do x.” Try to shift this thinking to use phrases like “for all.” A simple example of this is adding
numbers. When you think procedurally, you think of adding the number value from one row to the
number value from another row until you’ve added all rows together. Thinking of summing all rows is
different. As I said, that’s a very simple example, but the same shift in thinking applies to situations that
aren’t as obvious.

For example, if I asked you to produce a list of all employees who spent the same number of years in
each job they held within the company during their employment, how would you do it? If you think
procedurally, you would want to look at each job position, compute the number of years that position
was held, and compare it to the number of years any other positions were held. If the number of years
don’t match, then you’d reject the employee from the list. That approach might lead to a query that uses
a self-join like this:

CHAPTER 4 ■ SQL IS ABOUT SETS

107

select distinct employee_id
 from job_history j1
 where not exists
 (select null
 from job_history j2
 where j2.employee_id = j1.employee_id
 and round(months_between(j2.start_date,j2.end_date)/12,0) <>
 round(months_between(j1.start_date,j1.end_date)/12,0))

On the other hand, if you look at the problem from a set-based point of view, you might write the query
by accessing the table only once, grouping rows by employee, and filtering the result to retain only those
employees whose minimum years in a single position match their maximum years in a single position
like this:

select employee_id
 from job_history
 group by employee_id
having min(round(months_between(start_date,end_date)/12,0)) =

max(round(months_between(start_date,end_date)/12,0))

Listing 4-1 shows the execution of each of these alternatives. You can see that the set-based
approach uses fewer logical reads and has a more concise plan.

Listing 4-1. Procedural vs Set-based Approach

SQL> set autotrace on
SQL>
SQL> select distinct employee_id
 2 from job_history j1
 3 where not exists
 4 (select null
 5 from job_history j2
 6 where j2.employee_id = j1.employee_id
 7 and round(months_between(j2.start_date,j2.end_date)/12,0) <>
 8 round(months_between(j1.start_date,j1.end_date)/12,0));

 EMPLOYEE_ID

 102
 201
 114
 176
 122

Execution Plan
--
Plan hash value: 1261305189

CHAPTER 4 ■ SQL IS ABOUT SETS

108

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		7	140	14 (8)
1	HASH UNIQUE		7	140	14 (8)
* 2	FILTER				
3	TABLE ACCESS FULL	JOB_HISTORY	10	200	3 (0)
* 4	TABLE ACCESS BY INDEX ROWID	JOB_HISTORY	1	20	2 (0)
* 5	INDEX RANGE SCAN	JHIST_EMPLOYEE_IX	1		1 (0)
--

Predicate Information (identified by operation id):

 2 - filter(NOT EXISTS (SELECT /*+ */ 0 FROM "JOB_HISTORY" "J2" WHERE
 "J2"."EMPLOYEE_ID"=:B1 AND ROUND(MONTHS_BETWEEN(INTERNAL_FUNCTION("J2".
 "START_DATE"),INTERNAL_FUNCTION("J2"."END_DATE"))/12,0)<>ROUND(MONTHS_B
 ETWEEN(:B2,:B3)/12,0)))
 4 - filter(ROUND(MONTHS_BETWEEN(INTERNAL_FUNCTION("J2"."START_DATE"),INTERNAL_
 FUNCTION("J2"."END_DATE"))/12,0)<>ROUND(MONTHS_BETWEEN(:B1,:B2)/12,0))
 5 - access("J2"."EMPLOYEE_ID"=:B1)

Statistics
--
 0 recursive calls
 0 db block gets
 27 consistent gets
 0 physical reads
 0 redo size
 482 bytes sent via SQL*Net to client
 381 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 5 rows processed

SQL> select employee_id
 2 from job_history
 3 group by employee_id
 4 having min(round(months_between(start_date,end_date)/12,0)) =
 5 max(round(months_between(start_date,end_date)/12,0));

CHAPTER 4 ■ SQL IS ABOUT SETS

109

 EMPLOYEE_ID

 102
 114
 122
 176
 201

Execution Plan
--
Plan hash value: 1551509957

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		1	20	2 (0)
* 1	FILTER				
2	SORT GROUP BY NOSORT		1	20	2 (0)
3	TABLE ACCESS BY INDEX ROWID	JOB_HISTORY	10	200	2 (0)
4	INDEX FULL SCAN	JHIST_EMPLOYEE_IX	10		1 (0)
--

Predicate Information (identified by operation id):

 1 - filter(MIN(ROUND(MONTHS_BETWEEN(INTERNAL_FUNCTION("START_DATE"),INTERNAL_FUNCTION
 ("END_DATE"))/12,0))=MAX(ROUND(MONTHS_BETWEEN(INTERNAL_FUNCTION("START_DATE")
 ,INTERNAL_FUNCTION("END_DATE"))/12,0)))

Statistics
--
 0 recursive calls
 0 db block gets
 4 consistent gets
 0 physical reads
 0 redo size
 482 bytes sent via SQL*Net to client
 381 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 5 rows processed

The key is to start thinking in terms of completed results, not process steps. Look for group
characteristics and not individual steps or actions. In set-based thinking, everything exists in a state
defined by the filters or constraints applied to the set. You don’t think in terms of process flow but in

CHAPTER 4 ■ SQL IS ABOUT SETS

110

terms of the state of the set. Figure 4-2 shows a comparison between a process flow diagram and a
nested sets diagram to illustrate my point.

Figure 4-2. A process flow diagram vs a nested set diagram

The process flow diagram implies the result set (A) is achieved through a series of steps that build
upon one another to produce the final answer. B is built by traversing C and D, and then A is built by
traversing B and E. However, the nested sets diagram views A as a result of a combination of sets.

Another common but erroneous way of thinking is to consider tables to be ordered sets of rows. Just
think of how you typically see table contents listed. They’re shown in a grid or spreadsheet-type view.
However, a table represents a set, and a set has no order. Showing tables in a way that implies a certain
order can be confusing. Remember from Chapter 2 that the ORDER BY clause is applied last when a SQL
statement is executed. SQL is based on set theory and since sets have no predetermined order to its
rows, order has to be applied separately after the rows that satisfy the query result have been extracted
from the set. Figure 4-3 shows a more correct way to depict the content of tables that doesn’t imply
order.

Figure 4-3. The emp and dept sets

It may not seem important to make these seemingly small distinctions in how you think, but these
small shifts are fundamental to correctly understanding SQL. Let’s look at an example of writing a SQL

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 ■ SQL IS ABOUT SETS

111

statement taking both a procedural thinking approach and a set-based approach to help clarify the
distinctions between the two.

Procedural vs Set-based Thinking: An Example
In this example, the task is to compute an average number of days between orders for a customer.
Listing 4-2 shows one way to do it from a procedural thinking approach. To keep the example output
shorter, I’m going to only work with one customer, but I could easily convert this to handle all
customers.

Listing 4-2. Procedural Thinking Approach

SQL> -- Show the list of order dates for customer 102
SQL> select customer_id, order_date
 2 from orders
 3 where customer_id = 102 ;

 CUSTOMER_ID ORDER_DATE
--------------- -------------------------------
 102 19-NOV-99 06.41.54.696211 PM
 102 14-SEP-99 11.53.40.223345 AM
 102 29-MAR-99 04.22.40.536996 PM
 102 14-SEP-98 09.03.04.763452 AM
SQL>
SQL> -- Determine the order_date prior to the current row’s order_date
SQL> select customer_id, order_date,
 2 lag(order_date,1,order_date)
 3 over (partition by customer_id order by order_date)
 4 as prev_order_date
 5 from orders
 6 where customer_id = 102;

 CUSTOMER_ID ORDER_DATE PREV_ORDER_DATE
--------------- -------------------------------- ------------------------------
 102 14-SEP-98 09.03.04.763452 AM 14-SEP-98 09.03.04.763452 AM
 102 29-MAR-99 04.22.40.536996 PM 14-SEP-98 09.03.04.763452 AM
 102 14-SEP-99 11.53.40.223345 AM 29-MAR-99 04.22.40.536996 PM
 102 19-NOV-99 06.41.54.696211 PM 14-SEP-99 11.53.40.223345 AM
SQL>
SQL> -- Determine the days between each order
SQL> select trunc(order_date) - trunc(prev_order_date) days_between
 2 from

CHAPTER 4 ■ SQL IS ABOUT SETS

112

 3 (
 4 select customer_id, order_date,
 5 lag(order_date,1,order_date)
 6 over (partition by customer_id order by order_date)
 7 as prev_order_date
 8 from orders
 9 where customer_id = 102
 10);

 DAYS_BETWEEN

 0
 196
 169
 66
SQL>
SQL> -- Put it together with an AVG function to get the final answer
SQL> select avg(trunc(order_date) - trunc(prev_order_date)) avg_days_between
 2 from
 3 (
 4 select customer_id, order_date,
 5 lag(order_date,1,order_date)
 6 over (partition by customer_id order by order_date)
 7 as prev_order_date
 8 from orders
 9 where customer_id = 102
 10);

AVG_DAYS_BETWEEN

 107.75

This looks pretty elegant, doesn’t it? In this example, I’ve executed several queries one-by-one to

show you how my thinking, followed a step-by-step procedural approach to writing the query. Don’t
worry if you’re unfamiliar with the use of the analytic function LAG; analytic functions are covered in
Chapter 8. Briefly, what I’ve done is to read each order row for customer 102 in order by order_date and,
using the LAG function, look back at the prior order row to get its order_date. Once I have both dates, the
date for the current row’s order and the date for the previous row’s order, it’s a simple matter to subtract
the two to get the days between. Lastly, I use the average aggregate function to get my final answer.

You can tell that this query is built following a very procedural approach. The best giveaway to
knowing the approach is the way I can walk through several different queries to show how the final
result set was built. I could see the detail as I went along. When you’re thinking in sets, you’ll find that
you don’t really care about each individual element. Listing 4-3 shows the query written using a set-
based thinking approach.

CHAPTER 4 ■ SQL IS ABOUT SETS

113

Listing 4-3. Set-based Thinking approach

SQL> select (max(trunc(order_date)) - min(trunc(order_date))) / count(*) as avg_days_between
 2 from orders
 3 where customer_id = 102 ;

AVG_DAYS_BETWEEN

 107.75

How about that? I really didn’t need anything fancy to solve the problem. All I needed to compute

the average days between orders was the total duration of time between the first and last order and the
number of orders placed. I didn’t need to go through all that step-by-step thinking as if I was writing a
program that would read the data row-by-row and compute the answer. I just needed to shift my
thinking to consider the problem in terms of the set of data as a whole.

I am not completely discounting the procedural approach. There may be times when you have to
take that approach to get the job done. However, I want to encourage you to shift your thinking: start by
searching for a set-based approach and move towards a more procedural approach only when and to
the degree needed. By doing this, you will likely find that you can come up with simpler, more direct,
and often better performing solutions.

Set Operations
Oracle supports four set operators: UNION, UNION ALL, MINUS, and INTERSECT. Set operators combine the
results from two or more SELECT statements to form a single result set. This differs from joins in that joins
are used to combine columns from each joined table into one row. The set operators compare completed
rows between the input queries and return a distinct set of rows. The exception to this is the use of UNION
ALL, which returns all rows from both sets, including duplicates. UNION returns a result set from all input
queries with no duplicates. MINUS returns distinct rows that appear in the first input query result but not in
the subsequent ones. INTERSECT returns the distinct rows that appear in all input queries.

All queries that are used with set operators must conform to the following conditions:

• All input queries must retrieve the same number of columns.

• The data types of each column must match the corresponding column (by order in the column
list) for each of the other input queries. It is possible for data types to not match directly but
only if the data types of all input queries can be implicitly converted to the data types of the first
input query.

• The ORDER BY clause may not be used in the individual queries and may only be used at the end
of the query where it will apply to the entire result of the set operation.

• Column names are derived from the first input query.

Each input query is processed separately and then the set operator is applied. Finally, the ORDER BY
is applied to the total result set if one is specified. When using UNION and INTERSECT, the operators are
commutative (i.e. the order of the queries doesn’t matter). However, when using MINUS, the order is
important since this set operation uses the first input query result as the base for comparison to other
results. All set operations except for UNION ALL will require that the result set go through a sort/distinct
process that will mean additional overhead to process the query. If you know that no duplicates will ever
exist, or you don’t care if duplicates are present, make sure to use UNION ALL.

CHAPTER 4 ■ SQL IS ABOUT SETS

114

UNION and UNION ALL
UNION and UNION ALL are used when the results of two, or more, separate queries needs to be combined
to provide a single final result set. Figure 4-4 uses Venn diagrams to show how the result set for each
type could be visualized.

Figure 4-4. Venn diagram for UNION and UNION ALL result sets

The UNION set operation will return the results of both queries but will remove duplicates while the
UNION ALL will return all rows including duplicates. As mentioned previously, in cases where you need to
eliminate duplicates, use UNION. But when you either don’t care if duplicates exist or don’t expect
duplicates to occur, choose UNION ALL. Using UNION ALL has a less resource intensive footprint than
using UNION since UNION ALL will not have to do any processing to remove duplicates. This processing
can be quite expensive in terms of both resources and response time to complete. Prior to Oracle
version 10, a sort operation was used to remove duplicates. Beginning with version 10, an option to use
a HASH UNIQUE operation to remove duplicates is available. The HASH UNIQUE doesn’t sort but uses hash
value comparisons instead. I mention this to make sure you realize that even if the result set appears to
be in sorted order, it will not be guaranteed to be sorted unless you explicitly include an ORDER BY clause.
Listing 4-4 shows examples of using UNION and UNION ALL.

CHAPTER 4 ■ SQL IS ABOUT SETS

115

Listing 4-4. UNION and UNION ALL Examples

SQL> CREATE TABLE table1 (
 2 id_pk INTEGER NOT NULL PRIMARY KEY,
 3 color VARCHAR(10) NOT NULL);
SQL> CREATE TABLE table2 (
 2 id_pk INTEGER NOT NULL PRIMARY KEY,
 3 color VARCHAR(10) NOT NULL);
SQL> CREATE TABLE table3 (
 2 color VARCHAR(10) NOT NULL);
SQL> INSERT INTO table1 VALUES (1, 'RED');
SQL> INSERT INTO table1 VALUES (2, 'RED');
SQL> INSERT INTO table1 VALUES (3, 'ORANGE');
SQL> INSERT INTO table1 VALUES (4, 'ORANGE');
SQL> INSERT INTO table1 VALUES (5, 'ORANGE');
SQL> INSERT INTO table1 VALUES (6, 'YELLOW');
SQL> INSERT INTO table1 VALUES (7, 'GREEN');
SQL> INSERT INTO table1 VALUES (8, 'BLUE');
SQL> INSERT INTO table1 VALUES (9, 'BLUE');
SQL> INSERT INTO table1 VALUES (10, 'VIOLET');
SQL> INSERT INTO table2 VALUES (1, 'RED');
SQL> INSERT INTO table2 VALUES (2, 'RED');
SQL> INSERT INTO table2 VALUES (3, 'BLUE');
SQL> INSERT INTO table2 VALUES (4, 'BLUE');
SQL> INSERT INTO table2 VALUES (5, 'BLUE');
SQL> INSERT INTO table2 VALUES (6, 'GREEN');
SQL> COMMIT;
SQL>
SQL> select color from table1
 2 union
 3 select color from table2;

COLOR

BLUE
GREEN
ORANGE
RED
VIOLET
YELLOW

6 rows selected.

SQL> select color from table1
 2 union all
 3 select color from table2;

CHAPTER 4 ■ SQL IS ABOUT SETS

116

COLOR

RED
RED
ORANGE
ORANGE
ORANGE
YELLOW
GREEN
BLUE
BLUE
VIOLET
RED
RED
BLUE
BLUE
BLUE
GREEN

16 rows selected.

SQL> select color from table1;

COLOR

RED
RED
ORANGE
ORANGE
ORANGE
YELLOW
GREEN
BLUE
BLUE
VIOLET

10 rows selected.

SQL> select color from table3;

no rows selected

SQL> select color from table1
 2 union
 3 select color from table3;

CHAPTER 4 ■ SQL IS ABOUT SETS

117

COLOR

BLUE
GREEN
ORANGE
RED
VIOLET
YELLOW

6 rows selected.

SQL> -- The first query will return a differen number of columns than the second
SQL> select * from table1
 2 union
 3 select color from table2;
select * from table1
*
ERROR at line 1:
ORA-01789: query block has incorrect number of result columns

These examples demonstrate the UNION of two queries. Keep in mind that you can have multiple
queries that are unioned together.

MINUS
MINUS is used when the result of the first input query are used as the base set from which the other input
query result sets are subtracted to end up with the final result set. The use of MINUS has often been used
instead of using NOT EXISTS (anti-join) queries. The problem being solved is something like “I need to
return the set of rows that exists in row source A but not in row source B.” Figure 4-5 uses a Venn
diagram to show how the result set for this operation could be visualized.

Figure 4-5. Venn diagram for MINUS result sets

Listing 4-5 shows examples of using MINUS.

CHAPTER 4 ■ SQL IS ABOUT SETS

118

Listing 4-5. MINUS Examples

SQL> select color from table1
 2 minus
 3 select color from table2;

COLOR

ORANGE
VIOLET
YELLOW

3 rows selected.

SQL> -- MINUS queries are equivalent to NOT EXISTS queries
SQL> select distinct color from table1
 2 where not exists (select null from table2 where table2.color = table1.color) ;

COLOR

ORANGE
VIOLET
YELLOW

3 rows selected.

SQL>
SQL> select color from table2
 2 minus
 3 select color from table1;

no rows selected

SQL> -- MINUS using an empty table
SQL> select color from table1
 2 minus
 3 select color from table3;

COLOR

BLUE
GREEN
ORANGE
RED
VIOLET
YELLOW

6 rows selected.

CHAPTER 4 ■ SQL IS ABOUT SETS

119

INTERSECT
INTERSECT is used to return a distinct set of rows that appear in all input queries. The use of INTERSECT
has often been used instead of using EXISTS (semi-join) queries. The problem being solved is something
like “I need to return the set of rows from row source A only if a match exists in row source B.” Figure 4-6
uses a Venn diagram to show how the result set for this operation could be visualized.

Figure 4-6. Venn diagram for INTERSECT result sets

Listing 4-6 shows examples of using INTERSECT.

Listing 4-6. INTERSECT Examples

SQL> select color from table1
 2 intersect
 3 select color from table2;

COLOR

BLUE
GREEN
RED

3 rows selected.

SQL> select color from table1
 2 intersect
 3 select color from table3;
no rows selected

Sets and Nulls
You often hear the term null value, but in truth, a null isn’t a value at all. A null is, at best, a marker. I
always think of null as meaning “I don’t know.” The SQL language handles nulls in unintuitive ways—at
least from my point of view; results from their use are often not what I would expect in terms of real
world functionality.

CHAPTER 4 ■ SQL IS ABOUT SETS

120

IS THE TERM “NULL VALUE” WRONG?

Strictly speaking, a null is not a value, but rather the absence of a value. However, the term “null value” is
in wide use. Work in SQL long enough, and you’ll surely encounter someone who will pontificate on how
wrong it is to use the term “null value.”

But is it really wrong to use the term “null value?”

If you find yourself on the receiving end of such a lecture, feel free to argue right back. The term “null
value” is widely used in both the ANSI and ISO editions of the SQL standard. “Null value” is an official part
of the description of the SQL language, and thus is fair game for use when discussing the language.

Keep in mind, though, that there is a distinction to be drawn between the SQL language and relational
theory. A really picky person can argue for the use of “null value” when speaking of SQL, and yet argue
against that very same term when speaking of relational theory upon which SQL is loosely based.

NULLs and Unintuitive Results
Listing 4-7 shows a simple query for which I’d expect a certain result set but end up with something
different than my expectations. I’d expect that if I queried for the absence of a specific value, and no
matches were found, including when the column contained a null, that Oracle would return that row in
the result set.

Listing 4-7. Examples using NULL

SQL> -- select all rows from emp table
SQL> select * from scott.emp ;

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------- ---------- --------- ------- --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7839 KING PRESIDENT 17-NOV-81 5000
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

14 rows selected.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 4 ■ SQL IS ABOUT SETS

121

SQL> -- select only rows with deptno of 10, 20, 30
SQL> select * from scott.emp where deptno in (10, 20, 30) ;

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------- ---------- --------- ------- --------- ------ ------ -------
 7369 SMITH CLERK 7902 17-DEC-80 800 20
 7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
 7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
 7566 JONES MANAGER 7839 02-APR-81 2975 20
 7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
 7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
 7782 CLARK MANAGER 7839 09-JUN-81 2450 10
 7788 SCOTT ANALYST 7566 19-APR-87 3000 20
 7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
 7876 ADAMS CLERK 7788 23-MAY-87 1100 20
 7900 JAMES CLERK 7698 03-DEC-81 950 30
 7902 FORD ANALYST 7566 03-DEC-81 3000 20
 7934 MILLER CLERK 7782 23-JAN-82 1300 10

13 rows selected.

SQL> -- select only rows with deptno not 10, 20, 30
SQL> select * from scott.emp where deptno not in (10, 20, 30) ;

no rows selected

SQL> -- select only rows with deptno not 10, 20, 30 or null
SQL> select * from scott.emp where deptno not in (10, 20, 30)
 2 or deptno is null;

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------- ---------- --------- ------- --------- ------ ------ -------
 7839 KING PRESIDENT 17-NOV-81 5000

1 row selected.

This listing demonstrates what is frustrating to me about nulls: they don’t get included unless
explicitly specified. In my example, 13 of the 14 rows in the table have deptno 10, 20, or 30. Since there
are 14 total rows in the table, I’d expect a query that asked for rows that did not have a deptno of 10, 20,
or 30 to then show the remaining 1 row. But I’d be wrong to expect that as you can see from the results
of that query. If I explicitly include the condition to also include where deptno is null, I get the full list of
employees that I had expected.

I realize what I’m doing when I think this way is to consider nulls to be “low values.” I suppose it’s
the old COBOL programmer in me that remembers the days when LOW-VALUES and HIGH-VALUES were
used. I also suppose that my brain wants to make nulls equate with an empty string. But, no matter
what my brain wants to make of them, nulls are nulls. Nulls do not participate in comparisons. Nulls

CHAPTER 4 ■ SQL IS ABOUT SETS

122

can’t be added, subtracted, multiplied, or divided by anything. If they are, the return value is null.
Listing 4-8 demonstrates this fact about nulls and how they participate in comparisons and expressions.

Listing 4-8. NULLs in Comparisons and Expressions

SQL> select * from scott.emp where deptno is null ;

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------- ---------- --------- ------- --------- ------ ------ -------
 7839 KING PRESIDENT 17-NOV-81 5000

1 row selected.

SQL>
SQL> select * from scott.emp where deptno = null ;

no rows selected

SQL> select sal, comm, sal + comm as tot_comp
 2 from scott.emp where deptno = 30;

 SAL COMM TOT_COMP
------ ------ ---------------
 1600 300 1900
 1250 500 1750
 1250 1400 2650
 2850
 1500 0 1500
 950

6 rows selected.

So, when my brain wants rows with a null deptno to be returned in the query from the Listing 4-7
above, I have to remind myself that when a comparison is made to a null, the answer is always “I don’t
know.” It would be the same as you asking me if there was orange juice in your refrigerator and me
answering “I don’t know.” You might have orange juice there or you might not, but I don’t know. So I
couldn’t answer in any different way and be truthful.

The relational model is based on two-valued logic (TRUE, FALSE), but the SQL language allows three-
valued logic (TRUE, FALSE, UNKNOWN). And this is where the problem comes in. With that third value in the
mix, your SQL will return the “correct” answer as far as how three-valued logic considers the
comparison, but the answers may not be correct in terms of what you’d expect in the real world. In the
example above, the answer of no rows selected is correct in that since one deptno column contains a
null, you can’t know one way or the other if the column might possibly be something other than 10, 20,
or 30. To answer truthfully, the answer has to be UNKNOWN. It’s just like me knowing whether or not you
have orange juice in your refrigerator!

So you have to make sure you keep the special nature of nulls in mind when you write SQL. If you’re
not vigilant to watch out for nulls, you’ll very likely have SQL that returns the wrong answer. At least it
will be wrong as far as the answer you expect.

CHAPTER 4 ■ SQL IS ABOUT SETS

123

NULL Behavior in Set Operations
Set operations treat nulls as if they were able to be compared using equality checks. This is an
interesting, and perhaps unexpected, behavior given the previous discussion. Listing 4-9 shows how
nulls are treated when used in set operations.

Listing 4-9. NULLs and Set Operations

SQL> select null from dual
 2 union
 3 select null from dual
 4 ;

N
-

1 row selected.

SQL> select null from dual
 2 union all
 3 select null from dual
 4 ;

N
-

2 rows selected.

SQL> select null from dual
 2 intersect
 3 select null from dual;

N
-

1 row selected.

SQL> select null from dual
 2 minus
 3 select null from dual;

no rows selected

CHAPTER 4 ■ SQL IS ABOUT SETS

124

SQL> select 1 from dual
 2 union
 3 select null from dual;

 1

 1

2 rows selected.

SQL> select 1 from dual
 2 union all
 3 select null from dual;

 1

 1

2 rows selected.

SQL> select 1 from dual
 2 intersect
 3 select null from dual ;

no rows selected

SQL> select 1 from dual
 2 minus
 3 select null from dual ;

 1

 1

1 row selected.

In the first example, when you have two rows with nulls that are unioned, you only end up with one

row. That implies that the two rows were equal to one another and therefore when the union was
processed, the duplicate row was excluded. As you noticed, the same is true for how the other set
operations behave. So keep in mind that set operations treat nulls as equals.

NULLs and GROUP BY and ORDER BY
Just like in set operations, the GROUP BY and ORDER BY clauses process nulls as if they were able to be
compared using equality checks. You’ll notice that with both grouping and ordering, nulls are always
placed together just like known values. Listing 4-10 shows an example of how nulls are handled in the
GROUP BY and ORDER BY clauses.

CHAPTER 4 ■ SQL IS ABOUT SETS

125

Listing 4-10. NULLs and GROUP BY and ORDER BY

SQL> select comm, count(*) ctr
 2 from scott.emp
 3 group by comm ;

 COMM CTR
------ ---------------
 10
 1400 1
 500 1
 300 1
 0 1

5 rows selected.

SQL> select comm, count(*) ctr
 2 from scott.emp
 3 group by comm
 4 order by comm ;

 COMM CTR
------ ---------------
 0 1
 300 1
 500 1
 1400 1
 10

5 rows selected.

SQL> select comm, count(*) ctr
 2 from scott.emp
 3 group by comm
 4 order by comm
 5 nulls first ;

 COMM CTR
------ ---------------
 10
 0 1
 300 1
 500 1
 1400 1

5 rows selected.

CHAPTER 4 ■ SQL IS ABOUT SETS

126

SQL> select ename, sal, comm
 2 from scott.emp
 3 order by comm, ename ;

ENAME SAL COMM
---------- ------ ------
TURNER 1500 0
ALLEN 1600 300
WARD 1250 500
MARTIN 1250 1400
ADAMS 1100
BLAKE 2850
CLARK 2450
FORD 3000
JAMES 950
JONES 2975
KING 5000
MILLER 1300
SCOTT 3000
SMITH 800

14 rows selected.

The first two examples show the behavior of nulls within a GROUP BY clause. Since the first query
returned the result in what appeared to be descending sorted order by the comm column, I wanted to
issue the second query to make a point that I made earlier in the book: the only way to ensure order is to
use an ORDER BY clause. Just because the first query result appeared to be in a sorted order didn’t mean it
was. When I added the ORDER BY clause in the second query, the null group moved to the bottom. In the
last ORDER BY example, note that the nulls are displayed last. That’s not because nulls are considered to
be “high values.” It’s because the default for ordered sorting is to place nulls last. If you want to display
nulls first, you simply add the clause NULLS FIRST after your ORDER BY clause as shown in the third
example.

NULLs and Aggregate Functions
This same difference of the treatment of nulls with some operations like set operations, grouping and
ordering, also applies to aggregate functions. When nulls are present in columns that have aggregate
functions such as SUM, COUNT, AVG, MIN, or MAX applied to them, they are removed from the set being
aggregated. If the set that results is empty, then the aggregate returns a null.

An exception to this rule involves the use of the COUNT aggregate function. The handling of
nulls depends on if the COUNT function is formulated using a column name or a literal (like * or 1).
Listing 4-11 demonstrates how aggregate functions handle nulls.

CHAPTER 4 ■ SQL IS ABOUT SETS

127

Listing 4-11. NULLs and Aggregate Functions

SQL> select count(*) row_ct, count(comm) comm_ct,
 2 avg(comm) avg_comm, min(comm) min_comm,
 3 max(comm) max_comm, sum(comm) sum_comm
 4 from scott.emp ;

 ROW_CT COMM_CT AVG_COMM MIN_COMM MAX_COMM SUM_COMM
-------- -------- -------- -------- -------- --------
 14 4 550 0 1400 2200

1 row selected.

Notice the difference in the value for COUNT(*) and COUNT(comm). Using * produces the answer of 14,
which is the total of all rows, while using comm produces the answer of 4, which is only the number of
non-null comm values. You can also easily verify that nulls are removed prior to the computation of AVG,
MIN, MAX, and SUM since all the functions produce an answer. If nulls hadn’t been removed, the answers
would have all been null.

Summary
Thinking in sets is a key skill to master in order to write SQL that is easier to understand and that will
typically perform better than SQL written from a procedural approach. When you think procedurally,
you attempt to force the SQL language, which is non-procedural, to function in ways it shouldn’t need to
function.

In this chapter, you reviewed these two approaches and discussed how to begin to shift your
thinking from procedural to set-based. As you proceed through the rest of the book, work to keep a set-
based approach in mind. If you find yourself thinking row-by-row in a procedural fashion, stop and
check yourself. The more practice you give yourself, the easier it will become.

Lastly, early in the chapter I promised to show the solution to the puzzle in Figure 4-1. You can see
that solution now, in Figure 4-7. Here’s a detailed explanation:

SET 1: All have three symbols, all symbols are squiggles, all symbols are solid, all symbols are
different colors

SET 2: All symbols are red, all symbols are different shapes, all symbols are solid, all have different
number of symbols

SET 3: All symbols are ovals, all symbols are different colors, all symbols have different fill, all have
different number of symbols

SET 4: All symbols are diamonds, all symbols are different colors, all symbols are solid, all have
different number of symbols

SET 5: All symbols have different shape, all symbols are different colors, all symbols have different
fill, all have different number of symbols

SET 6: All symbols have different shape, all symbols are different colors, all symbols are solid, all
have three symbols

CHAPTER 4 ■ SQL IS ABOUT SETS

128

Figure 4-7. SET game solution from Figure 4-1

C H A P T E R 5

■ ■ ■

129

It’s About the Question

Karen Morton

“It’s not about the query, it’s about the question.” That’s one of my favorite sayings when it comes to
writing SQL. Regardless of your level of proficiency, writing SQL well is as much about questions as it is
about queries.

There are many ways that questions play an important role when writing SQL. First, understanding
the question behind the query is often more important than the query syntax itself. If you start with the
question the SQL is intended to answer, you will be more likely to think through and understand how to
best formulate the query to get the desired result. Second, it is critical to be able to ask good questions to
clarify what the SQL is intended to do and to gather all the pertinent information you’ll need to write
SQL that is not only functionally correct, but efficient as well. Finally, you must be able to create well-
formed logical expressions that help answer the questions behind the SQL.

In this chapter, I’ll cover how to go about ferreting out all the information you need to write the
query in the best way possible. The way you do it is by asking good questions. Regardless of whether
you are writing a new SQL statement or modifying an existing one, questions are the heart of the
process.

Asking Good Questions
Asking good questions is an intellectual habit. Habits don’t form overnight. Long ago, I read that it takes
between 21 and 28 days to form a new habit. However, a 2009 research study published in the European
Journal of Social Psychology 1 suggests that forming new habits actually takes an average of 66 days;
however, the more complex a behavior is, the longer it takes for that behavior to become a habit. So, if
you’re not already in the habit of asking good questions, it’s important to understand that learning to do
so will take specific effort on your part to gain proficiency.

You may be wondering what any of this has to do with writing SQL. I believe knowing how to ask
good questions, and even more specifically, knowing how to ask questions that will allow you to
determine the correct question your SQL statement is intended to answer, is a crucial habit you’ll need
to form if you really want to elevate your SQL skills to the next level.

In order to write any SQL statement, begin with a question you need to answer. The answer will be a
result set comprised from one or more rows of data from the tables in your database. As a starting point,
you may be given the answer being sought in the form of a sample report or screen display. At other
times, you’ll be given a more complete specification for what the query needs to deliver. You shouldn’t

1 See www3.interscience.wiley.com/journal/122513384/abstract?CRETRY=1&SRETRY=0,
www.telegraph.co.uk/health/healthnews/5857845/It-takes-66-days-to-form-a-habit.html, and
www.spring.org.uk/2009/09/how-long-to-form-a-habit.php.

http://www.telegraph.co.uk/health/healthnews/5857845/It-takes-66-days-to-form-a-habit.html
http://www.spring.org.uk/2009/09/how-long-to-form-a-habit.php

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

130

be surprised when I tell you that you’ll get weak query specifications more often than you’ll get strong,
detailed ones. No matter how much information you are given about the queries you need to write, you
need to make sure that you ask good questions that ensure you have everything you need to write SQL
that does what it is supposed to—and does it quickly and efficiently.

The Purpose of Questions
Questions help you clarify the request and help you probe assumptions that either you or the requestor
may hold. Questions can also help you to gather evidence and work out the implications or
consequences of implementing code in certain ways. Questions are gold. Well, I suppose you could say
that the answers are the gold, but questions are the tools you need to mine the gold.

In order to ask questions that will get you the information you need to write functionally correct and
optimally performing SQL, you must be able to properly formulate your questions. Regardless of how
much you know, or think you know, about what you’ve been asked to code, it can be helpful to start with
a blank slate and ask questions as if you know nothing. By doing so, you are more likely to reach greater
levels of detail and avoid making assumptions.

Many people think that asking questions makes them appear ignorant. I think that questions are a
magic tool. Asking intelligent, well-crafted questions will cause people to think. And when someone
thinks, the door is open for new ideas, new answers, and new possibilities to emerge. When you ask a
person a question, particularly a person who wants something from you, you are letting them know that
you care about what they want and that you want to service their request in the best way possible.
Keeping silent out of a fear of looking dumb has more potential to backfire. If you don’t ask questions
and then deliver something that doesn’t satisfy the request effectively, you’ll call more negative attention
to yourself than asking questions ever could.

I want to point out that you should ask questions even if you ask them only to yourself. As odd as
that may sound, if you happen to be in a situation where there is no good resource at your disposal,
you’ll still need to ask questions and get answers. The answers will have to come from research you do,
but if you start by preparing a good list of questions, you will be able to direct your research more clearly.

Categories of Questions
There are many categorizations of questions. Typically, questions will be categorized primarily as open
or closed. The category you choose depends on whether or not you want a longer, detailed answer or a
short, limited answer.

Open questions are intended to open a dialogue and help you engage in a conversation. Answers to
open questions usually provide more detail and can’t be answered with a simple yes or no. Questions
that begin with “What,” “How,” “Who,” “When,” and “Why” are open questions. Just be careful when
asking “Why” questions as they may come across as confrontational. Remember that your questions
should be intended to help you get all the detail you need but not put anyone on the defensive. For
example, asking “Why would anyone ever choose to do it that way?” has a very different feeling than
“What rationale prompted that choice?” does. Even if you discover something questionable, or just plain
wrong, you can provide feedback directly and may not need to use “Why” questions very often.

Most of the time, your questions will be aimed at digging out facts. Objective open questions ask for
specific information and tend to be answered with facts. However, you must take care to make sure you
are getting facts and not opinions. Formulating a question subjectively by asking someone what they
think about something will elicit a response that is more subjective. The difference can be a critical one.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

131

Some open questions are intended to get responses to help you get ideas, particularly ideas about
actions you should take. These are problem-solving questions. These types of questions are great to aid
in brainstorming different approaches to take. Your colleagues are great people sources for the answers
to these types of questions. Once you’ve got the detail you need, don’t hesitate to bounce things off
other developers. They’ll often offer solutions you never would have thought of otherwise.

 The two most common types of questions you should ask when developing SQL are objective and
problem-solving questions. Here are a few examples:

• What is the data model and is a data dictionary or ERD available?

• How have other related queries, if any, been written?

• Who is the subject matter expert for this application?

• What are the response time requirements for this query?

• How would you implement the request?

• What steps should I take next?

• What resources would you suggest I review?

If you just need a yes or no response or just a short answer, closed questions will best suit that

purpose. Questions that begin with “Are,” “Can,” “Did,” or “Do” will elicit short, direct responses. These
types of questions should not be ambiguous. You want to make sure you ask the question so that you
don’t end up getting a long response if all you really wanted was a yes or no. These kinds of questions
are intended to prevent or inhibit long discussions.

Closed questions can be separated into three types: identification, selection, and yes/no. When you
use an identification type question, you want to know a specific answer but don’t provide choices. A
selection type question provides a list of two or more choices. The yes/no type asks for a simple yes or
no response only.

To demonstrate the differences between these three types, I’ll ask the same question in 3 different
ways:

• Identification: What kind of table is employees?

• Selection: Is the employees table a heap table or an IOT?

• Yes/No: Is the employees table a heap table?

Of these types, the selection type is the one you will need to formulate most carefully. In this

example, I provided only two selections: heap and IOT. But what if the table was a clustered table type?
If you don’t include that option in the selection list, you could end up getting a Yes/No answer to the
original question. The person answering the question might (rudely) answer with a simple “No.” Then
you’d have to follow up with an identification question to get the answer you need.

Selecting the right type of question is almost as important as the question itself. You want to get the
details needed as expeditiously as possible. So, remember to use closed questions if you want to keep
answers short and open questions if you want to open up a discussion and get more detail. The most
common mistake is asking a closed question when you really want more detail. For example, “Will you
tell me about the project?” is technically a closed question that should return a yes or no answer. Most
people have learned to provide a polite response (with detail) even when asked the wrong type of
question. But it is truly your responsibility to ask the correct type and style of question to make it easier
for the responder to provide you with the appropriate answer.

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

132

Questions about the Question
Developing new queries is usually easier than trying to modify a query that someone else has already
written. This is because when you write a brand new query, you don’t have to worry about interpreting
the meaning of someone else’s code. But, what you do have to worry about is the query specification.
Whether it’s detailed or not, it’s your job to make sure you code the SQL to deliver the answer to the
question you’ve been handed.

Let’s walk through an example of how this process might work. I’ll play the role of business user and
you play the role of application developer. My request is for you to write a query that provides a list of
employees who have held more than one job in the company. I’d like the output to display only the
employee_id and a count of how many total jobs they’ve held. Listing 5-1 shows the query you create to
satisfy my request.

Listing 5-1. List of Employees Who Have Held Multiple Jobs

SQL> select employee_id, count(*) job_ct
 2 from job_history
 3 group by employee_id
 4 having count(*) > 1;

 EMPLOYEE_ID JOB_CT
--------------- ---------------
 101 2
 176 2
 200 2

3 rows selected.

That was pretty simple, right? You complete your testing and deliver this code. However, I quickly
come back to you and say it’s wrong. The list is missing some employees who have held more than one
job. I had been manually producing this list previously and know that the following list of employees
should be displayed: 101, 102, 114, 122, 176, 200, and 201.

What went wrong? This seemed like a fairly simple query, didn’t it? It went wrong because the
solution was developed without any questions being asked. By not asking questions, you made some
assumptions (whether you realized it or not). The assumptions you made caused you to write the query
as you did. The way you wrote the query didn’t provide the result I was expecting. Admittedly, I could
have helped you out more by giving you a more detailed specification or providing you with the
expected result set initially. Regardless of the quality of the query specification you have, never forget
that it is your job to ferret out the details and make sure you develop code that specifically answers the
real question being asked.

Let’s start over. The query specification I provided asked you to write a query that provides a list of
employees who have held more than one job in the company, displaying the employee_id and a count of
how many total jobs they’ve held. While at first glance, the query request seems straightforward, the
apparent simplicity hides several nuances that you won’t be aware of unless you ask some questions.
The following list includes a few questions that you might have asked to help clarify the request:

• Should the query consider the employee’s current job as part of the count or only jobs held
other than the current position?

• Where is the data that will satisfy the request stored, i.e. in one table or several?

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

133

• What is the data model and can I get a copy of the data dictionary or an ERD (entity relationship
diagram) if one exists?

• Is there an expected typical size of the result set?

• How is the data stored?

• Must this query meet any response time SLA (service level agreement)?

• How frequently will the query execute?

If you receive a request from a business user, it might not be feasible to ask them all of these

questions. Asking a business user about which tables contain the data they want or if you could get a
copy of the ERD might be answered with blank stares as those things aren’t typically in the domain of
the business user’s knowledge. It is important to note whether the request for the query is coming from
an application user or an application technical architect. Many of these questions can only be answered
by someone with an understanding of the application from the technical perspective. Therefore, learn
who the “go to” people are when you need to get detailed technical information. This may be the DBA,
the data architect, or perhaps a developer that initially worked on other code in this particular
application. Over time, you’ll build the knowledge you need to determine many of these answers for
yourself, but it’s always good to know who the subject matter experts are for any application you
support.

Getting answers to the first three questions are the most important, initially. You must know more
than just a description of what the query needs to ask for. Being as familiar as possible with the data
model is the starting point. When writing the original query, an assumption was made that the only
table containing information needed to satisfy the query was the job_history table. If you had asked the
first three questions, you’d have found out that the job_history table is truly a history table; it only
contains historical data, not current data. The employees table contains a job_id column that holds the
employee’s current position information. Therefore, in order to determine how many positions an
employee has held, you need to get their current job from the employees table and their previous jobs
from the job_history table.

With this information, you might rewrite the query as shown in Listing 5-2.

Listing 5-2. The Rewritten Employee Jobs Query

SQL> select employee_id, count(*) job_ct
 2 from
 3 (
 4 select e.employee_id, e.job_id
 5 from employees e
 6 union all
 7 select j.employee_id, j.job_id
 8 from job_history j
 9)
 10 group by employee_id
 11 having count(*) > 1;

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

134

 EMPLOYEE_ID JOB_CT
--------------- ---------------
 102 2
 201 2
 101 3
 114 2
 200 2
 176 2
 122 2

7 rows selected.

It looks like the answer is correct now. It’s at this point that the answers to the next questions come
into play. Knowing what to ask for is certainly important and the first three questions helped me
describe the data the query needed to return. Most people would stop here. However, knowing how to
get the data I’m after is just as important. This is contrary to what most of us are taught about relational
databases in general. In one of my college courses on relational database management systems, I was
taught that SQL is used to access data. There is no requirement that I need to know anything about
where or how the data is stored or how the RDBMS processes a SQL statement in order to access that
data. In other words, SQL is used to describe what will be done, not how it will be done.

The reality is that knowing how your data is stored and accessed is just as important as describing
the data your query retrieves. Let’s say you need to book a trip from Washington, DC to Los Angeles, CA.
You call your travel agent to handle the booking for you. If the only information you provide to the agent
is your departure and arrival cities and that you want the least expensive fare possible, what could
happen? Well, it’s possible that the least expensive fare involves leaving at 5:30 A.M. from Washington,
DC then making stopovers in Atlanta, Chicago and Dallas before finally connecting into Los Angeles at
midnight (Los Angeles time, which means it would be 3 A.M. in DC time). Would that be OK with you?
Probably not. Personally, I’d be willing to pay extra to get a direct flight from DC to Los Angeles. Think
about it. If you could get a direct flight leaving from DC at 8 A.M. and arriving into Los Angeles at 10
A.M., wouldn’t it be worth quite a bit to you versus making multiple stopovers and spending nearly a full
day to complete the trip? And what if the direct flight only cost 10% more than nightmare flight? Your
original request to book the least expensive fare didn’t include any conditions under which you’d be
willing to pay more. So, your request was satisfied but you probably won’t be happy with the outcome.

Knowing how the data is stored and how it should be accessed will ensure that your query not only
returns the correct answer, but does so as quickly and efficiently as possible. That’s why questions like
“How big is the typical expected result set?”, “How is the data stored?”, and “How fast and how
frequently does it need to execute?” must be asked. Without those answers, your query may get the
correct answer but still be a failure due to poor performance. Simply getting the right result isn’t
enough. To be successful, your query must be right and it must be fast.

Questions about Data
I hope at this point you agree that you do need to concern yourself with how data is stored and how it
should be accessed. Where do you find this information? The database can give you most of the answers
you need by executing a few simple queries. Once you have this data, you then need to determine how
data should be accessed. This comes from understanding how the various access and join methods work
and when it is appropriate to use each. I’ve already covered access and join methods, so you’ve got the
information you need to help you there. But how do you discover how the data is stored? Let’s walk
through the questions you need to ask and queries you can execute to get the answers.

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

135

As a first step, try to think like the optimizer would. The optimizer needs statistics and instance
parameter values to be able to compute a plan. Therefore, it’s a good idea for you to put yourself in the
optimizer’s place and gather the information that will help to formulate the execution plan. You should
always seek out the answers to the following questions about the data:

• Which tables will be needed to gather all the data required?

• Are any of the tables partitioned, and if so, how are the partitions defined?

• What columns are in each table?

• What indexes are available in each table?

• What are the statistics for each table, column, and index?

• Are there histograms on any of the columns?

Statistics help the optimizer paint a picture of how the various ways of accessing and joining data

will perform. You can know what the optimizer knows. All you need to be able to do is query the
information from the data dictionary. One thing to keep in mind when you’re reviewing statistics is that
statistics may or may not accurately represent your data. If the statistics are stale, missing, or poorly
collected, it’s possible that they paint the wrong picture. The optimizer can only know what the
statistics tell it. You, on the other hand, have the ability to determine if the statistics make sense. For
example, if a date column in one of your tables has a high value of six months ago, you can quickly see
that and know that rows exist with current date values. That visual inspection can help you determine if
statistics need to be updated. But you can’t know these kinds of things unless you look. A key question
you must always ask is whether or not the statistics accurately represent your data. Listing 5-3 uses a
single script named st-all.sql (previously used in Chapter 2) to answer each of the questions listed
above in one simple script. It gives you a single source to review to verify how representative the
available statistics really are.

Listing 5-3. Getting All the Statistics Information You Need

SQL> @st-all
Enter the owner name: sh
Enter the table name: sales
==
 TABLE STATISTICS
==
Owner : sh
Table name : sales
Tablespace : EXAMPLE
Partitioned : yes
Last analyzed : 09/03/2010 20:17:03
Sample size : 918843
Degree : 1
Rows : 918843
Blocks : 1769
Empty Blocks : 0

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

136

Avg Space : 0
Avg Row Length: 29
Monitoring? : yes

==
 PARTITION INFORMATION
==

 Part# Partition Name Sample Size # Rows # Blocks
------ --------------- --------------- --------------- ---------------
 1 SALES_1995 . 0 0
 2 SALES_1996 . 0 0
 3 SALES_H1_1997 . 0 0
 4 SALES_H2_1997 . 0 0
 5 SALES_Q1_1998 43687 43687 90
...
 28 SALES_Q4_2003 . 0 0

 Part# Partition Name Partition Bound
------ --------------- ---
 1 SALES_1995 TO_DATE(' 1996-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
 2 SALES_1996 TO_DATE(' 1997-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
 3 SALES_H1_1997 TO_DATE(' 1997-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
 4 SALES_H2_1997 TO_DATE(' 1998-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
 5 SALES_Q1_1998 TO_DATE(' 1998-04-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...
...
 28 SALES_Q4_2003 TO_DATE(' 2004-01-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS', ...

==
 COLUMN STATISTICS
==
 Name Null? NDV Density # Nulls # Bkts AvgLen Lo-Hi Values
==
amount_sold N 3586 .000279 0 1 5 6.4 | 1782.72
channel_id N 4 .250000 0 1 3 2 | 9
cust_id N 7059 .000142 0 1 5 2 | 101000
prod_id N 72 .000001 0 72 4 13 | 148
promo_id N 4 .000001 0 4 4 33 | 999
quantity_sold N 1 1.000000 0 1 3 1 | 1
time_id N 1460 .000685 0 1 8 01/01/1998 00:00:00 |
 12/31/2001 00:00:00

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

137

==
 HISTOGRAM STATISTICS Note: Only columns with buckets containing > 5% are shown.
==

PROMO_ID (4 buckets)
1 97%

==
 INDEX INFORMATION
==

Index Name Dstnct Lf/Blks Dt/Blks Cluf Unq? Type Part?
 BLevel Lf Blks # Rows Keys /Key /Key
------------------ ------- ------- ------ ------ ------- ------- ----- ---- ---- -----
SALES_CHANNEL_BIX 1 47 92 4 11 23 92 NO BITM YES
SALES_CUST_BIX 1 475 35808 7059 1 5 35808 NO BITM YES
SALES_PROD_BIX 1 32 1074 72 1 14 1074 NO BITM YES
SALES_PROMO_BIX 1 30 54 4 7 13 54 NO BITM YES
SALES_TIME_BIX 1 59 1460 1460 1 1 1460 NO BITM YES

Index Name Pos# Order Column Name
------------------------------ ---------- ----- ------------------------------
sales_channel_bix 1 ASC channel_id

sales_cust_bix 1 ASC cust_id

sales_prod_bix 1 ASC prod_id

sales_promo_bix 1 ASC promo_id

sales_time_bix 1 ASC time_id

==
 PARTITIONED INDEX INFORMATION
==

Index: SALES_CHANNEL_BIX
 Dst LfBlk DtBlk
Part# Partition Name BLevel LfBlks # Rows Keys /Key /Key CluF Partition Bound
----- --------------- ------ ------ ------ ---- ---- ---- ---- ----------------------
 1 SALES_1995 0 0 0 0 0 0 0 TO_DATE('1996-01-01...
 2 SALES_1996 0 0 0 0 0 0 0 TO_DATE('1997-01-01...
 3 SALES_H1_1997 0 0 0 0 0 0 0 TO_DATE('1997-07-01...

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

138

 4 SALES_H2_1997 0 0 0 0 0 0 0 TO_DATE('1998-01-01...
 5 SALES_Q1_1998 1 2 5 4 1 1 5 TO_DATE('1998-04-01...
...
 28 SALES_Q4_2003 0 0 0 0 0 0 0 TO_DATE('2004-01-01...

Index: SALES_CUST_BIX

 1 SALES_1995 0 0 0 0 0 0 0 TO_DATE('1996-01-01...
 2 SALES_1996 0 0 0 0 0 0 0 TO_DATE('1997-01-01...
 3 SALES_H1_1997 0 0 0 0 0 0 0 TO_DATE('1997-07-01...
 4 SALES_H2_1997 0 0 0 0 0 0 0 TO_DATE('1998-01-01...
 5 SALES_Q1_1998 1 28 3203 3203 1 1 3203 TO_DATE('1998-04-01...
...
 28 SALES_Q4_2003 0 0 0 0 0 0 0 TO_DATE('2004-01-01...

Index: SALES_PROD_BIX

 1 SALES_1995 0 0 0 0 0 0 0 TO_DATE('1996-01-01...
 2 SALES_1996 0 0 0 0 0 0 0 TO_DATE('1997-01-01...
 3 SALES_H1_1997 0 0 0 0 0 0 0 TO_DATE('1997-07-01...
 4 SALES_H2_1997 0 0 0 0 0 0 0 TO_DATE('1998-01-01...
 5 SALES_Q1_1998 1 2 60 60 1 1 60 TO_DATE('1998-04-01...
...
 28 SALES_Q4_2003 0 0 0 0 0 0 0 TO_DATE('2004-01-01...

Index: SALES_PROMO_BIX

 1 SALES_1995 0 0 0 0 0 0 0 TO_DATE('1996-01-01...
 2 SALES_1996 0 0 0 0 0 0 0 TO_DATE('1997-01-01...
 3 SALES_H1_1997 0 0 0 0 0 0 0 TO_DATE('1997-07-01...
 4 SALES_H2_1997 0 0 0 0 0 0 0 TO_DATE('1998-01-01...
 5 SALES_Q1_1998 0 1 3 2 1 1 3 TO_DATE('1998-04-01...
...
 28 SALES_Q4_2003 0 0 0 0 0 0 0 TO_DATE('2004-01-01...

Index: SALES_TIME_BIX

 1 SALES_1995 0 0 0 0 0 0 0 TO_DATE('1996-01-01...
 2 SALES_1996 0 0 0 0 0 0 0 TO_DATE('1997-01-01...
 3 SALES_H1_1997 0 0 0 0 0 0 0 TO_DATE('1997-07-01...
 4 SALES_H2_1997 0 0 0 0 0 0 0 TO_DATE('1998-01-01...
 5 SALES_Q1_1998 1 3 90 90 1 1 90 TO_DATE('1998-04-01...
...

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

139

 27 SALES_Q3_2003 0 0 0 0 0 0 0 TO_DATE('2003-10-01...
 28 SALES_Q4_2003 0 0 0 0 0 0 0 TO_DATE('2004-01-01...

With this information, you can answer almost any question about the data. It is best if these
statistics are from your production database where the SQL you are writing will be executed. If your
development database doesn’t have a copy of the production statistics, it’s a good idea to request that
the production stats be imported into the development database so that the optimizer is formulating
plans based on information that is as close to production as possible. Even if the data doesn’t match,
remember that it’s the statistics that the optimizer uses to determine the plan.

Now that you’ve obtained the statistics, you can use the information to ask, and answer, questions
about what you’d expect the optimizer to do with your SQL. For example, if you were writing a query
that needed to return all sales data for a specified customer (cust_id), you might want to know how
many rows the optimizer will estimate the query to return. With the statistics information you have
queried, you could compute the number of rows estimated to be returned by the query to be 130
(918,843 total rows x 1/7,059 distinct values). You can see that there is an index on cust_id, so the
proper access operation to use to satisfy the query should be the SALES_CUST_BIX index. When you
execute the query, you can verify this operation is selected by checking the execution plan.

In Chapter 3, I discussed the index statistic called clustering factor. This statistic helps the optimizer
compute how many blocks of data will be accessed. Basically, the closer the clustering factor is to the
number of blocks in the table, the fewer the estimated number of blocks to be accessed when using the
index will be. The closer the clustering factor is to the number of rows in the table, the greater the
estimated number of blocks will be. The fewer blocks to be accessed, the lower the cost of using that
index and the more likely it is that the optimizer will choose that index for the plan. Therefore, you can
check this statistic to determine how favorable the index will appear. Listing 5-4 shows the clustering
factor statistics for the SALES table.

Listing 5-4. Index clustering_factor

SQL> select t.table_name||'.'||i.index_name idx_name,
 2 i.clustering_factor, t.blocks, t.num_rows
 3 from user_indexes i, user_tables t
 4 where i.table_name = t.table_name
 5 and t.table_name = 'SALES'
 6 order by t.table_name, i.index_name;

IDX_NAME Clustering Factor # Blocks # Rows
------------------------ ----------------- --------------- ---------------
SALES.SALES_CHANNEL_BIX 92 1769 918843
SALES.SALES_CUST_BIX 35808 1769 918843
SALES.SALES_PROD_BIX 1074 1769 918843
SALES.SALES_PROMO_BIX 54 1769 918843
SALES.SALES_TIME_BIX 1460 1769 918843

5 rows selected.

In this case, the clustering factors for all of the indexes for the SALES table have a low value (i.e.

closer to the number of blocks in the table). That is a good indication that when the optimizer computes
the cost of using these indexes, they will not be weighted too heavily based on the estimated number of
blocks they will return if used.

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

140

In addition to using statistics, you can execute actual queries against the tables to get an idea of the
data and number of rows that will be accessed or returned from a single table. Regardless of how
complex a statement is, you can do just what the optimizer would do and break the statement down into
single table accesses. For each table involved, simply execute one or more queries to count and review
the data that would be returned using the filter conditions your SQL will use. As discussed previously,
always think “divide and conquer.” Breaking a statement down into small increments will help you
understand how best to put it together in the most efficient way to arrive at the final result.

Building Logical Expressions
Once you understand the question that the statement you are writing needs to answer, you have to be
able to build the SQL to provide the answer. There are often many possible ways to express the same
predicate logic. Being able to formulate the conditions in a way that is easy to read and efficient requires
you to think in ways you may not be used to. Remember when I discussed the idea of thinking in sets
versus thinking procedurally in Chapter 4? There is a similar thought-shift that you may need to make in
order to be able to build predicates for your SQL statements most efficiently.

The key is to learn some good Boolean logic techniques so that you don’t have to rely on only one
way to express conditional logic. You may find that using Boolean logic expressions will always produce
the most efficient plan operation choices (make sure to test alternatives thoroughly), but it’s good to
know how to formulate different alternatives so you aren’t stuck with a single way to do things.

When I say conditional logic, I mean an expression something like “if X then Y” where X and Y are
both conditions. In a WHERE clause, you might want to have a condition like if :GetAll <> 1 then empno
= :empno. In other words, if the value of the input bind variable named :GetAll is 1, then you want to
return all rows, but if :GetAll is not 1, then only return rows where empno is equal to the :empno bind
variable supplied. A WHERE clause to express this logic might be coded like this:

WHERE empno = CASE WHEN :GetAll <> 1 THEN :empno ELSE empno END

This logic works, but is a bit counterintuitive to me. Why would you even want to check empno =
empno? There are other problems with this kind of formulation as well. If you need to check multiple
columns, then you’ll need multiple CASE statements. Plus, if empno is null, this check will fail, or at the
very least give you a result you didn’t expect.

The key is to change this expression to use a regular Boolean expression that uses only AND, OR, and
NOT so that your “if X then Y” condition is translated to “(Not X) or Y”. This becomes:

WHERE (:GetAll = 1) OR (empno = :empno)

What you are covering with this expression is that if :GetAll = 1, then you don’t even want to
bother with checking any more of the expression. Always remember that when using an OR condition, if
one condition evaluates to TRUE, then the whole expression is TRUE. There is no need to even check the
remaining expression. This “short-circuit” mechanism can save time by not requiring some of the code
path to be evaluated. That means you’ll not burn as many CPU cycles over all. Only if the first condition
that the optimizer chooses to test evaluates to FALSE would the other expression need to be evaluated.

Although you’re not looking at expressions involving ANDed conditions in these examples, you can
apply similar thinking to the use of ANDed predicates. When using an AND condition, if the first condition
evaluates to FALSE, then the whole expression is FALSE. There is no need to evaluate the second
expression since both conditions must evaluate to TRUE for the whole condition to be TRUE. So, when
you’re using AND conditions, it’s a good idea to write the condition so the expression that is most likely to
evaluate to FALSE is placed first. Doing so allows the second expression evaluation to be short-circuited
with similar savings as noted when placing a TRUE expression first in an OR condition.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

141

A similar way of approaching this type of conditional expression is to use a single bind variable
instead of two. In this case, you could say “if X is not null then Y = X”. This becomes:

 WHERE empno = NVL(:empno, empno)

This is basically the same as writing the CASE expression from the earlier example and could be

converted to:

 WHERE (:empno is null) OR (empno = :empno)

In both of these cases, the optimizer may have a bit of a dilemma with determining the optimal

plan. The reason is that if the binds you use cause the comparison to end up returning all rows, then the
plan operation best suited for that would likely be a full table scan. However, if you specify binds that
end up limiting the result set, an index scan might be best. Since you’re using bind variables, each time
you execute the query, the input bind values could change. So, the optimizer has to choose a plan that
will cover both situations. Most likely, you’ll end up with a full table scan. Listing 5-5 demonstrates each
of the scenarios I have covered and shows the execution plan output for each.

Listing 5-5. Different Methods to Express Conditional Logic

SQL> variable empno number
SQL> variable getall number
SQL>
SQL> exec :empno := 7369;

PL/SQL procedure successfully completed.

SQL>
SQL> exec :getall := 1;

PL/SQL procedure successfully completed.

SQL>
SQL> select /* opt1 */ empno, ename from emp
 2 where empno = CASE WHEN :GetAll <> 1 THEN :empno ELSE empno END;

 EMPNO ENAME
--------------- ----------
 7369 SMITH
 7499 ALLEN
 7521 WARD
 7566 JONES
 7654 MARTIN
 7698 BLAKE
 7782 CLARK

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

142

 7788 SCOTT
 7839 KING
 7844 TURNER
 7876 ADAMS
 7900 JAMES
 7902 FORD
 7934 MILLER

14 rows selected.

SQL>
SQL> @pln opt1

PLAN_TABLE_OUTPUT

SQL_ID gwcmrzfqf8cu2, child number 0

select /* opt1 */ empno, ename from emp where empno = CASE WHEN :GetAll
<> 1 THEN :empno ELSE empno END

Plan hash value: 3956160932

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 14 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 1 | 14 | 8 |

Predicate Information (identified by operation id):

 1 - filter("EMPNO"=CASE WHEN (:GETALL<>1) THEN :EMPNO ELSE "EMPNO" END)

19 rows selected.

SQL>
SQL> select /* opt2 */ empno, ename from emp
 2 where (:GetAll = 1) OR (empno = :empno);

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

143

 EMPNO ENAME
--------------- ----------
 7369 SMITH
 7499 ALLEN
 7521 WARD
 7566 JONES
 7654 MARTIN
 7698 BLAKE
 7782 CLARK
 7788 SCOTT
 7839 KING
 7844 TURNER
 7876 ADAMS
 7900 JAMES
 7902 FORD
 7934 MILLER

14 rows selected.

SQL>
SQL> @pln opt2

PLAN_TABLE_OUTPUT

SQL_ID 0yk6utwur2fbc, child number 0

select /* opt2 */ empno, ename from emp where (:GetAll = 1) OR (empno =
:empno)

Plan hash value: 3956160932

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 14 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 1 | 14 | 8 |

Predicate Information (identified by operation id):

 1 - filter(("EMPNO"=:EMPNO OR :GETALL=1))

19 rows selected.

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

144

SQL>
SQL> exec :getall := 0;

PL/SQL procedure successfully completed.

SQL>
SQL> select /* opt3 */ empno, ename from emp
 2 where empno = CASE WHEN :GetAll <> 1 THEN :empno ELSE empno END;

 EMPNO ENAME
--------------- ----------
 7369 SMITH

1 row selected.

SQL>
SQL> @pln opt3

PLAN_TABLE_OUTPUT

SQL_ID bfmz26532svu1, child number 0

select /* opt3 */ empno, ename from emp where empno = CASE WHEN :GetAll
<> 1 THEN :empno ELSE empno END

Plan hash value: 3956160932

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 1 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 1 | 1 | 8 |

Predicate Information (identified by operation id):

 1 - filter("EMPNO"=CASE WHEN (:GETALL<>1) THEN :EMPNO ELSE "EMPNO" END)

19 rows selected.

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

145

SQL>
SQL> select /* opt4 */ empno, ename from emp
 2 where (:GetAll = 1) OR (empno = :empno);

 EMPNO ENAME
--------------- ----------
 7369 SMITH

1 row selected.

SQL>
SQL> @pln opt4

PLAN_TABLE_OUTPUT

SQL_ID aqp35x47gpphj, child number 0

select /* opt4 */ empno, ename from emp where (:GetAll = 1) OR (empno =
:empno)

Plan hash value: 3956160932

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 1 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 1 | 1 | 8 |

Predicate Information (identified by operation id):

 1 - filter(("EMPNO"=:EMPNO OR :GETALL=1))

19 rows selected.

SQL>
SQL> select /* opt5 */ empno, ename from emp
 2 where empno = NVL(:empno, empno);

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

146

 EMPNO ENAME
--------------- ----------
 7369 SMITH

1 row selected.

SQL>
SQL> @pln opt5

PLAN_TABLE_OUTPUT

SQL_ID 605p3gyjbw82b, child number 0

select /* opt5 */ empno, ename from emp where empno = NVL(:empno, empno)

Plan hash value: 1977813858

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

0	SELECT STATEMENT		1		1	2
1	CONCATENATION		1		1	2
* 2	FILTER		1		0	0
3	TABLE ACCESS BY INDEX ROWID	EMP	0	14	0	0
* 4	INDEX FULL SCAN	PK_EMP	0	14	0	0
* 5	FILTER		1		1	2
6	TABLE ACCESS BY INDEX ROWID	EMP	1	1	1	2
* 7	INDEX UNIQUE SCAN	PK_EMP	1	1	1	1

Predicate Information (identified by operation id):

 2 - filter(:EMPNO IS NULL)
 4 - filter("EMPNO" IS NOT NULL)
 5 - filter(:EMPNO IS NOT NULL)
 7 - access("EMPNO"=:EMPNO)

27 rows selected.

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

147

SQL>
SQL> select /* opt6 */ empno, ename from emp
 2 where (:empno is null) OR (:empno = empno);

 EMPNO ENAME
--------------- ----------
 7369 SMITH

1 row selected.

SQL>
SQL> @pln opt6

PLAN_TABLE_OUTPUT
--
SQL_ID gng6x7nrrrhy9, child number 0

select /* opt6 */ empno, ename from emp where (:empno is null) OR
(:empno = empno)

Plan hash value: 3956160932

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 1 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 2 | 1 | 8 |

Predicate Information (identified by operation id):

 1 - filter((:EMPNO IS NULL OR "EMPNO"=:EMPNO))
SQL>
SQL> exec :empno := null;

PL/SQL procedure successfully completed.

SQL>
SQL> select /* opt7 */ empno, ename from emp
 2 where empno = NVL(:empno, empno);

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

148

 EMPNO ENAME
--------------- ----------
 7369 SMITH
 7499 ALLEN
 7521 WARD
 7566 JONES
 7654 MARTIN
 7698 BLAKE
 7782 CLARK
 7788 SCOTT
 7839 KING
 7844 TURNER
 7876 ADAMS
 7900 JAMES
 7902 FORD
 7934 MILLER

14 rows selected.

SQL>
SQL> @pln opt7

PLAN_TABLE_OUTPUT

SQL_ID 83dydzdzbn5zh, child number 0

select /* opt7 */ empno, ename from emp where empno = NVL(:empno, empno)

Plan hash value: 1977813858

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

0	SELECT STATEMENT		1		14	4
1	CONCATENATION		1		14	4
* 2	FILTER		1		14	4
3	TABLE ACCESS BY INDEX ROWID	EMP	1	14	14	4
* 4	INDEX FULL SCAN	PK_EMP	1	14	14	2
* 5	FILTER		1		0	0
6	TABLE ACCESS BY INDEX ROWID	EMP	0	1	0	0
* 7	INDEX UNIQUE SCAN	PK_EMP	0	1	0	0

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

149

Predicate Information (identified by operation id):

 2 - filter(:EMPNO IS NULL)
 4 - filter("EMPNO" IS NOT NULL)
 5 - filter(:EMPNO IS NOT NULL)
 7 - access("EMPNO"=:EMPNO)

27 rows selected.

SQL>
SQL> select /* opt8 */ empno, ename from emp
 2 where (:empno is null) OR (:empno = empno);

 EMPNO ENAME
--------------- ----------
 7369 SMITH
 7499 ALLEN
 7521 WARD
 7566 JONES
 7654 MARTIN
 7698 BLAKE
 7782 CLARK
 7788 SCOTT
 7839 KING
 7844 TURNER
 7876 ADAMS
 7900 JAMES
 7902 FORD
 7934 MILLER

14 rows selected.

SQL>
SQL> @pln opt8

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

150

PLAN_TABLE_OUTPUT

SQL_ID 4zvrcjd586tt6, child number 0

select /* opt8 */ empno, ename from emp where (:empno is null) OR
(:empno = empno)
Plan hash value: 3956160932

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 14 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 2 | 14 | 8 |

Predicate Information (identified by operation id):

 1 - filter((:EMPNO IS NULL OR "EMPNO"=:EMPNO))

For the first two examples where there are two bind variables, you’ll notice that the optimizer
chooses a full table scan operation in both cases. But, notice what happens when you use only a single
variable in the second set of examples. In the second case, the optimizer uses a CONCATENATION plan for
the NVL predicate and full table scan for the Boolean expression. The CONCATENATION plan is the best in
this case as it will work such that when the bind variable is null, the plan will execute the INDEX FULL
SCAN operation to get all the rows; when the bind variable is not null, the plan will execute the INDEX
UNIQUE SCAN operation to get just the one row that is needed. That way, both options use an optimal
execution path.

In this case, the Boolean logic didn’t give you the best plan so it’s good to know several alternative
ways to formulate the predicate so you can work to achieve the best possible plan. With that in mind,
you could actually have written the query as shown in Listing 5-6.

Listing 5-6. Using a UNION ALL to Handle Conditional Logic

SQL> select /* opt9 */ empno, ename from emp
 2 where :empno is null
 3 union all
 4 select empno, ename from emp
 5 where :empno = empno;

 EMPNO ENAME
--------------- ----------
 7369 SMITH

1 row selected.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

151

SQL>
SQL> @pln opt9

PLAN_TABLE_OUTPUT

SQL_ID ab0juatnpc5ug, child number 0

select /* opt9 */ empno, ename from emp where :empno is null union all
select empno, ename from emp where :empno = empno

Plan hash value: 2001993376

--
| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |
--
0	SELECT STATEMENT		1		1	2
1	UNION-ALL		1		1	2
* 2	FILTER		1		0	0
3	TABLE ACCESS FULL	EMP	0	14	0	0
4	TABLE ACCESS BY INDEX ROWID	EMP	1	1	1	2
* 5	INDEX UNIQUE SCAN	PK_EMP	1	1	1	1
--

Predicate Information (identified by operation id):

 2 - filter(:EMPNO IS NULL)
 5 - access("EMPNO"=:EMPNO)

Similar to the CONCATENATION plan, in this case you get a plan where two separate sub-plans are
unioned together to get the result. If the bind variable is null, you’ll get a full scan operation and will get
all rows returned. When the bind variable is not null, you’ll get the unique index scan and return only
the one row needed. The FILTER operation acts to determine if the first sub-plan should be executed or
not. Notice the predicate information section where step 2 shows filter(:EMPNO IS NULL) indicating
that only if the bind is null will the operation actually happen.

In general, you’ll find that the optimizer will be able to make better plan operation choices when AND
conditions are used. As covered earlier, this is because an OR condition means that there could be two
different possible operations that could be used based on how the expression evaluates. With an AND
condition, it is more likely that only a single choice, or at least choices that are not opposite in nature,
will be considered. So, if you can figure out a way to formulate your predicates to use ANDed conditions
solely, you may find that the SQL produces more efficient plans and even is easier to maintain.

Also, if you are writing SQL statements inside a larger code body, like in a PL/SQL procedure, use
conditional constructs in the language and don’t put that logic in the SQL. The simpler you can make
your SQL, and the fewer conditions that have to be handled in the statement directly, the less complexity
the optimizer will need to sort through to determine an optimal plan.

CHAPTER 5 ■ IT’S ABOUT THE QUESTION

152

Summary
Questions are an important part of the process of writing good SQL. You begin by understanding the
question the SQL needs to answer, then you follow up by asking questions about the data to formulate a
SQL statement that is functionally correct as well as optimized for performance. The ability to ask good
questions is an intellectual habit that must be developed over time. The more you work to ask questions
that clarify and enhance your understanding of what you need to do, the greater your skills as a writer of
high-quality, high-performing SQL will become.

C H A P T E R 6

153

SQL Execution Plans

Karen Morton

You’ve seen quite a few execution plans in the first chapters of this book, but in this chapter I’m going
to go into detail about how to produce and read plans correctly. I’ve built the foundation of knowledge
you need to understand the most common operations you’ll see used in execution plans, but you need
to put that knowledge into practice.

By the end of this chapter, I want you to feel confident that you can break down even the most
complex execution plan and understand how any SQL statement you write is being executed. With the
prevalence of development tools such as SQL Developer, SQL Navigator, and TOAD (just to name a
few), that can produce explain plan output, it is fairly easy to generate explain plans. What isn’t as
easy is to get execution plans. You may be wondering what the difference is between an explain plan
and an execution plan. As you’ll see throughout this chapter, there can be a significant difference.

I’ll walk through the differences between explain plan output and actual execution plan
information. You’ll learn how to compare the estimated plans with the actual plans and how to
interpret any differences that are present. This is “where the rubber meets the road,” as race car
drivers would say.

Explain Plans
The EXPLAIN PLAN statement is used to display the plan operations chosen by the optimizer for a SQL
statement. The first thing I want to clarify is that when you have EXPLAIN PLAN output, you have the
estimated execution plan that should be used when the SQL statement is actually executed. You do not
have the actual execution plan and its associated rowsource execution statistics. You have estimates
only—not the real thing. Throughout this chapter, I will make the distinction between actual and
estimated plan output by referring to estimated information as explain plan output and terming
actual information as execution plan output.

Using Explain Plan
When using EXPLAIN PLAN to produce the estimated execution plan for a query, the output will show:

• Each of the tables referred to in the SQL statement.

• The access method used for each table.

• The join methods for each pair of joined row sources.

• An ordered list of all operations to be completed.

CHAPTER 6 SQL EXECUTION PLANS

154

• A list of predicate information related to steps in the plan.

• For each operation, the estimates for number of rows and bytes manipulated by that step.

• For each operation, the computed cost value.

• If applicable, information about partitions accessed.

• If applicable, information about parallel execution.

Listing 6-1 shows the explain plan output produced for a query that joins five tables.

Listing 6-1. EXPLAIN PLAN Example

SQL> explain plan for
 2 select e.last_name || ', ' || e.first_name as full_name,
 3 e.phone_number, e.email, e.department_id,
 4 d.department_name, c.country_name, l.city, l.state_province,
 5 r.region_name
 6 from hr.employees e, hr.departments d, hr.countries c,
 7 hr.locations l, hr.regions r
 8 where e.department_id = d.department_id
 9 and d.location_id = l.location_id
 10 and l.country_id = c.country_id
 11 and c.region_id = r.region_id;

Explained.

SQL>
SQL> select * from table(dbms_xplan.display);

PLAN_TABLE_OUTPUT

Plan hash value: 2498281325

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		106	11872	13 (16)
* 1	HASH JOIN		106	11872	13 (16)
* 2	HASH JOIN		27	1917	10 (20)
3	NESTED LOOPS		27	1539	6 (17)
4	MERGE JOIN		27	1134	6 (17)
5	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27	513	2 (0)
6	INDEX FULL SCAN	DEPT_LOCATION_IX	27		1 (0)

CHAPTER 6 SQL EXECUTION PLANS

155

* 7	SORT JOIN		23	529	4 (25)
8	TABLE ACCESS FULL	LOCATIONS	23	529	3 (0)
* 9	INDEX UNIQUE SCAN	COUNTRY_C_ID_PK	1	15	0 (0)
10	TABLE ACCESS FULL	REGIONS	4	56	3 (0)
11	TABLE ACCESS FULL	EMPLOYEES	107	4387	3 (0)

Predicate Information (identified by operation id):

 1 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 2 - access("C"."REGION_ID"="R"."REGION_ID")
 7 - access("D"."LOCATION_ID"="L"."LOCATION_ID")
 filter("D"."LOCATION_ID"="L"."LOCATION_ID")
 9 - access("L"."COUNTRY_ID"="C"."COUNTRY_ID")

SQL> set autotrace traceonly explain
SQL>
SQL> l
 1 select e.last_name || ', ' || e.first_name as full_name,
 2 e.phone_number, e.email, e.department_id,
 3 d.department_name, c.country_name, l.city, l.state_province,
 4 r.region_name
 5 from hr.employees e, hr.departments d, hr.countries c,
 6 hr.locations l, hr.regions r
 7 where e.department_id = d.department_id
 8 and d.location_id = l.location_id
 9 and l.country_id = c.country_id
 10* and c.region_id = r.region_id
SQL> /

Execution Plan
--
Plan hash value: 2498281325

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		106	11872	13 (16)
* 1	HASH JOIN		106	11872	13 (16)
* 2	HASH JOIN		27	1917	10 (20)
3	NESTED LOOPS		27	1539	6 (17)
4	MERGE JOIN		27	1134	6 (17)

CHAPTER 6 SQL EXECUTION PLANS

156

5	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27	513	2 (0)
6	INDEX FULL SCAN	DEPT_LOCATION_IX	27		1 (0)
* 7	SORT JOIN		23	529	4 (25)
8	TABLE ACCESS FULL	LOCATIONS	23	529	3 (0)
* 9	INDEX UNIQUE SCAN	COUNTRY_C_ID_PK	1	15	0 (0)
10	TABLE ACCESS FULL	REGIONS	4	56	3 (0)
11	TABLE ACCESS FULL	EMPLOYEES	107	4387	3 (0)

Predicate Information (identified by operation id):

 1 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 2 - access("C"."REGION_ID"="R"."REGION_ID")
 7 - access("D"."LOCATION_ID"="L"."LOCATION_ID")
 filter("D"."LOCATION_ID"="L"."LOCATION_ID")
 9 - access("L"."COUNTRY_ID"="C"."COUNTRY_ID")

For this example, I used both the EXPLAIN PLAN command and the SQL*Plus AUTOTRACE command to

generate the explain plan output. Using AUTOTRACE automates the steps to generate a plan so that all
you have to do is turn on AUTOTRACE (using the TRACEONLY EXPLAIN option) and execute a query. The plan
is generated and the output is displayed all in one step. When using this method to generate a plan,
neither the EXPLAIN PLAN command nor the TRACEONLY EXPLAIN option actually executes the query. It
only generates the plan that is estimated to be executed. The development tool you use (SQL
Developer, TOAD, etc.) should also have an option to generate explain plans. I may be a bit old
fashioned, but I find the text output often easier to read than the semi-graphical trees some of these
common development tools use. I don’t particularly need or care to see any little graphical symbols so
I’m very happy with text output without any of the extra icons and such. But, don’t feel you have to
generate explain plans using these methods if you prefer to use your tool.

The information you see in explain plan output is generated by the EXPLAIN PLAN command and
stored in a table named PLAN_TABLE by default. The AUTOTRACE command calls the display function from
the supplied package named dbms_xplan to format the output automatically; you have to manually
execute the query when using EXPLAIN PLAN (I’ll discuss dbms_xplan in more detail shortly). For
reference, Listing 6-2 shows the table description for the Oracle 11R2 PLAN_TABLE.

Listing 6-2. PLAN _TABLE

SQL> desc plan_table
 Name Null? Type
 ----------------------------- -------- ------------------
 STATEMENT_ID VARCHAR2(30)
 PLAN_ID NUMBER
 TIMESTAMP DATE
 REMARKS VARCHAR2(4000)
 OPERATION VARCHAR2(30)
 OPTIONS VARCHAR2(255)
 OBJECT_NODE VARCHAR2(128)

CHAPTER 6 SQL EXECUTION PLANS

157

 OBJECT_OWNER VARCHAR2(30)
 OBJECT_NAME VARCHAR2(30)
 OBJECT_ALIAS VARCHAR2(65)
 OBJECT_INSTANCE NUMBER(38)
 OBJECT_TYPE VARCHAR2(30)
 OPTIMIZER VARCHAR2(255)
 SEARCH_COLUMNS NUMBER
 ID NUMBER(38)
 PARENT_ID NUMBER(38)
 DEPTH NUMBER(38)
 POSITION NUMBER(38)
 COST NUMBER(38)
 CARDINALITY NUMBER(38)
 BYTES NUMBER(38)
 OTHER_TAG VARCHAR2(255)
 PARTITION_START VARCHAR2(255)
 PARTITION_STOP VARCHAR2(255)
 PARTITION_ID NUMBER(38)
 OTHER LONG
 OTHER_XML CLOB
 DISTRIBUTION VARCHAR2(30)
 CPU_COST NUMBER(38)
 IO_COST NUMBER(38)
 TEMP_SPACE NUMBER(38)
 ACCESS_PREDICATES VARCHAR2(4000)
 FILTER_PREDICATES VARCHAR2(4000)
 PROJECTION VARCHAR2(4000)
 TIME NUMBER(38)
 QBLOCK_NAME VARCHAR2(30)

I’m not going to review every column listed but I wanted to provide a table description from which
you can do further study if you desire. You’ll find more information in the Oracle documentation.

The columns from the PLAN_TABLE shown in the explain plan output in Listing 6-1 are only a few of
the columns from the table. One of the nice things about the dbms_xplan.display function is that it has
the intelligence built in so that it will display the appropriate columns based on the specific plan
generated for each SQL statement. For example, if the plan used partition operations, the
PARTITION_START, PARTITION_STOP, and PARTITION_ID columns would appear in the display. The ability
of dbms_xplan.display to automatically determine the columns that should be shown is a super feature
that beats using the old do-it-yourself query against the PLAN_TABLE hands down.

The columns shown in the display for the example query plan are: ID, OPERATION, OPTIONS,
OBJECT_NAME, CARDINALITY, BYTES, COST, TIME (this was included but elided in order to save space),
ACCESS_PREDICATES, and FILTER_PREDICATES. These are the most typical display columns. Table 6-1
provides a brief definition of each of these common columns.

CHAPTER 6 SQL EXECUTION PLANS

158

Table 6-1. Most Commonly Used PLAN_TABLE Columns

Column Description

ID Unique number assigned to each step.

OPERATION Internal operation performed by the step.

OPTIONS Additional specification for the operation column (appended to OPERATION).

OBJECT_NAME Name of the table or index.

CARDINALITY Estimated rows accessed by the operation.

BYTES Estimated bytes accessed by the operation.

COST Weighted cost value for the operation as determined by the optimizer.

TIME Estimated elapsed time in seconds for the operation.

ACCESS_PREDICATES Conditions used to locate rows in an access structure (typically an index).

FILTER_PREDICATES Conditions used to filter rows after they have been accessed.

One of the columns from the PLAN_TABLE that is not displayed in the plan display output when using
the dbms_xplan.display function is the PARENT_ID column. Instead of displaying this column value, the
output is indented to provide a visual cue for the parent-child relationships within the plan. I think it
would be helpful to include the PARENT_ID column value as well for clarity, but you’ll have to write your
own query against the PLAN_TABLE to produce the output to include that column if you want it. I created
a simple query that I use to display the PARENT_ID for each step and keep it handy for cases when the
plan is complicated enough that the visual indentions are harder to line up and follow. I still use the
indentation but limit it to a single space per level. Listing 6-3 shows using this for the same query
executed for Listing 6-1.

Listing 6-3. Displaying the PARENT_ID

SQL>select id, parent_id,
 2 lpad(' ',level) || operation || ' ' || options || ' ' ||
 3 object_name as operation
 4 from plan_table
 5 start with id = 0
 6 connect by prior id = parent_id ;

 ID PARENT_ID OPERATION
---------- ---------- ---
 0 SELECT STATEMENT
 1 0 HASH JOIN
 2 1 HASH JOIN
 3 2 NESTED LOOPS

CHAPTER 6 SQL EXECUTION PLANS

159

 4 3 MERGE JOIN
 5 4 TABLE ACCESS BY INDEX ROWID DEPARTMENTS
 6 5 INDEX FULL SCAN DEPT_LOCATION_IX
 7 4 SORT JOIN
 8 7 TABLE ACCESS FULL LOCATIONS
 9 3 INDEX UNIQUE SCAN COUNTRY_C_ID_PK
 10 2 TABLE ACCESS FULL REGIONS
 11 1 TABLE ACCESS FULL EMPLOYEES

The PARENT_ID is helpful as operations in a plan are easiest to read if you keep in mind the parent-
child relationships involved in the plan. Each step in the plan will have from zero to two children. If
you break the plan down into smaller chunks of parent-child groupings, it will make it easier for you to
read and understand.

In the example plan, you have operations with 0, 1, and 2 children. A full table scan operation, for
example, doesn’t have any children. See the line for ID=8 in Listing 6-3. Another example of an
operation with zero children is line 6. If you glance down the PARENT_ID column, you’ll notice that
neither steps 6 nor 8 show up. This means that these operations do not depend on any other operation
in order to complete. Both operations are children of other operations, however, and will pass the data
they access to their parent step. When an operation has no children, the rows (CARDINALITY column in
the PLAN_TABLE) estimate shown represents the number of rows that a single iteration of that operation
will acquire. This can be a bit confusing when the operation is providing rows to an iterative parent.
For example, step 9 is an index unique scan operation which shows a row estimate of 1 row (see listing
6-1). But the estimate doesn’t indicate the total number of rows accessed in that step. The total is
determined by the parent operation. I’ll delve into this is more detail shortly.

The parent steps for steps 6 and 8—steps 5 and 7—are examples of single child operations. In
general, operations with only one child can be divided into three categories:

• Working operations receive a row set from the child operation and manipulate it further
before passing it on to its parent.

• Pass-thru operations act simply as a pass-thru and don’t alter or manipulate the data from
the child in any way. They basically serve to identify an operation characteristic. The VIEW
operation is a good example of a pass-thru operation.

• Iterative operations indicate that there are multiple executions of the child operation. You’ll
typically see the word ITERATOR, INLIST, or ALL in these types of operation names.

Both step 5 and step 7 are working operations. They take the row sets from their children (steps 6
and 8) and do some additional work. In step 5, the rowids returned from the index full scan are used to
retrieve the DEPARTMENT table data blocks. In step 7, the rows returned from the full scan of the
LOCATIONS table are sorted in order by the join column.

Finally, operations that have two children operate either iteratively or in succession. When the
parent type is iterative, the child row sources are accessed such that for each row in row source A, B is
accessed. For a parent operation that works on the children in succession, the first child row source is
accessed followed by an access of the second row source. Join types such as NESTED LOOPS and MERGE
JOIN CARTESIAN are iterative, as is the FILTER operation. All other operations with two children will
work in succession on their child row sources.

The reason for this review is to highlight the importance of learning to take a “divide and
conquer” approach to reading and understanding plan output. The larger and more complicated a
plan looks, the harder it often is to find the key problem areas. If you learn to look for parent-child
relationships in the plan output and narrow your focus to smaller chunks of the plan, you’ll find it
much easier to work with what you see.

CHAPTER 6 SQL EXECUTION PLANS

160

Understanding How EXPLAIN PLAN can Miss the Mark
One of the most frustrating things about EXPLAIN PLAN output is that it may not always match the plan
that is used when the statement is actually executed. There are three things to keep in mind about
using EXPLAIN PLAN that make it susceptible to producing plan output that won’t match the actual
execution plan:

• EXPLAIN PLAN produces plans based on the environment at the moment you use it.

• EXPLAIN PLAN doesn’t consider the datatype of bind variables (all binds are VARCHAR2).

• EXPLAIN PLAN doesn’t “peek” at bind variable values.

For these reasons, it is very possible that EXPLAIN PLAN will produce a plan that won’t match the
plan that is produced when the statement is actually executed. Listing 6-4 demonstrates the second
point about bind variable datatypes.

Listing 6-4. EXPLAIN PLAN and Bind Variable Datatypes

SQL>-- Create a test table where primary key column
SQL>-- is string datatype
SQL>create table regions2
 2 (region_id varchar2(10) primary key,
 3 region_name varchar2(25));

Table created.

SQL>
SQL>-- Insert rows into the test table
SQL>insert into regions2
 2 select * from regions;

4 rows created.

SQL>
SQL>-- Create a variable and set its value
SQL>variable regid number
SQL>exec :regid := 1

PL/SQL procedure successfully completed.

SQL>
SQL>-- Turn on autotrace explain plan
SQL>set autotrace traceonly explain

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 SQL EXECUTION PLANS

161

SQL>
SQL>-- Execute query and get explain plan
SQL>select /* DataTypeTest */ *
 2 from regions2
 3 where region_id = :regid;

Execution Plan
--
Plan hash value: 3821806520

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		1	21	1 (0)
1	TABLE ACCESS BY INDEX ROWID	REGIONS2	1	21	1 (0)
* 2	INDEX UNIQUE SCAN	SYS_C0011282	1		1 (0)
--

Predicate Information (identified by operation id):

 2 - access("REGION_ID"=:REGID)

SQL>
SQL>set autotrace off
SQL>
SQL>-- Execute query again
SQL>select /* DataTypeTest */ *
 2 from regions2
 3 where region_id = :regid;

REGION_ID REGION_NAME
---------- -------------------------
1 Europe

SQL>
SQL>-- Review the actual execution plan
SQL>-- This script uses dbms_xplan.display_cursor
SQL>@pln DataTypeTest

CHAPTER 6 SQL EXECUTION PLANS

162

PLAN_TABLE_OUTPUT

SQL_ID 2va424cgs3sfb, child number 0

select /* DataTypeTest */ * from regions2 where region_id = :regid

Plan hash value: 670750275

--
| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 1 | 8 |
|* 1 | TABLE ACCESS FULL| REGIONS2 | 1 | 1 | 1 | 8 |
--

Predicate Information (identified by operation id):

 1 - filter(TO_NUMBER("REGION_ID")=:REGID)

Note

 - dynamic sampling used for this statement (level=2)

Did you notice how the EXPLAIN PLAN output indicated that the primary key index would be used but
the actual plan really used a full table scan? The reason why is clearly shown in the Predicate
Information section. In the explained plan output, the predicate is “REGION_ID"=:REGID, but in the actual
plan, the predicate shows TO_NUMBER("REGION_ID")=:REGID. This demonstrates how EXPLAIN PLAN
doesn’t consider the datatype of a bind variable and assumes all bind variables are string types. For
the EXPLAIN PLAN, the datatypes were considered to be the same (both strings). However, the datatypes
were considered when the plan was prepared for the actual execution of the statement and Oracle
implicitly converted the string datatype for the REGION_ID column to a number to match the bind
variable datatype (NUMBER). This is expected behavior in that when datatypes being compared don’t
match, Oracle will always attempt to convert the string datatype to match the non-string datatype. By
doing so in this example, the TO_NUMBER function caused the use of the index to be disallowed. This is
another expected behavior to keep in mind: the predicate must match the index definition exactly or
else the index will not be used.

If you were testing this statement in your development environment and used the explain plan
output to confirm that the index was being used, you’d be wrong. From the explain plan output, it would
appear that the plan was using the index as you would expect, but when the statement was actually
executed, performance would likely be unsatisfactory due to the full table scan that really would occur.

Another issue with using explain plan output as your sole source for testing is that you never get a
true picture of how the statement uses resources. Estimates are just that—estimates. To really confirm
the behavior of the SQL and to make intelligent choices about whether or not the statement will
provide optimal performance, you need to look at actual execution statistics. I’ll cover the details of
how to capture and interpret actual execution statistics shortly.

CHAPTER 6 SQL EXECUTION PLANS

163

Reading the Plan
Before I dive further into capturing actual execution plan data, I want to make sure you are
comfortable with reading a plan. I’ve already discussed the importance of the PARENT_ID column in
making it easier for you to break a long, complex plan down into smaller, more manageable sections.
Breaking a plan down into smaller chunks will help you read it, but you need to know how to approach
reading a whole plan from start to finish.

There are three ways that will help you read and understand any plan: 1) learn to identify and
separate parent-child groupings, 2) learn the order in which the plan operations execute, and 3) learn
to read the plan in narrative form. I have learned to do these three things so that when I look at a plan,
my eye moves through the plan easily and I notice possible problem areas quickly. It can be
frustrating and a bit slow at first, but given time and practice, it will become second nature.

The first place to start is with execution order. The plan is displayed in order by the sequential ID
of operations. However, the order in which each operation executes isn’t accomplished in a precise
top-down fashion. Using the visual cues of the indentation of the operations, you can quickly scan a
plan and look for the operations that are the most indented. The operation that is most indented is
actually the first operation that will be executed. If there are multiple operations at that same level, the
operations are executed in a top-down order.

For reference, I’m going to re-list the example plan here in Listing 6-5 so that you don’t have to
flip back a few pages to the original example in Listing 6-1.

Listing 6-5. EXPLAIN PLAN Example (Repeated)

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		106	11872	13 (16)
* 1	HASH JOIN		106	11872	13 (16)
* 2	HASH JOIN		27	1917	10 (20)
3	NESTED LOOPS		27	1539	6 (17)
4	MERGE JOIN		27	1134	6 (17)
5	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27	513	2 (0)
6	INDEX FULL SCAN	DEPT_LOCATION_IX	27		1 (0)
* 7	SORT JOIN		23	529	4 (25)
8	TABLE ACCESS FULL	LOCATIONS	23	529	3 (0)
* 9	INDEX UNIQUE SCAN	COUNTRY_C_ID_PK	1	15	0 (0)
10	TABLE ACCESS FULL	REGIONS	4	56	3 (0)
11	TABLE ACCESS FULL	EMPLOYEES	107	4387	3 (0)

Predicate Information (identified by operation id):

 1 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 2 - access("C"."REGION_ID"="R"."REGION_ID")
 7 - access("D"."LOCATION_ID"="L"."LOCATION_ID")
 filter("D"."LOCATION_ID"="L"."LOCATION_ID")
 9 - access("L"."COUNTRY_ID"="C"."COUNTRY_ID")

CHAPTER 6 SQL EXECUTION PLANS

164

At a glance, you can see that lines 6 and 8 are the most deeply indented. Line 6 will execute first
and pass the rowids from the index full scan to its parent (line 5). Line 8 will execute next and pass its
row source to its parent (line 7). Steps will continue to execute from most indented to least indented
with each step passing row source data to its parent until all steps complete. In order to help see the
execution order more clearly, Listing 6-6 executes a query similar to the query used in Listing 6-3 that
reads from the PLAN_TABLE and orders the output in execution order.

Listing 6-6. Plan Operations Displayed in Execution Order

SQL>select id, parent_id, operation
 2 from (
 3 select level lvl, id, parent_id, lpad(' ',level) || operation || ' ' || options
 4 || ' ' || object_name as operation
 5 from plan_table
 6 start with id = 0
 7 connect by prior id = parent_id
 8)
 9 order by lvl desc, id;

 ID PARENT_ID OPERATION
---------- ---------- --
 6 5 INDEX FULL SCAN DEPT_LOCATION_IX
 8 7 TABLE ACCESS FULL LOCATIONS
 5 4 TABLE ACCESS BY INDEX ROWID DEPARTMENTS
 7 4 SORT JOIN
 4 3 MERGE JOIN
 9 3 INDEX UNIQUE SCAN COUNTRY_C_ID_PK
 3 2 NESTED LOOPS
 10 2 TABLE ACCESS FULL REGIONS
 2 1 HASH JOIN
 11 1 TABLE ACCESS FULL EMPLOYEES
 1 0 HASH JOIN
 0 SELECT STATEMENT

I often use an analogy between parent-child relationships in a plan and real life parent-child

relationships. A real child doesn’t just spontaneously combust into being; a parent is required to
“instantiate” the child into being. But, like most any parent will tell you, one of the greatest things
about kids is that (sometimes) you can get them to do work for you. This applies to parent-child
operations in a plan. The child takes direction from its parent and goes to do a piece of work. When
the child completes that work, it reports back to the parent with the result. So, even though an index
operation occurs before its parent (for example, step 6 executes before its parent in step 5), the child
wouldn’t have meaning or existence without its parent. This is why it’s important to always keep the
parent-child relationships in mind as it helps make sense of the execution order.

One of the most helpful sections of the explained output is the section named Predicate
Information. In this section, the ACCESS_PREDICATES and FILTER_PREDICATES columns are displayed.
These columns are associated with a line (denoted by the ID column) in the list of plan operations.
You’ll notice that for each plan operation that has an access or filter predicate associated with it, there

CHAPTER 6 SQL EXECUTION PLANS

165

is an asterisk (*) next to the ID. When you see the asterisk, you know to look for that ID number in the
Predicate Information section to see which predicate (condition in the WHERE clause) was related to that
operation. Using this information you can confirm that columns were correctly (or not) used for index
access and also to determine where a condition was filtered.

Filtering late is a common performance inhibitor. For example, if you wanted to move a pile of 100
rocks from the front yard to your back yard but only needed rocks that weighed 5-10 pounds, would you
want to move all 100 rocks and then remove the ones you needed, or would you simply want to carry the
ones that were the correct weight? In general, you’d want to only take the rocks you need, right?

Using the filter predicate information can help you verify that unneeded rows are filtered out of
your result set as early as possible in the plan. Just like it wouldn’t make much sense to carry a whole
bunch of extra rocks to the back yard, it wouldn’t make much sense to carry rows through a whole set of
plan operations that ultimately will not be included in the final result set. You will use the filter
information to verify that each condition is applied as early in the plan as possible. If a filter is applied
too late, you can adjust your SQL or take other steps (like verifying statistics are up to date) to ensure
your plan isn’t working harder than it needs to.

Finally, learning to read the plan as if it were a narrative can be extremely helpful. For many
people, converting the set of plan operations into a paragraph of text can facilitate understanding how
the plan executes better than any other method. Let’s convert your example plan into a narrative and
see if it makes it easier for you to read and understand. The following paragraph is a sample narrative
for the example plan.

In order to produce the result set for this SELECT statement, rows from the DEPARTMENTS table
will be accessed utilizing a full scan of the index on the DEPARTMENTS.LOCATION_ID column.
Using a full scan of the LOCATIONS table, rows will be retrieved and sorted by LOCATION_ID and
then merged with the rows from DEPARTMENTS to produce a joined result set of matching rows
containing both DEPARTMENTS and LOCATIONS data. This row set, which I’ll call DEPT_LOC, will be
joined to the COUNTRIES table and will iteratively match one row from DEPT_LOC using the
COUNTRY_ID to find a matching row in COUNTRIES. This result set, which I’ll call DEPT_LOC_CTRY,
now contains data from DEPARTMENTS, LOCATIONS, and COUNTRIES and will be hashed into
memory and matched with the REGIONS table data using the REGION_ID. This result set,
DEPT_LOC_CTRY_REG, will be hashed into memory and matched with the EMPLOYEES table using
the DEPARTMENT_ID to produce the final result set of rows.

To produce this narrative, I simply walk through the steps of the plan in execution order and write
out the description of the steps and how they link (join) to each other. I progress through each set of
parent-child operations until all the steps are complete. You may find that creating a narrative helps
you grasp the overall plan with a bit more clarity. For more complex plans, you may find that breaking
out just a few key portions of the whole plan and writing it out in narrative form will help you better
understand the flow of operations. The key is to use the narrative to help make better sense of the
plan. If you find it harder to do this, then just stick with the plan as it is. But, taking time to learn to
convert a plan into a narrative form is a good skill to learn as it can help you describe what your query
is doing in a way that doesn’t require anyone even looking at plan output. It’s similar to giving verbal
directions on how to get to the nearest shopping mall. You don’t necessarily have to have the map to
be able to get from point A to point B.

CHAPTER 6 SQL EXECUTION PLANS

166

Execution Plans
The actual execution plan for a SQL statement is produced when a statement is executed. After the
statement is hard parsed, the plan that is chosen is stored in the library cache for later reuse. The plan
operations can be viewed by querying V$SQL_PLAN. V$SQL_PLAN has basically the same definition as the
PLAN_TABLE except that it has several columns that contain the information on how to identify and find
the statement in the library cache. These additional columns are: ADDRESS, HASH_VALUE, SQL_ID,
PLAN_HASH_VALUE, CHILD_ADDRESS, and CHILD_NUMBER. You can find any SQL statement using one or more
of these values.

Viewing Recently Generated SQL
Listing 6-7 shows a query against V$SQL for recently executed SQL for the SCOTT user and the
identifying values for each column.

Listing 6-7. V$SQL Query to Get Recently Executed SQL

SQL>select /* recentsql */ sql_id, child_number, hash_value, address, executions, sql_text
 2 from v$sql
 3 where parsing_user_id = (select user_id
 4 from all_users
 5 where username = 'SCOTT')
 6 and command_type in (2,3,6,7,189)
 7 and UPPER(sql_text) not like UPPER('%recentsql%')
 8 /

SQL_ID CHILD_NUMBER HASH_VALUE ADDRESS EXECUTIONS SQL_TEXT
------------- ------------ ---------- -------- ---------- --------------------
g5wp7pwtq4kwp 0 862079893 3829AE54 1 select * from emp
1gg46m60z7k2p 0 2180237397 38280AD0 1 select * from bonus
4g0qfgmtb7z70 0 4071881952 38281D68 1 select * from dept

3 rows selected.

After connecting as user SCOTT, you execute the three queries shown. Then, when you run the

query against V$SQL, you can see that they are now loaded into the library cache and each has
identifiers associated with it. The SQL_ID and CHILD_NUMBER columns contain the identifying
information that you’ll use most often to retrieve a statement’s plan and execution statistics.

Viewing the Associated Execution Plan
There are several ways to view the execution plan for any SQL statement that has been previously

executed and still remains in the library cache. The easiest way is to use the
dbms_xplan.display_cursor function. Listing 6-8 shows how to use dbms_xplan.display_cursor to show
the execution plan for the most recently executed SQL statement.

CHAPTER 6 SQL EXECUTION PLANS

167

Listing 6-8. Using dbms_xplan.display_cursor

SQL>select /*+ gather_plan_statistics */ empno, ename from scott.emp where ename = 'KING' ;

 EMPNO ENAME
---------- ----------
 7839 KING
SQL>
SQL>set serveroutput off
SQL>select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST'));

PLAN_TABLE_OUTPUT

SQL_ID 2dzsuync8upv0, child number 0

select empno, ename from scott.emp where ename = 'KING'

Plan hash value: 3956160932

--
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
--
| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.01 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 1 | 1 |00:00:00.01 | 8 |
--

Predicate Information (identified by operation id):

 1 - filter("ENAME"='KING')

First, note the use of the gather_plan_statistics hint in the query. In order to capture rowsource

execution statistics for the plan, you must tell Oracle to gather this information as the statement
executes. The rowsource execution statistics include the number of rows, number of consistent reads,
number of physical reads, number of physical writes, and the elapsed time for each operation on a row.
This information can be gathered using this hint on a statement-by-statement basis, or you can set the
STATISTICS_LEVEL instance parameter to ALL. Capturing these statistics does add some overhead to the
execution of a statement and so you may not want to have it “always on.” The hint allows you to use it
when you need to—and only for the individual statements you choose. The presence of this hint
collects the information and shows it in the Starts, A-Rows, A-Time, and Buffers columns. Listing 6-9
shows how the plan output would appear if you didn’t use the hint (or set the parameter value to ALL).

CHAPTER 6 SQL EXECUTION PLANS

168

Listing 6-9. Using dbms_xplan.display_cursor without the gather_plan_statistics hint

SQL>select ename from scott.emp where ename = 'KING' ;

ENAME

KING

SQL>select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST'));

PLAN_TABLE_OUTPUT
--
SQL_ID dgvds8td66zvk, child number 1

select ename from scott.emp where ename = 'KING'

Plan hash value: 3956160932

| Id | Operation | Name | E-Rows |

| 0 | SELECT STATEMENT | | |
|* 1 | TABLE ACCESS FULL| EMP | 1 |

Predicate Information (identified by operation id):

 1 - filter("ENAME"='KING')

Note

 - Warning: basic plan statistics not available. These are only collected when:
 * hint 'gather_plan_statistics' is used for the statement or
 * parameter 'statistics_level' is set to 'ALL', at session or system level

As you can see, a Note is displayed indicating that the plan statistics aren’t available and tells you

what to do to collect them.

Collecting the Plan Statistics
The plan operations shown when no plan statistics are available is essentially the same as the

output from EXPLAIN PLAN. To get to the heart of how well the plan worked, you need the plan’s
rowsource execution statistics. These values tell you what actually happened for each operation in the
plan. This data is pulled from the V$SQL_PLAN_STATISTICS view. This view links each operation row for

CHAPTER 6 SQL EXECUTION PLANS

169

a plan to a row of statistics data. A composite view named V$SQL_PLAN_STATISTICS_ALL contains all the
columns from V$SQL_PLAN plus the columns from V$SQL_PLAN_STATISTICS as well as a few additional
columns containing information about memory usage. Listing 6-10 describes the
V$SQL_PLAN_STATISTICS_ALL view columns.

Listing 6-10. The V$SQL_PLAN_STATISTICS_ALL View Description

SQL>desc v$sql_plan_statistics_all
 Name Null? Type
 ----------------------------- -------- --------------------
 ADDRESS RAW(4)
 HASH_VALUE NUMBER
 SQL_ID VARCHAR2(13)
 PLAN_HASH_VALUE NUMBER
 CHILD_ADDRESS RAW(4)
 CHILD_NUMBER NUMBER
 TIMESTAMP DATE
 OPERATION VARCHAR2(30)
 OPTIONS VARCHAR2(30)
 OBJECT_NODE VARCHAR2(40)
 OBJECT# NUMBER
 OBJECT_OWNER VARCHAR2(30)
 OBJECT_NAME VARCHAR2(30)
 OBJECT_ALIAS VARCHAR2(65)
 OBJECT_TYPE VARCHAR2(20)
 OPTIMIZER VARCHAR2(20)
 ID NUMBER
 PARENT_ID NUMBER
 DEPTH NUMBER
 POSITION NUMBER
 SEARCH_COLUMNS NUMBER
 COST NUMBER
 CARDINALITY NUMBER
 BYTES NUMBER
 OTHER_TAG VARCHAR2(35)
 PARTITION_START VARCHAR2(64)
 PARTITION_STOP VARCHAR2(64)
 PARTITION_ID NUMBER
 OTHER VARCHAR2(4000)
 DISTRIBUTION VARCHAR2(20)
 CPU_COST NUMBER
 IO_COST NUMBER
 TEMP_SPACE NUMBER
 ACCESS_PREDICATES VARCHAR2(4000)

CHAPTER 6 SQL EXECUTION PLANS

170

 FILTER_PREDICATES VARCHAR2(4000)
 PROJECTION VARCHAR2(4000)
 TIME NUMBER
 QBLOCK_NAME VARCHAR2(30)
 REMARKS VARCHAR2(4000)
 OTHER_XML CLOB
 EXECUTIONS NUMBER
 LAST_STARTS NUMBER
 STARTS NUMBER
 LAST_OUTPUT_ROWS NUMBER
 OUTPUT_ROWS NUMBER
 LAST_CR_BUFFER_GETS NUMBER
 CR_BUFFER_GETS NUMBER
 LAST_CU_BUFFER_GETS NUMBER
 CU_BUFFER_GETS NUMBER
 LAST_DISK_READS NUMBER
 DISK_READS NUMBER
 LAST_DISK_WRITES NUMBER
 DISK_WRITES NUMBER
 LAST_ELAPSED_TIME NUMBER
 ELAPSED_TIME NUMBER
 POLICY VARCHAR2(10)
 ESTIMATED_OPTIMAL_SIZE NUMBER
 ESTIMATED_ONEPASS_SIZE NUMBER
 LAST_MEMORY_USED NUMBER
 LAST_EXECUTION VARCHAR2(10)
 LAST_DEGREE NUMBER
 TOTAL_EXECUTIONS NUMBER
 OPTIMAL_EXECUTIONS NUMBER
 ONEPASS_EXECUTIONS NUMBER
 MULTIPASSES_EXECUTIONS NUMBER
 ACTIVE_TIME NUMBER
 MAX_TEMPSEG_SIZE NUMBER
 LAST_TEMPSEG_SIZE NUMBER

The columns containing the pertinent statistics information that relates to the output from
dbms_xplan.display_cursor all begin with the prefix LAST_. When you use the format option of ALLSTATS
LAST, the plan shows these column values for each row in the plan. So, for each operation, you will
know exactly how many rows it returned (LAST_OUTPUT_ROWS is shown in the A-Rows column), how many
consistent reads occurred (LAST_CR_BUFFER_GETS is shown in the Buffers column), how many physical
reads occurred (LAST_DISK_READS is shown in the Reads column), and number of times a step was
executed (LAST_STARTS is shown in the Starts column). There are several other columns that will
display depending on the operations that take place, but these are the most common.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 SQL EXECUTION PLANS

171

The dbms_xplan.display_cursor call signature is

FUNCTION DISPLAY_CURSOR RETURNS DBMS_XPLAN_TYPE_TABLE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 SQL_ID VARCHAR2 IN DEFAULT
 CURSOR_CHILD_NO NUMBER(38) IN DEFAULT
 FORMAT VARCHAR2 IN DEFAULT

In the example from Listing 6-8, the three parameters used were SQL_ID => null, CURSOR_CHILD_NO

=> null, and FORMAT => ALLSTATS LAST. The use of nulls for the SQL_ID and CURSOR_CHILD_NO
parameters indicates that the plan for the last executed statement should be retrieved. Therefore, you
should be able to execute a statement, then execute

select * from table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST'));

This will give you the plan output as shown in Listing 6-8.

CAUTION You may have noticed that I executed the SQL*Plus command SET SERVEROUTPUT OFF before
executing the call to dbms_xplan.display_cursor. This is a slight oddity that might catch you off-guard if you
don’t know about it. Whenever you execute a statement and SERVEROUTPUT is ON, a call to dbms_output is
implicitly executed. If you don’t turn SERVEROUTPUT OFF, then the last statement executed will be this
dbms_output call. Using nulls for the first two parameters will not give you the SQL statement you executed, but
instead will attempt to give you the plan for the dbms_output call. Simply turning this setting OFF will stop the
implicit call and ensure you get the plan for your most recently executed statement.

Identifying SQL Statements for Later Plan Retrieval
If you want to retrieve a statement that was executed in the past, you can retrieve the SQL_ID and
CHILD_NUMBER from V$SQL as demonstrated in Listing 6-7. To simplify finding the correct statement
identifiers, especially when I’m testing, I add a unique comment that identifies each statement I
execute. Then, whenever I want to grab that plan from the library cache, all I have to do is query V$SQL
to locate the statement text that includes the comment I used. Listing 6-11 shows an example of this
and the query I use to subsequently find the statement I want.

Listing 6-11. Using a Comment to Uniquely Identify a SQL Statement

SQL>select /* KM-EMPTEST1 */
 2 empno, ename
 3 from emp
 4 where job = 'MANAGER' ;

CHAPTER 6 SQL EXECUTION PLANS

172

 EMPNO ENAME
---------- ----------
 7566 JONES
 7698 BLAKE
 7782 CLARK

SQL>select sql_id, child_number, sql_text
 2 from v$sql
 3 where sql_text like '%KM-EMPTEST1%';

SQL_ID CHILD_NUMBER SQL_TEXT
------------- ------------ ---
9qu1dvthfcqsp 0 select /* KM-EMPTEST1 */ empno, ename

 from emp where job = 'MANAGER'
a7nzwn3t522mt 0 select sql_id, child_number, sql_text from

 v$sql where sql_text like '%KM-EMPTEST1%'

SQL>select * from table(dbms_xplan.display_cursor('9qu1dvthfcqsp',0,'ALLSTATS LAST'));

PLAN_TABLE_OUTPUT
--
SQL_ID 9qu1dvthfcqsp, child number 0

select /* KM-EMPTEST1 */ empno, ename from emp where job =
'MANAGER'

Plan hash value: 3956160932

--
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
--
| 0 | SELECT STATEMENT | | 1 | | 3 |00:00:00.01 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 3 | 3 |00:00:00.01 | 8 |
--

Predicate Information (identified by operation id):

 1 - filter("JOB"='MANAGER')

You’ll notice that when I queried V$SQL, two statements showed up. One was the SELECT statement I
was executing to find the entry in V$SQL and one was the query I executed. While this set of steps gets
the job done, I find it easier to automate the whole process into a single script. In that script, I find the
statement I want in V$SQL by weeding out the query I’m running to find it and also by ensuring that I

CHAPTER 6 SQL EXECUTION PLANS

173

find the most recently executed statement that uses my identifying comment. Listing 6-12 shows the
script I use in action.

Listing 6-12. Automating Retrieval of an Execution Plan for any SQL Statement

SQL>select /* KM-EMPTEST2 */
 2 empno, ename
 3 from emp
 4 where job = 'CLERK' ;

 EMPNO ENAME
---------- ----------
 7369 SMITH
 7876 ADAMS
 7900 JAMES
 7934 MILLER

SQL>
SQL>get pln.sql
 1 SELECT xplan.*
 2 FROM
 3 (
 4 select max(sql_id) keep
 5 (dense_rank last order by last_active_time) sql_id
 6 , max(child_number) keep
 7 (dense_rank last order by last_active_time) child_number
 8 from v$sql
 9 where upper(sql_text) like '%&1%'
 10 and upper(sql_text) not like '%FROM V$SQL WHERE UPPER(SQL_TEXT) LIKE %'
 11) sqlinfo,
 12 table(DBMS_XPLAN.DISPLAY_CURSOR(sqlinfo.sql_id, sqlinfo.child_number, 'ALLSTATS
LAST')) xplan
 13* /

SQL>@pln KM-EMPTEST2

PLAN_TABLE_OUTPUT
--SQL_ID
bn37qcafkwkt0, child number 0

select /* KM-EMPTEST2 */ empno, ename from emp where job =
'CLERK'

CHAPTER 6 SQL EXECUTION PLANS

174

Plan hash value: 3956160932

--
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
--
| 0 | SELECT STATEMENT | | 1 | | 4 |00:00:00.01 | 8 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 3 | 4 |00:00:00.01 | 8 |
--

Predicate Information (identified by operation id):

 1 - filter("JOB"='CLERK')

This script will return the execution plan associated with the most recently executed SQL
statement that matches the pattern you enter. As I mentioned, it is easier to find a statement if you’ve
made an effort to use a comment to identify it, but it will work to find any string of matching text you
enter. However, if there are multiple statements with matching text, this script will only display the
most recently executed statement matching the pattern. If you want a different statement, you’ll have
to issue a query against V$SQL such as the one in Listing 6-11 and then feed the correct SQL_ID and
CHILD_NUMBER to the dbms_xplan.display_cursor call.

Understanding DBMS_XPLAN in Detail
The DBMS_XPLAN package is supplied by Oracle and can be used to simplify the retrieval and display of
plan output, as I have demonstrated. In order to use all the procedures and functions in this package
fully, you’ll need to have privileges to certain fixed views. A single grant on SELECT_CATALOG_ROLE will
ensure you have access to everything you need, but at a minimum, you should have select privileges
for VSQL, VSQL_PLAN, V$SESSION and V$SQL_PLAN_STATISTICS_ALL in order to properly execute just the
display and display_cursor functions. In this section, I want to cover a few more details about the use
of this package and, in particular, the format options for the display and display_cursor functions.

The dbms_xplan package has grown since it first appeared in Oracle version 9. At that time, it
contained only the display function. In Oracle 11 release 2, the package includes 21 functions,
although only six of them are included in the documentation. These functions can be used to display
not only explain plan output, but plans for statements stored in the AWR (Automatic Workload
Repository), SQL tuning sets, cached SQL cursors, and SQL plan baselines. The five main table
functions used to display plans from each of these areas are:

• DISPLAY

• DISPLAY_CURSOR

• DISPLAY_AWR

• DISPLAY_SQLSET

• DISPLAY_SQL_PLAN_BASELINE

These five table functions all return the DBMS_XPLAN_TYPE_TABLE type, which is made up of 300 byte

strings. This type accommodates the variable formatting needs of each table function to display the

CHAPTER 6 SQL EXECUTION PLANS

175

plan table columns dynamically as needed. The fact that these are table functions means that in order
to call them you must use the TABLE function to cast the return type properly when used in a SELECT
statement. A table function is simply a stored PL/SQL function that behaves like a regular query to a
table would. The benefit is that you can write code in the function that performs transformations to
data before it is returned in the result set. In the case of queries against the PLAN_TABLE or V$SQL_PLAN,
the use of a table function makes it possible to do all the dynamic formatting needed to output only the
columns pertinent for a given SQL statement instead of having to try and create multiple queries to
handle different needs.

Each of the table functions accepts a FORMAT parameter as input. The FORMAT parameter controls
what information is included in the display output. The following is a list of documented values for this
parameter:

• BASIC displays only the operation name and its option.

• TYPICAL displays the relevant information and variably displays options like partition and
parallel usage only when applicable. This is the default.

• SERIAL is the same as TYPICAL but always excludes parallel information.

• ALL displays the maximum amount of information in the display.

In addition to the basic format parameter values, there are several additional more granular

options that can be used to customize the default behavior of the base values. You can specify multiple
keywords separated by a comma or a space and use the prefix of a plus sign (+) to indication inclusion
or a minus sign (-) to indicate exclusion of that particular display element. All of these options will
display the information only if relevant. The following is a list of optional keywords:

• ADVANCED shows the same as ALL plus the Outline section and the peeked binds section.

• ALIAS shows the Query Block Name/Object Alias section.

• ALL shows the Query Block Name/Object Alias section, the predicate section, and the column
projection section.

• ALLSTATS* is equivalent to IOSTATS LAST.

• BYTES shows the estimated number of bytes.

• COST is the cost information computed by the optimizer.

• IOSTATS* show IO statistics for executions of the cursor.

• LAST* shows only the plan statistics for the last execution of the cursor (the default is ALL and
is cumulative).

• MEMSTATS* shows the memory management statistics for memory intensive operation like
hash-joins, sorts, or some bitmap operators.

• NOTE shows the Note section.

• OUTLINE shows the Outline section (set of hints that will reproduce the plan).

• PARALLEL shows parallel execution information.

• PARTITION shows partition pruning information.

CHAPTER 6 SQL EXECUTION PLANS

176

• PEEKED_BINDS shows bind variable values.

• PREDICATE shows the predicate section.

• PROJECTION shows the column projection section (which columns have been passed to their
parent by each line and the size of those columns).

• REMOTE shows distributed query information.

The keywords followed by an asterisk are not available for use with the DISPLAY function as they

utilize information from V$SQL_PLAN_STATISTICS_ALL that only exists after a statement has been
executed. Listing 6-13 shows several examples of the various options in use.

Listing 6-13. Display Options Using the FORMAT Parameter

SQL> explain plan for
 2 select * from emp e, dept d
 3 where e.deptno = d.deptno
 4 and e.ename = 'JONES' ;

Explained.

SQL> select * from table(dbms_xplan.display(format=>'ALL'));

PLAN_TABLE_OUTPUT

Plan hash value: 3625962092

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		1	59	4 (0)	00:00:01
1	NESTED LOOPS					
2	NESTED LOOPS		1	59	4 (0)	00:00:01
* 3	TABLE ACCESS FULL	EMP	1	39	3 (0)	00:00:01
* 4	INDEX UNIQUE SCAN	PK_DEPT	1		0 (0)	00:00:01
5	TABLE ACCESS BY INDEX ROWID	DEPT	1	20	1 (0)	00:00:01
--

Query Block Name / Object Alias (identified by operation id):

 1 - SEL$1
 3 - SEL$1 / E@SEL$1
 4 - SEL$1 / D@SEL$1
 5 - SEL$1 / D@SEL$1

CHAPTER 6 SQL EXECUTION PLANS

177

Predicate Information (identified by operation id):

 3 - filter("E"."ENAME"='JONES')
 4 - access("E"."DEPTNO"="D"."DEPTNO")

Column Projection Information (identified by operation id):

 1 - (#keys=0) "E"."EMPNO"[NUMBER,22], "E"."ENAME"[VARCHAR2,10],
 "E"."JOB"[VARCHAR2,9], "E"."MGR"[NUMBER,22], "E"."HIREDATE"[DATE,7],
 "E"."SAL"[NUMBER,22], "E"."COMM"[NUMBER,22], "E"."DEPTNO"[NUMBER,22],
 "D"."DEPTNO"[NUMBER,22], "D"."DNAME"[VARCHAR2,14], "D"."LOC"[VARCHAR2,13]
 2 - (#keys=0) "E"."EMPNO"[NUMBER,22], "E"."ENAME"[VARCHAR2,10],
 "E"."JOB"[VARCHAR2,9], "E"."MGR"[NUMBER,22], "E"."HIREDATE"[DATE,7],
 "E"."SAL"[NUMBER,22], "E"."COMM"[NUMBER,22], "E"."DEPTNO"[NUMBER,22],
 "D".ROWID[ROWID,10], "D"."DEPTNO"[NUMBER,22]
 3 - "E"."EMPNO"[NUMBER,22], "E"."ENAME"[VARCHAR2,10], "E"."JOB"[VARCHAR2,9],
 "E"."MGR"[NUMBER,22], "E"."HIREDATE"[DATE,7], "E"."SAL"[NUMBER,22],
 "E"."COMM"[NUMBER,22], "E"."DEPTNO"[NUMBER,22]
 4 - "D".ROWID[ROWID,10], "D"."DEPTNO"[NUMBER,22]
 5 - "D"."DNAME"[VARCHAR2,14], "D"."LOC"[VARCHAR2,13]

SQL> select empno, ename from emp e, dept d
 2 where e.deptno = d.deptno
 3 and e.ename = 'JONES' ;

 EMPNO ENAME
---------- ----------
 7566 JONES

1 row selected.

SQL> select * from table(dbms_xplan.display_cursor(null,null,format=>'ALLSTATS LAST -COST -
BYTES'));

PLAN_TABLE_OUTPUT
--
SQL_ID 3mypf7d6npa97, child number 0

select empno, ename from emp e, dept d where e.deptno = d.deptno and
e.ename = 'JONES'

CHAPTER 6 SQL EXECUTION PLANS

178

Plan hash value: 3956160932

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | Reads |

| 0 | SELECT STATEMENT | | 1 | | 1 |00:00:00.03 | 8 | 6 |
|* 1 | TABLE ACCESS FULL| EMP | 1 | 1 | 1 |00:00:00.03 | 8 | 6 |

Predicate Information (identified by operation id):

 1 - filter(("E"."ENAME"='JONES' AND "E"."DEPTNO" IS NOT NULL))

SQL> variable v_empno number
SQL> exec :v_empno := 7566 ;

PL/SQL procedure successfully completed.

SQL> select * from emp where empno = :v_empno ;

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
---------- ---------- --------- ---------- --------- ---------- ---------- ----------
 7566 JONES MANAGER 7839 02-APR-81 3272.5 20

1 row selected.

SQL> select * from table(dbms_xplan.display_cursor(null,null,format=>'+PEEKED_BINDS'));

PLAN_TABLE_OUTPUT

SQL_ID 9q17w9umt58m7, child number 0

select * from emp where empno = :v_empno

CHAPTER 6 SQL EXECUTION PLANS

179

Plan hash value: 2949544139

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT				1 (100)	
1	TABLE ACCESS BY INDEX ROWID	EMP	1	39	1 (0)	00:00:01
* 2	INDEX UNIQUE SCAN	PK_EMP	1		0 (0)	
--

Peeked Binds (identified by position):

 1 - :V_EMPNO (NUMBER): 7566

Predicate Information (identified by operation id):

 2 - access("EMPNO"=:V_EMPNO)

SQL> select /*+ parallel(d, 4) parallel (e, 4) */
 2 d.dname, avg(e.sal), max(e.sal)
 3 from dept d, emp e
 4 where d.deptno = e.deptno
 5 group by d.dname
 6 order by max(e.sal), avg(e.sal) desc;

DNAME AVG(E.SAL) MAX(E.SAL)
-------------- --------------- ---------------
SALES 1723.3333333333 3135
RESEARCH 2392.5 3300
ACCOUNTING 3208.3333333333 5500
SQL> select * from table(dbms_xplan.display_cursor(null,null,'TYPICAL -BYTES -COST'));

PLAN_TABLE_OUTPUT
--
SQL_ID gahr597f78j0d, child number 0

select /*+ parallel(d, 4) parallel (e, 4) */ d.dname, avg(e.sal),
max(e.sal) from dept d, emp e where d.deptno = e.deptno group by
d.dname order by max(e.sal), avg(e.sal) desc

CHAPTER 6 SQL EXECUTION PLANS

180

Plan hash value: 3078011448

--
| Id | Operation | Name | Rows | TQ |IN-OUT| PQ Distrib |
--
0	SELECT STATEMENT					
1	PX COORDINATOR					
2	PX SEND QC (ORDER)	:TQ10004	4	Q1,04	P->S	QC (ORDER)
3	SORT ORDER BY		4	Q1,04	PCWP	
4	PX RECEIVE		4	Q1,04	PCWP	
5	PX SEND RANGE	:TQ10003	4	Q1,03	P->P	RANGE
6	HASH GROUP BY		4	Q1,03	PCWP	
7	PX RECEIVE		14	Q1,03	PCWP	
8	PX SEND HASH	:TQ10002	14	Q1,02	P->P	HASH
* 9	HASH JOIN BUFFERED		14	Q1,02	PCWP	
10	PX RECEIVE		4	Q1,02	PCWP	
11	PX SEND HASH	:TQ10000	4	Q1,00	P->P	HASH
12	PX BLOCK ITERATOR		4	Q1,00	PCWC	
* 13	TABLE ACCESS FULL	DEPT	4	Q1,00	PCWP	
14	PX RECEIVE		14	Q1,02	PCWP	
15	PX SEND HASH	:TQ10001	14	Q1,01	P->P	HASH
16	PX BLOCK ITERATOR		14	Q1,01	PCWC	
* 17	TABLE ACCESS FULL	EMP	14	Q1,01	PCWP	
--

Predicate Information (identified by operation id):

 9 - access("D"."DEPTNO"="E"."DEPTNO")
 13 - access(:Z>=:Z AND :Z<=:Z)
 17 - access(:Z>=:Z AND :Z<=:Z)

Using Plan Information for Solving Problems
Now that you know how to access the various bits of information, what do you do with them? The plan
information, particularly the plan statistics, helps you confirm how the plan is performing. You can use
the information to determine if there are any trouble spots, so you can then adjust the way the SQL is
written, add or modify indexes, or even use the data to support a need to update statistics or adjust
instance parameter settings.

If, for example, there is a missing or sub-optimal index, you can see that in the plan. Listing 6-14
shows two examples: one shows how to determine an index is missing and the other shows how to
determine if an index is sub-optimal.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 6 SQL EXECUTION PLANS

181

Listing 6-14. Using Plan Information to Determine Missing and Sub-Optimal Indexes

SQL> -- Example 1: sub-optimal index
SQL>
SQL> select /* KM1 */ job_id, department_id, last_name
 2 from employees
 3 where job_id = 'SA_REP'
 4 and department_id is null ;

JOB_ID DEPARTMENT_ID LAST_NAME
---------- --------------- -------------------------
SA_REP . Grant
SQL>
SQL> @pln KM1

PLAN_TABLE_OUTPUT

SQL_ID cdqaq2k8dvvma, child number 0

select /* KM1 */ job_id, department_id,
last_name from employees where job_id = 'SA_REP' and department_id is
null

Plan hash value: 1019430118save

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

0	SELECT STATEMENT		1		1	4
* 1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1	1	1	4
* 2	INDEX RANGE SCAN	EMP_JOB_IX	1	30	30	2

Predicate Information (identified by operation id):

 1 - filter("DEPARTMENT_ID" IS NULL)
 2 - access("JOB_ID"='SA_REP')

SQL>
SQL> create index emp_job_dept_ix on employees (department_id, job_id) compute statistics ;

CHAPTER 6 SQL EXECUTION PLANS

182

SQL>
SQL> select /* KM2 */ job_id, department_id, last_name
 2 from employees
 3 where job_id = 'SA_REP'
 4 and department_id is null ;

JOB_ID DEPARTMENT_ID LAST_NAME
---------- --------------- -------------------------
SA_REP . Grant
SQL>
SQL> @pln KM2

PLAN_TABLE_OUTPUT

SQL_ID b4wnf48g9pgzy, child number 0

select /* KM2 */ job_id, department_id, last_name from employees where
job_id = 'SA_REP' and department_id is null

Plan hash value: 798439539

--
| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |
--
0	SELECT STATEMENT		1		1	2
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1	1	1	2
* 2	INDEX RANGE SCAN	EMP_JOB_DEPT_IX	1	1	1	1
--

Predicate Information (identified by operation id):

 2 - access("DEPARTMENT_ID" IS NULL AND "JOB_ID"='SA_REP')
 filter("JOB_ID"='SA_REP')

SQL> -- Example 2: missing index
SQL>
SQL> select /* KM3 */ last_name, phone_number
 2 from employees
 3 where phone_number = '650.507.9822';

CHAPTER 6 SQL EXECUTION PLANS

183

LAST_NAME PHONE_NUMBER
------------------------- --------------------
Feeney 650.507.9822
SQL>
SQL> @pln KM3

PLAN_TABLE_OUTPUT
--
SQL_ID 8vzwg0vkrjp8r, child number 0

select /* KM3 */ last_name, phone_number from employees where
phone_number = '650.507.9822'

Plan hash value: 1445457117

--
| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |
--
| 0 | SELECT STATEMENT | | 1 | | 1 | 7 |
|* 1 | TABLE ACCESS FULL| EMPLOYEES | 1 | 1 | 1 | 7 |
--

Predicate Information (identified by operation id):

 1 - filter("PHONE_NUMBER"='650.507.9822')

SQL> column column_name format a22 heading 'Column Name'
SQL> column index_name heading 'Index Name'
SQL> column column_position format 999999999 heading 'Pos#'
SQL> column descend format a5 heading 'Order'
SQL> column column_expression format a40 heading 'Expression'
SQL>
SQL> break on index_name skip 1
SQL>
SQL> -- Check current indexes
SQL>
SQL> select lower(b.index_name) index_name, b.column_position,
 2 b.descend, lower(b.column_name) column_name
 3 from all_ind_columns b
 4 where b.table_owner = 'HR'

CHAPTER 6 SQL EXECUTION PLANS

184

 5 and b.table_name = 'EMPLOYEES'
 6 order by b.index_name, b.column_position, b.column_name
 7 /

Index Name Pos# Order Column Name
------------------------------ ---------- ----- ------------------
emp_department_ix 1 ASC department_id

emp_email_uk 1 ASC email

emp_emp_id_pk 1 ASC employee_id

emp_job_dept_ix 1 ASC department_id
 2 ASC job_id

emp_job_ix 1 ASC job_id

emp_manager_ix 1 ASC manager_id

emp_name_ix 1 ASC last_name
 2 ASC first_name

SQL> -- Create new index on phone_number
SQL>
SQL> create index emp_phone_ix on employees (phone_number) compute statistics ;
SQL>
SQL> select /* KM4 */ last_name, phone_number
 2 from employees
 3 where phone_number = '650.507.9822';

LAST_NAME PHONE_NUMBER
------------------------- --------------------
Feeney 650.507.9822
SQL>
SQL> @pln KM4

PLAN_TABLE_OUTPUT
--
SQL_ID 3tcqa5jqsyzm0, child number 0

select /* KM4 */ last_name, phone_number from employees where
phone_number = '650.507.9822'

CHAPTER 6 SQL EXECUTION PLANS

185

Plan hash value: 1086981517

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

0	SELECT STATEMENT		1		1	3
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	1	1	1	3
* 2	INDEX RANGE SCAN	EMP_PHONE_IX	1	1	1	2

Predicate Information (identified by operation id):

 2 - access("PHONE_NUMBER"='650.507.9822')

In each of these examples, there are two keys to look for. I’ve made these examples short and

simple to keep the output easy to view, but regardless of how complex the plan is, the way to spot a
missing or sub-optimal index is to look for 1) a TABLE ACCESS FULL operation with a filter predicate that
shows a small A-Rows value (i.e. small as in comparison to the total rows in the table) and 2) an index
scan operation with a large A-Rows value as compared to the parent TABLE ACCESS BY INDEX ROWID A-
Rows value.

In the first example, the index chosen is the EMP_JOB_IX index. The predicate contains two
conditions: one for JOB_ID and one for DEPARTMENT_ID. Since the index is only a single-column index on
JOB_ID, the index operation will return all rowids for rows with a JOB = ‘SA_REP’ and then hand those
rowids to the parent step. The parent TABLE ACCESS BY INDEX ROWID step will retrieve all of these rows
(there are 30) and then apply the filter condition for DEPARTMENT_ID IS NULL. The end result is that only
1 row matches the entire predicate. So, for this example, 97% of the rows were thrown away (29 out of
30).

This example is small, but imagine the additional overhead required if this query was accessing a
very large table. By simply adding the DEPARTMENT_ID column to the index, the index scan operation
will be able to return rowids that match the entire predicate. After adding the index, you can see how
both the index scan and the table access step both have an A-Rows value of 1. In other words, the parent
didn’t have to do any work to retrieve rows that it ultimately threw away.

The second example, where no index exists on the column used in the predicate, the optimizer has
no other choice except to choose a full table scan operation. But, as you can see from the A-Rows value,
only 1 row was returned. Once again, the ill effects are minimal in this example since the table is so
small. However, you should always watch out for full table scans that return a very small number of
rows. The bigger the table becomes, the slower the query will become as more and more blocks have to
be accessed to compare to the filter condition only to be thrown away.

In both cases, the main thing to watch out for is excess throw away. The more blocks that have to be
accessed to check filter conditions on rows that will ultimately not be included in the result set, the
poorer the performance will become. You may not even notice it if data volume is low in the
beginning, but the larger the tables become, the more effect accessing unneeded blocks will have on
response time.

Another way plan information can help you is by making it easy to spot when statistics might be
out of date. Listing 6-15 shows an example of how plan information can point out stale statistics.

CHAPTER 6 SQL EXECUTION PLANS

186

Listing 6-15. Using Plan Information to Determine When Statistics May Be Out of Date

SQL> -- Check current column statistics (collected at 100%)
SQL>
SQL> select column_name, num_distinct, density
 2 from user_tab_cols
 3 where table_name = 'MY_OBJECTS' ;

Column Name NUM_DISTINCT DENSITY
------------------- --------------- ---------------
OWNER 29 .03448275862069
OBJECT_NAME 44245 .00002260142389
SUBOBJECT_NAME 161 .00621118012422
OBJECT_ID 72588 .00001377638177
DATA_OBJECT_ID 7748 .00012906556531
OBJECT_TYPE 44 .02272727272727
CREATED 1418 .00070521861777
LAST_DDL_TIME 1480 .00067567567568
TIMESTAMP 1552 .00064432989691
STATUS 1 1
TEMPORARY 2 .5
GENERATED 2 .5
SECONDARY 2 .5
NAMESPACE 21 .04761904761905
EDITION_NAME 0 0

SQL> -- Execute query for object_type = 'TABLE'
SQL>
SQL> select /* KM7 */ object_id, object_name
 2 from my_objects
 3* where object_type = 'TABLE';
...
365056 rows selected.

SQL> @pln KM7

PLAN_TABLE_OUTPUT

SQL_ID 7xphu2p2m9hdr, child number 0

select /* KM7 */ object_id, object_name from my_objects where
object_type = 'TABLE'

CHAPTER 6 SQL EXECUTION PLANS

187

Plan hash value: 2785906523

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

0	SELECT STATEMENT		1		365K	55697
1	TABLE ACCESS BY INDEX ROWID	MY_OBJECTS	1	1650	365K	55697
* 2	INDEX RANGE SCAN	OBJECT_TYPE_IX	1	1650	365K	26588

Predicate Information (identified by operation id):

 2 - access("OBJECT_TYPE"='TABLE')

SQL> -- Compare statistic to actual
SQL>
SQL> select num_rows
 2 from dba_tables
 3 where table_name = 'MY_OBJECTS';

 NUM_ROWS

 72588

1 row selected.

SQL> select count(*)
 2 from my_objects ;

 COUNT(*)

 434792

1 row selected.

SQL> -- Update statistics
SQL>
SQL> exec dbms_stats.gather_table_stats(user,'MY_OBJECTS',estimate_percent=>100,
cascade=>true,method_opt=>'FOR ALL COLUMNS SIZE 1');

PL/SQL procedure successfully completed.

CHAPTER 6 SQL EXECUTION PLANS

188

SQL> select /* KM8 */ object_id, object_name
 2 from my_objects
 3* where object_type = 'TABLE';
...
365056 rows selected.

SQL> @pln KM8

PLAN_TABLE_OUTPUT
--
SQL_ID 2qq7ram92zc85, child number 0

select /* KM8 */ object_id, object_name from my_objects where
object_type = 'TABLE'

Plan hash value: 2785906523

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

0	SELECT STATEMENT		1		365K	54553
1	TABLE ACCESS BY INDEX ROWID	MY_OBJECTS	1	9882	365K	54553
* 2	INDEX RANGE SCAN	OBJECT_TYPE_IX	1	9882	365K	25444

Predicate Information (identified by operation id):

 2 - access("OBJECT_TYPE"='TABLE')

SQL> -- Collect histogram statistics
SQL>
SQL> exec dbms_stats.gather_table_stats(user,'MY_OBJECTS',estimate_percent=>100,
cascade=>true,method_opt=>'FOR ALL COLUMNS SIZE AUTO');

PL/SQL procedure successfully completed.

SQL> select /* KM9 */ object_id, object_name
 2 from my_objects
 3* where object_type = 'TABLE';
...
365056 rows selected.

CHAPTER 6 SQL EXECUTION PLANS

189

SQL> @pln KM9

PLAN_TABLE_OUTPUT

SQL_ID dbvrtvutuyp6z, child number 0

select /* KM9 */ object_id, object_name from my_objects where
object_type = 'TABLE'

Plan hash value: 880823944

| Id | Operation | Name | Starts | E-Rows | A-Rows | Buffers |

| 0 | SELECT STATEMENT | | 1 | | 365K| 30000 |
|* 1 | TABLE ACCESS FULL| MY_OBJECTS | 1 | 365K| 365K| 30000 |

Predicate Information (identified by operation id):

 1 - filter("OBJECT_TYPE"='TABLE')

In this example, the optimizer initially computed that only 1650 rows would be returned by the
query for OBJECT_TYPE = ‘TABLE’. This was due to the fact that the statistics had been computed prior to
the addition of a few hundred thousand rows. When the plan was chosen, the optimizer didn’t have the
updated information and it selected a plan using an index scan on the object_type index based on the
old statistics. However, in reality, there were over 474,000 total rows in the table and over 365,000 of
them matched the filter criteria. So, you collected statistics and executed the query again. This time the
estimate went up to 9882 rows, but that’s still an incorrect estimate as compared to the actual rows
returned.

What happened? You collected fresh statistics and even used a 100% estimate, so everything
should be correct, right? Well, the problem was that you didn’t collect histogram statistics that would
tell the optimizer about the heavy skew in the distribution of values of the object_type column. You
needed to use a method_opt parameter that would collect histograms. So, you did the collection again
and this time used method_opt=>’FOR ALL COLUMNS SIZE AUTO’. This setting allows Oracle to properly
collect a histogram on the object_type column. Now when you executed the query, the estimate is right
on target and you get full table scan plan instead. In this case, the full scan operation is the best choice
as the query returns nearly 80% of all the rows in the table and a full scan will access fewer blocks
than an index scan plan would.

Summary
There is a wealth of information contained in plan output for every SQL statement. In this chapter,
you have reviewed how plan output can be obtained using EXPLAIN PLAN to get only estimated
information or obtained after executing the statement and extracting the plan information from the

CHAPTER 6 SQL EXECUTION PLANS

190

library cache using DBMS_XPLAN. At times, you may only be able to use EXPLAIN PLAN output, particularly
if a query is very long-running and it is not easy or possible to wait to execute the query and get its
actual execution data. However, in order to have the best information possible from which to make
decisions about indexing, query syntax changes, or the need to update statistics or parameter settings,
the use of actual plan execution statistics is the way to go.

I covered some of the ways you can use plan information to help diagnose and solve performance
problems for a SQL statement. By carefully reviewing plan output, you can uncover sub-optimal or
missing indexes and determine if statistics are stale and need to be updated. Utilizing the knowledge
you’ve gained about the various plan operations for accessing and joining data and understanding
how to read and effectively use plan information, you are equipped to not only solve problems quickly
and efficiently when they arise, but to verify the characteristics and performance footprint of any SQL
statement so that you can write well-behaved SQL from the start.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 7

■ ■ ■

191

Advanced Grouping

Jared Still

The GROUP BY clause is a venerable member of the SQL statement family. After learning basic SELECT
statements, it is one of first specialized parts of SQL that many practitioners cut their teeth on when
learning to create aggregations from raw data and transform that data into useful information.

Before I get too deeply into the use of GROUP BY, this would be a good time provide some information
about the test environment. All SQL in this chapter was prepared using the Oracle 11.2.0.1 64 bit version
on Windows 7. The database account I used has DBA privileges. Using an account with DBA privileges
simplifies the use of dbms_xplan.display_cursor, using data from other accounts, and selecting data
from system views. I would recommend that if you do the same, do so in a database strictly used for
testing.

Much of the test data is provided by Oracle and can be setup on your database by running the
scripts found in ORACLE_HOME/demo/schema and ORACLE_HOME/sqlplus/demo directories. The familiar
SCOTT schema is included in the demo directory, along with the HR , SH, and other demo accounts.
Where it makes sense to create test data to more clearly explain concepts, I will do so. For more complex
examples, the built-in test data may be used. At times the examples may seem trivial. These examples
are constructed with the purpose of demonstrating the results of different facets of the GROUP BY
clause, without any requirement to focus needlessly on the values in the output. While there are many
excellent examples based on financial data throughout the Oracle documentation, these examples are
sometimes difficult to follow as too much attention is focused on the output values rather than how they
were obtained.

The execution plans seen in the SQL examples were generated by the script showplan_last.sql,
which is using the DBMS_XPLAN.DISPLAY_CURSOR procedure to generate the output. The code for that script
is seen in Listing 7-1. You may have noticed that most of the SQL statements shown include the hint /*+
gather_plan_statistics */. This tells the optimizer to gather statistics for use by DBMS_XPLAN. The
results of execution plans may be edited to fit the page, so the results may appear somewhat different
when you execute the showplan_last.sql script.

Listing 7-1. showplan_last.sql

-- showplan_last.sql
set pause off
set verify off
set trimspool on
set line 200 arraysize 1
clear break
clear compute
-- serveroutput must be OFF for dbms_xplan.display_cursor to work.
-- but do not turn it off here, or the SET statemeent will be the 'last' cursor

CHAPTER 7 ■ ADVANCED GROUPING

192

select *
from table(dbms_xplan.display_cursor(null,null,'TYPICAL LAST'));

Now, let’s learn about GROUP BY before moving on to its advanced functions.

Basic GROUP BY Usage
If you needed to know the number of employees in each department of your company, you might use
SQL such as that in Listing 7-2 because it will produce one row of output for each row in the DEPT table
plus a count of the employees from each department. The output includes the OPERATIONS department,
which does not have any employees. This row would not have appeared in the output from a standard
JOIN, so the LEFTOUTER JOIN statement was used to include rows from the DEPT table that did not have
any matching rows in the EMP table.

Listing 7-2. Basic GROUP BY

 1 select d.dname, count(empno) empcount
 2 from scott.dept d
 3 left outer join scott.emp e on d.deptno = e.deptno
 4 group by d.dname
 5 order by d.dname;

DNAME EMPCOUNT
-------------- ----------
ACCOUNTING 3
OPERATIONS 0
RESEARCH 5
SALES 6

4 rows selected.

The columns used in the GROUP BY must match the set of columns in the SELECT statement upon

which no aggregation functions are used. In Listing 7-2, for example, there are two columns in the
SELECT list, deptno and empno. The COUNT() function is used to perform aggregation on the EMPNO
column so that the total number of employees in each department can be determined. The only other
column in the SELECT list, deptno, must then be included in the GROUP BY clause.

Failure to include the correct columns will result in an error condition as seen in Listing 7-3.

Listing 7-3. GROUP BY Columns Requirement

 1 select d.dname, count(empno) empcount
 2 from scott.emp e
 3 join scott.dept d on d.deptno = e.deptno
 4 order by d.dname;
select d.dname, count(empno) empcount
 *
ERROR at line 1:
ORA-00937: not a single-group group function

CHAPTER 7 ■ ADVANCED GROUPING

193

There is a very important point you need to understand about GROUP BY: although the output of a
SELECT statement that includes a GROUP BY clause may always appear to be sorted, you cannot expect
GROUP BY to always return your data in sorted order. If the output must be sorted, you must use an ORDER
BY clause. This has always been the case with Oracle, and this behavior has been documented since at
least Oracle 7.0.

While the sorting behavior of GROUP BY is not specifically mentioned in the Oracle 7 documentation,
there was little room for doubt when the 9i documentation was published, which specifically states that
GROUP BY does not guarantee the order of the result set.

Listing 7-4 provides a good example of GROUP BY not returning results in sorted order. Notice that
the data is not sorted. The only way to guarantee sorted data is by including the ORDER BY clause, which
must follow the GROUP BY clause.

Listing 7-4. GROUP BY Not Sorted

 1 select deptno, count(*)
 2 from emp
 3 group by deptno;

 DEPTNO COUNT(*)
---------- ----------
 30 6
 20 5
 10 3

3 rows selected.

The GROUP BY clause may just be one of the most under-appreciated workhorses of all the SELECT

clauses. It is quite easy to take it for granted, as once you understand how to include it in a SELECT
statement, it is quite easy to use. Perhaps a better appreciation for just how much work it does (and how
much work it saves you from doing) can be gained by trying to write the SELECT statement in Figure 7-2
without using the GROUP BY clause. There are likely many different methods by which this can be done.

Think for just a moment how you might go about writing that SELECT statement. One such attempt
was made by your intrepid author, and this attempt can be seen in Listing 7-5. This is not SQL that
most people would care to maintain. As you can see, it does create nearly the same output as that found
in Listing 7-2. In addition to being somewhat convoluted, you must ask yourself, “What will happen
when a new department is added to the DEPT table?”

The answer to that question, of course, is that you will then need to modify the SQL statement in
Listing 7-5 to accommodate the change in the data. While it would be possible use dynamic SQL to
duplicate the functionality of the SQL to cope with changes to the DEPT table data, doing so would create a
piece of SQL that is even more difficult to follow and even harder to maintain.

Listing 7-5. Convoluted SQL

 1 select /*+ gather_plan_statistics */
 2 distinct dname, decode(
 3 d.deptno,
 4 10, (select count(*) from emp where deptno= 10),
 5 20, (select count(*) from emp where deptno= 20),
 6 30, (select count(*) from emp where deptno= 30),
 7 (select count(*) from emp where deptno not in (10,20,30))

CHAPTER 7 ■ ADVANCED GROUPING

194

 8) dept_count
 9 from (select distinct deptno from emp) d
 10 join dept d2 on d2.deptno = d.deptno;

DNAME DEPT_COUNT
-------------- ----------
SALES 6
ACCOUNTING 3
RESEARCH 5

3 rows selected.

22:19:51 MORIARTY - jkstill@jks1 SQL> @showplan_last

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT				7 (100)	
1	SORT AGGREGATE		1	3		
* 2	TABLE ACCESS FULL	EMP	5	15	3 (0)	00:00:01
3	SORT AGGREGATE		1	3		
* 4	TABLE ACCESS FULL	EMP	5	15	3 (0)	00:00:01
5	SORT AGGREGATE		1	3		
* 6	TABLE ACCESS FULL	EMP	5	15	3 (0)	00:00:01
7	SORT AGGREGATE		1	3		
* 8	TABLE ACCESS FULL	EMP	4	12	3 (0)	00:00:01
9	HASH UNIQUE		9	144	7 (29)	00:00:01
10	MERGE JOIN		14	224	6 (17)	00:00:01
11	TABLE ACCESS BY INDEX ROWID	DEPT	4	52	2 (0)	00:00:01
12	INDEX FULL SCAN	PK_DEPT	4		1 (0)	00:00:01
* 13	SORT JOIN		14	42	4 (25)	00:00:01
14	TABLE ACCESS FULL	EMP	14	42	3 (0)	00:00:01

In addition to greatly simplifying the SQL that must be written, the GROUP BY clause eliminates

unnecessary IO in the database. Take another look at Listing 7-5. You will see that a full table scan was
performed on the EMP table five times. If you think that seems rather excessive, you are on the right
track. Listing 7-6 shows the same SQL as executed in Listing 7-2, this time including the execution plan
statistics. There is still a full table scan taking place against the EMP table, but only once—not five times
as in the convoluted SQL in Listing 7-5.

Listing 7-6. GROUP BY Execution Plan

 1 select /*+ gather_plan_statistics */
 2 d.dname
 3 , count(empno) empcount
 4 from scott.emp e

CHAPTER 7 ■ ADVANCED GROUPING

195

 5 join scott.dept d on d.deptno = e.deptno
 6 group by d.dname
 7 order by d.dname;

DNAME EMPCOUNT
-------------- ----------
ACCOUNTING 3
RESEARCH 5
SALES 6

3 rows selected.

PLAN_TABLE_OUTPUT
--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
0	SELECT STATEMENT		1		3
1	SORT GROUP BY		1	4	3
2	MERGE JOIN		1	14	14
3	TABLE ACCESS BY INDEX ROWID	DEPT	1	4	4
4	INDEX FULL SCAN	PK_DEPT	1	4	4
* 5	SORT JOIN		4	14	14
6	TABLE ACCESS FULL	EMP	1	14	14
--

Predicate Information (identified by operation id):

 5 - access("D"."DEPTNO"="E"."DEPTNO")
 filter("D"."DEPTNO"="E"."DEPTNO")

HAVING Clause
Results generated by GROUP BY may be restricted by the criteria found in the HAVING clause. The HAVING
clause is quite versatile, resembling the WHERE clause in the conditions that may be used. Functions,
operators, and subqueries may all be used in the HAVING clause. Listing 7-7 shows a query that will return
all departments that have hired at least five employees since the beginning of the first full year after
hiring began.

That the HAVING operation is executed after all data has been fetched can be seen as the FILTER in
step 1 of the execution plan shown in Listing 7-7. Notice that an operator, a function, and subqueries
have all been used in the HAVING clause.

Listing 7-7. HAVING Clause

 1 select /*+ gather_plan_statistics */
 2 d.dname
 3 , trunc(e.hiredate,'YYYY') hiredate

CHAPTER 7 ■ ADVANCED GROUPING

196

 4 , count(empno) empcount
 5 from scott.emp e
 6 join scott.dept d on d.deptno = e.deptno
 7 group by d.dname, trunc(e.hiredate,'YYYY')
 8 having
 9 count(empno) >= 5
 10 and trunc(e.hiredate,'YYYY') between
 11 (select min(hiredate) from scott.emp)
 12 and
 13 (select max(hiredate) from scott.emp)
 14 order by d.dname;

DNAME HIREDATE EMPCOUNT
-------------- ------------------- ----------
SALES 01/01/1981 00:00:00 6

1 row selected.

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Starts | E-Rows | A-Rows |

| 0 | SELECT STATEMENT | | 1 | | 1 |

|* 1 | FILTER | | 1 | | 1 |

2	SORT GROUP BY		1	1	6
3	MERGE JOIN		1	14	14
4	TABLE ACCESS BY INDEX ROWID	DEPT	1	4	4
5	INDEX FULL SCAN	PK_DEPT	1	4	4
* 6	SORT JOIN		4	14	14
7	TABLE ACCESS FULL	EMP	1	14	14
8	SORT AGGREGATE		1	1	1
9	TABLE ACCESS FULL	EMP	1	14	14
10	SORT AGGREGATE		1	1	1
11	TABLE ACCESS FULL	EMP	1	14	14

Predicate Information (identified by operation id):

 1 - filter((COUNT(*)>=5 AND TRUNC(INTERNAL_FUNCTION("E"."HIREDATE"),'fmyyyy')>= AND
 TRUNC(INTERNAL_FUNCTION("E"."HIREDATE"),'fmyyyy')<=))
 6 - access("D"."DEPTNO"="E"."DEPTNO")
 filter("D"."DEPTNO"="E"."DEPTNO")

37 rows selected.

CHAPTER 7 ■ ADVANCED GROUPING

197

“New” GROUP BY Functionality
At times, it’s necessary to write SQL that appears as unruly as the convoluted example in Listing 7-5 so
that the desired output can be obtained. The need for writing such unwieldy SQL has become much less
frequent due to the advanced functionality Oracle has included in SQL the past few years. Much of what
will be covered in this chapter is not actually new; it has been available for quite some time.

You can start exploring some of the advanced grouping functionality in the Oracle database by
experimenting with the CUBE and ROLLUP extensions to GROUP BY, and the GROUPING function. It takes a
little effort to get started, as the benefits of newer functionality are not always clear until you spend some
time learning to use them.

CUBE Extension to GROUP BY
The CUBE extension is not exactly a newcomer to Oracle. It was first introduced in Oracle 8i in 1999.
When used with a GROUP BY clause, it will cause all possible combinations of the elements included in the
arguments to CUBE to be considered for each row. This operation will generate more rows than actually
exist in the table1.

Let’s look at an example that generates all possible combinations of FIRST_NAME and LAST_NAME for
each row in the HR.EMPLOYEES table. The CUBE function was intended for use in generating cross-tab
reports with lots of numbers and dollar signs. When trying to understand new functionality, I find it
helps to dumb down the SQL a bit so I can see what’s going on without getting distracted with subtotals.

Examine Listing 7-8 to see the results of using CUBE as described with the HR.EMPLOYEES table. You
will see that there are three rows returned for most employees. In other words, there are 301 rows
returned, even though there are only 107 rows in the table.

Listing 7-8. CUBE Operation on HR.EMPLOYEES

SQL> set autotrace on statistics

 1 with emps as (
 2 select /*+ gather_plan_statistics */
 3 last_name
 4 , first_name
 5 from hr.employees
 6 group by cube(first_name,last_name)
 7)
 8 select rownum
 9 , last_name
 10 , first_name
 11 from emps;

 ROWNUM LAST_NAME FIRST_NAME
---------- ------------------------- --------------------
 1
 2 Ki
 3 TJ

1 If there are no rows in the table, GROUP BY CUBE() will return 0 rows.

CHAPTER 7 ■ ADVANCED GROUPING

198

 4 Den
 5 Guy
 6 Lex
 7 Pat
…
 231 Vargas
 232 Vargas Peter
 233 Whalen
 234 Whalen Jennifer
 235 De Haan
 236 De Haan Lex
 237 Everett
 238 Everett Britney
…
301 rows selected.

Statistics

 759 recursive calls
 0 db block gets
 188 consistent gets

 9 physical reads

 0 redo size
 5990 bytes sent via SQL*Net to client
 557 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 7 sorts (memory)
 0 sorts (disk)
 301 rows processed

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		301
1	COUNT		1		301
2	VIEW		1	107	301
3	SORT GROUP BY		1	107	301
4	GENERATE CUBE		1	107	428
5	SORT GROUP BY NOSORT		1	107	107
6	INDEX FULL SCAN	EMP_NAME_IX	1	107	107

Table 7-1 shows why there are three rows returned for each name pair. For each LAST_NAME,

FIRST_NAME pair, CUBE will substitute NULL for each element in turn. The rows generated by CUBE are
referred to in the Oracle documentation as superaggregate rows, which are recognizable by the NULL
values placed in the columns being operated in. The results described in Table 7-1 appear in the output
in Listing 7-8 due to the GROUP BY CUBE(FIRST_NAME,LAST_NAME) operation.

k

CHAPTER 7 ■ ADVANCED GROUPING

199

Table 7-1. CUBE Operation

First Name Last Name

Vance Jones

Vance NULL

NULL Jones

Did you notice that the first row returned in Listing 7-8 contained NULL for both LAST_NAME and
FIRST_NAME? When considering all possible combinations of a pair of arguments to CUBE, as seen in
Listing 7-8, there is a combination of (NULL, NULL) that is returned for each row in the GENERATE CUBE
operation. These 428 rows are then processed by the SORT GROUP BY operation, which removes all but
one of the NULL pair of columns to produce the final 301 rows to satisfy the query.

Knowing how CUBE operates, you can predict how many rows should be created when using GROUP
BY CUBE. Listing 7-9 shows that the number of rows returned can be predicted by adding together the
count for three different distinct combinations of names, and adding 1 to that to account for the null
pair.

Listing 7-9. Predicting CUBE Return Rows

 1 with counts as (
 2 select
 3 count(distinct first_name) first_name_count
 4 , count(distinct last_name) last_name_count
 5 , count(distinct(first_name||last_name)) full_name_count
 6 from hr.employees
 7)
 8 select
 9 first_name_count
 10 , last_name_count
 11 , full_name_count
 12 , first_name_count + last_name_count + full_name_count + 1 total_count
 13 from counts;

FIRST_NAME_COUNT LAST_NAME_COUNT FULL_NAME_COUNT TOTAL_COUNT
---------------- --------------- --------------- -----------
 91 102 107 301

1 row selected.

You can simulate the operation of CUBE by using SQL to reproduce the steps taken by the database,
both to see how the operation works and to see just how much work the database is saving you by using
GROUP BY CUBE.

By examining the execution plan shown in Listing 7-8, you can see that the SORT GROUP BY NOSORT
operation (step 5) returns 107 rows to the GROUP BY CUBE operation (step 4), which in turn generates 428
rows. Why are 428 rows generated? Listing 7-10 shows that 428 is the expected number of rows if all
combinations of LAST_NAME and FIRST_NAME are generated. The GROUP BY then reduces the output to 301
rows, just as the CUBE extension did, but with an important difference: the manual method of UNION ALL
and GROUP BY employed in Listing 7-10 required three full scans of the EMP_NAME_IX index and one full

CHAPTER 7 ■ ADVANCED GROUPING

200

scan of the EMP_EMAIL_UK index. Contrast this to the single full scan of the EMP_NAME_IX index in Listing 7-
8 as performed by the GROUP BY extension.

The CUBE extension didn’t just reduce the SQL required to generate the same data as the UNION ALL and
GROUP BY combination did, it also reduced the number of full index scans from four to one. The optimizer
chose to use index EMP_EMAIL_UK rather than the EMP_NAME_IX index, resulting in 10 physical reads rather
than the nine seen in Listing 7-8. Using the small data set in the Oracle demo schemas does not cause a
large difference in execution time for the example queries. With large data sets, however, the effect of using
four INDEX FULL SCAN operations rather than just one would be quite obvious.

Listing 7-10. Generate CUBE Rows with UNION ALL

 1 with emps as (
 2 select last_name, first_name from hr.employees
 3) ,
 4 mycube as (
 5 select last_name, first_name from emps
 6 union all
 7 select last_name, null first_name from emps
 8 union all
 9 select null last_name, first_name from emps
 10 union all
 11 select null last_name, null first_name from emps
 12)
 13 select /*+ gather_plan_statistics */ *
 14 from mycube
 15 group by last_name, first_name;

LAST_NAME FIRST_NAME
------------------------- --------------------
Atkinson Mozhe
Bissot Laura
Grant Kimberely
…
301 rows selected.

Statistics
--
 759 recursive calls
 0 db block gets
 191 consistent gets

 10 physical reads

 0 redo size
 5477 bytes sent via SQL*Net to client
 557 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 6 sorts (memory)
 0 sorts (disk)
 301 rows processed

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 ■ ADVANCED GROUPING

201

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Starts | E-Rows | A-Rows

| 0 | SELECT STATEMENT | | 1 | | 301
| 1 | HASH GROUP BY | | 1 | 428 | 301
| 2 | VIEW | | 1 | 428 | 428
| 3 | UNION-ALL | | 1 | | 428
| 4 | INDEX FULL SCAN| EMP_NAME_IX | 1 | 107 | 107
| 5 | INDEX FULL SCAN| EMP_NAME_IX | 1 | 107 | 107
| 6 | INDEX FULL SCAN| EMP_NAME_IX | 1 | 107 | 107
| 7 | INDEX FULL SCAN| EMP_EMAIL_UK | 1 | 107 | 107
--

Putting CUBE To Work
When teaching us a new word in fourth grade English class, Mrs. Draper would say, “Now use it in a
sentence.” Much like that, you now need to put the CUBE extension to practical use. It was fun to see
what is doing and just how much work it saves you, but now you need to see its practical use.

When using the GROUP BY clause to perform aggregations, you’ve probably written several similar
SQL statements—just so you could see the aggregations based on different sets of columns, much like
what is seen in Listing 7-10. You already know that the CUBE extension can eliminate a lot of work in the
database, so let’s now put it to “real world” practice, using the test demo test data created earlier.

The SALES_HISTORY schema contains sales data for the years 1998 – 2001. You need to provide a
report to satisfy the following request: “Please show me all sales data for the year 2001. I would like to
see sales summarized by product category, with aggregates based on 10-year customer age ranges,
income levels, as well as summaries broken out by income level regardless of age group, and by age
group regardless of income levels.”

Your task probably seems daunting at first, but you know all the data is available. You will need to
build a query using the COSTS, CUSTOMERS, PRODUCTS, SALES, and TIMES tables. (Now would be a
good time to put this book down and try your hand at building such a query.) Perhaps you will create a
query like the one in Listing 7-11, as it is a common type of solution for such a request. Prior to the
introduction of the CUBE extension, Listing 7-11 is style of query that would be needed to satisfy the
request.

Looking at Listing 7-11, you will find four separate queries joined by the UNION ALL operator. These
queries are labeled Q1-Q4. The output from the query includes a QUERY_TAG column so that the
results from each separate query can clearly be identified in the output. The customer is happy; the
output is exactly the output asked for. The query can also be easily changed to report on data for any
year.

The operations folks that run the Data Center, however, are not so happy with this new report.
When you take a look at the query statistics for the SQL, you can understand why they may not hold this
report in high regard. Maybe it’s the 10521 physical reads that concerns them. If the query were run
only once, this would not be problem, but the marketing folks are running this query multiple times
daily to report on different years, trying to discover sales trends, and it is causing all sorts of havoc as IO
rates and response times increase for other users of the database.

Now you see that there are four table scans taking place in the execution plan. The factored
subquery tsales allows the optimizer to create a temporary table that can then be used by all the queries
in the gb subquery, but the use of UNION ALL makes it necessary to do four full table scans on that table,
resulting in a lot of database IO.

CHAPTER 7 ■ ADVANCED GROUPING

202

Listing 7-11. UNION ALL Query of Sales Data

 1 with tsales as (
 2 select /*+ gather_plan_statistics */
 3 s.quantity_sold
 4 , s.amount_sold
 5 , to_char(mod(cust_year_of_birth,10) * 10) || '-' ||
 6 to_char((mod(cust_year_of_birth,10) * 10) + 10) age_range
 7 , nvl(c.cust_income_level,'A: Below 30,000') cust_income_level
 8 , p.prod_name
 9 , p.prod_desc
 10 , p.prod_category
 11 , (pf.unit_cost * s.quantity_sold) total_cost
 12 , s.amount_sold - (pf.unit_cost * s.quantity_sold) profit
 13 from sh.sales s
 14 join sh.customers c on c.cust_id = s.cust_id
 15 join sh.products p on p.prod_id = s.prod_id
 16 join sh.times t on t.time_id = s.time_id
 17 join sh.costs pf on
 18 pf.channel_id = s.channel_id
 19 and pf.prod_id = s.prod_id
 20 and pf.promo_id = s.promo_id
 21 and pf.time_id = s.time_id
 22 where (t.fiscal_year = 2001)
 23)
 24 , gb as (
 25 select -- Q1 - all categories by cust income and age range
 26 'Q1' query_tag
 27 , prod_category
 28 , cust_income_level
 29 , age_range
 30 , sum(profit) profit
 31 from tsales
 32 group by prod_category, cust_income_level, age_range
 33 union all
 34 select -- Q2 - all categories by cust age range
 35 'Q2' query_tag
 36 , prod_category
 37 , 'ALL INCOME' cust_income_level
 38 , age_range
 39 , sum(profit) profit
 40 from tsales
 41 group by prod_category, 'ALL INCOME', age_range
 42 union all

CHAPTER 7 ■ ADVANCED GROUPING

203

 43 select -- Q3 - all categories by cust income
 44 'Q3' query_tag
 45 , prod_category
 46 , cust_income_level
 47 , 'ALL AGE' age_range
 48 , sum(profit) profit
 49 from tsales
 50 group by prod_category, cust_income_level, 'ALL AGE'
 51 union all
 52 select -- Q4 - all categories
 53 'Q4' query_tag
 54 , prod_category
 55 , 'ALL INCOME' cust_income_level
 56 , 'ALL AGE' age_range
 57 , sum(profit) profit
 58 from tsales
 59 group by prod_category, 'ALL INCOME', 'ALL AGE'
 60)
 61 select *
 62 from gb
 63 order by prod_category, profit;

QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------------------ -------------------- -------- ---------------
…
Q2 Hardware K: 250,000 - 299,999 ALL AGE $26,678.00
Q2 Hardware L: 300,000 and above ALL AGE $28,974.28
Q1 Hardware F: 110,000 - 129,999 70-80 $30,477.16
Q2 Hardware J: 190,000 - 249,999 ALL AGE $43,761.47
Q2 Hardware B: 30,000 - 49,999 ALL AGE $53,612.04
Q2 Hardware A: Below 30,000 ALL AGE $55,167.88
Q2 Hardware I: 170,000 - 189,999 ALL AGE $57,089.05
Q2 Hardware C: 50,000 - 69,999 ALL AGE $76,612.64
Q3 Hardware ALL INCOME 60-70 $85,314.04
Q3 Hardware ALL INCOME 10-20 $90,849.87
Q3 Hardware ALL INCOME 0-10 $92,207.47
Q3 Hardware ALL INCOME 50-60 $93,811.96
Q3 Hardware ALL INCOME 80-90 $95,391.82
Q2 Hardware H: 150,000 - 169,999 ALL AGE $95,437.74
Q3 Hardware ALL INCOME 40-50 $97,492.51
Q3 Hardware ALL INCOME 20-30 $101,140.69
Q2 Hardware D: 70,000 - 89,999 ALL AGE $102,940.44
Q3 Hardware ALL INCOME 30-40 $102,946.85
Q3 Hardware ALL INCOME 90-100 $110,310.69
Q2 Hardware G: 130,000 - 149,999 ALL AGE $112,688.64
Q3 Hardware ALL INCOME 70-80 $117,920.88

CHAPTER 7 ■ ADVANCED GROUPING

204

Q2 Hardware E: 90,000 - 109,999 ALL AGE $135,154.59
Q2 Hardware F: 110,000 - 129,999 ALL AGE $199,270.01
Q4 Hardware ALL INCOME ALL AGE $987,386.78
...
714 rows selected.
Elapsed: 00:00:14.53

Statistics
--
 18464 recursive calls
 4253 db block gets
 22759 consistent gets
 10521 physical reads
 4216 redo size
 25086 bytes sent via SQL*Net to client
 601 bytes received via SQL*Net from client
 9 SQL*Net roundtrips to/from client
 174 sorts (memory)
 0 sorts (disk)
 714 rows processed

PLAN_TABLE_OUTPUT

| Id |Operation |Name |Starts |E-Rows |A-Rows |

0	SELECT STATEMENT		1		714
1	TEMP TABLE TRANSFORMATION		1		714
2	LOAD AS SELECT		1		0
* 3	HASH JOIN		1	17116	258K
4	TABLE ACCESS FULL	PRODUCTS	1	72	72
* 5	HASH JOIN		1	17116	258K
* 6	HASH JOIN		1	17116	258K
* 7	TABLE ACCESS FULL	TIMES	1	304	364
8	PARTITION RANGE AND		1	82112	259K
* 9	HASH JOIN		4	82112	259K
10	TABLE ACCESS FULL	COSTS	4	82112	29766
11	TABLE ACCESS FULL	SALES	4	918K	259K
12	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500
13	SORT ORDER BY		1	16	714
14	VIEW		1	16	714
15	UNION-ALL		1		714
16	HASH GROUP BY		1	3	599
17	VIEW		1	17116	258K
18	TABLE ACCESS FULL	SYS_TEMP_0FD9D6620_8BE55C	1	17116	258K
19	HASH GROUP BY		1	4	60
20	VIEW		1	17116	258K
21	TABLE ACCESS FULL	SYS_TEMP_0FD9D6620_8BE55C	1	17116	258K

CHAPTER 7 ■ ADVANCED GROUPING

205

22	HASH GROUP BY		1	4	50
23	VIEW		1	17116	258K
24	TABLE ACCESS FULL	SYS_TEMP_0FD9D6620_8BE55C	1	17116	258K
25	HASH GROUP BY		1	5	5
26	VIEW		1	17116	258K
27	TABLE ACCESS FULL	SYS_TEMP_0FD9D6620_8BE55C	1	17116	258K

Thinking back on your earlier experiment with CUBE, you know that multiple queries each doing a

GROUP BY and joined by UNION ALL can be replaced with one query using GROUP BY with the CUBE
extension. This is due to the requirement to create summaries based on all possible combinations of the
CUST_INCOME_LEVEL and AGE_RANGE columns output from the tsales subquery. The CUBE extension can
accomplish the same result, but with less code and less database IO.

While the difference in IO rate and timing in that earlier experiment was not very significant, you
will see that when used with larger data sets, the difference can be substantial. Listing 7-12 shows the
query after it has been modified to use the CUBE extension to GROUP BY. After running the new query, the
first thing you look at are the statistics and the execution plan. Removing the entire gb subquery and
using GROUP BY CUBE on the output from the tsales subquery reduced physical IO from 10521 physical
reads to 2169, nearly a factor of 5. That alone is enough to recommend the use of CUBE; the fact that it
results in much less SQL to write is a bonus.

Listing 7-12. Replace UNION ALL with CUBE

 1 with tsales as (
 2 select /*+ gather_plan_statistics */
 3 s.quantity_sold
 4 , s.amount_sold
 5 , to_char(mod(cust_year_of_birth,10) * 10) || '-' ||
 6 to_char((mod(cust_year_of_birth,10) * 10) + 10) age_range
 7 , nvl(c.cust_income_level,'A: Below 30,000') cust_income_level
 8 , p.prod_name
 9 , p.prod_desc
 10 , p.prod_category
 11 , (pf.unit_cost * s.quantity_sold) total_cost
 12 , s.amount_sold - (pf.unit_cost * s.quantity_sold) profit
 13 from sh.sales s
 14 join sh.customers c on c.cust_id = s.cust_id
 15 join sh.products p on p.prod_id = s.prod_id
 16 join sh.times t on t.time_id = s.time_id
 17 join sh.costs pf on
 18 pf.channel_id = s.channel_id
 19 and pf.prod_id = s.prod_id
 20 and pf.promo_id = s.promo_id
 21 and pf.time_id = s.time_id
 22 where (t.fiscal_year = 2001)
 23)
 24 select
 25 'Q' || decode(cust_income_level,
 26 null,decode(age_range,null,4,3),

CHAPTER 7 ■ ADVANCED GROUPING

206

 27 decode(age_range,null,2,1)
 28) query_tag
 29 , prod_category
 30 , cust_income_level
 31 , age_range
 32 , sum(profit) profit
 33 from tsales
 34 group by prod_category, cube(cust_income_level,age_range)
 35 order by prod_category, profit;

QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------------------ -------------------- -------- ---------------
...
Q2 Hardware K: 250,000 - 299,999 $26,678.00
Q2 Hardware L: 300,000 and above $28,974.28
Q1 Hardware F: 110,000 - 129,999 70-80 $30,477.16
Q2 Hardware J: 190,000 - 249,999 $43,761.47
Q2 Hardware B: 30,000 - 49,999 $53,612.04
Q2 Hardware A: Below 30,000 $55,167.88
Q2 Hardware I: 170,000 - 189,999 $57,089.05
Q2 Hardware C: 50,000 - 69,999 $76,612.64
Q3 Hardware 60-70 $85,314.04
Q3 Hardware 10-20 $90,849.87
Q3 Hardware 0-10 $92,207.47
Q3 Hardware 50-60 $93,811.96
Q3 Hardware 80-90 $95,391.82
Q2 Hardware H: 150,000 - 169,999 $95,437.74
Q3 Hardware 40-50 $97,492.51
Q3 Hardware 20-30 $101,140.69
Q2 Hardware D: 70,000 - 89,999 $102,940.44
Q3 Hardware 30-40 $102,946.85
Q3 Hardware 90-100 $110,310.69
Q2 Hardware G: 130,000 - 149,999 $112,688.64
Q3 Hardware 70-80 $117,920.88
Q2 Hardware E: 90,000 - 109,999 $135,154.59
Q2 Hardware F: 110,000 - 129,999 $199,270.01
Q4 Hardware $987,386.78
...
714 rows selected.
Elapsed: 00:00:08.98

Statistics
--
 17901 recursive calls
 0 db block gets
 5935 consistent gets

CHAPTER 7 ■ ADVANCED GROUPING

207

 2169 physical reads
 260 redo size
 24694 bytes sent via SQL*Net to client
 601 bytes received via SQL*Net from client
 9 SQL*Net roundtrips to/from client
 174 sorts (memory)
 0 sorts (disk)
 714 rows processed

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		714
1	SORT ORDER BY		1	2251	714
2	SORT GROUP BY		1	2251	714
3	GENERATE CUBE		1	2251	2396
4	SORT GROUP BY		1	2251	599
* 5	HASH JOIN		1	17116	258K
6	VIEW	index$_join$_004	1	72	72
* 7	HASH JOIN		1		72
8	INDEX FAST FULL SCAN	PRODUCTS_PK	1	72	72
9	INDEX FAST FULL SCAN	PRODUCTS_PROD_CAT_IX	1	72	72
* 10	HASH JOIN		1	17116	258K
* 11	HASH JOIN		1	17116	258K
* 12	TABLE ACCESS FULL	TIMES	1	304	364
13	PARTITION RANGE AND		1	82112	259K
* 14	HASH JOIN		4	82112	259K
15	TABLE ACCESS FULL	COSTS	4	82112	29766
16	TABLE ACCESS FULL	SALES	4	918K	259K
17	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500

Eliminate NULLs with the GROUPING() Function
There seems to be a problem with the output from the new query seen in Listing 7-12. While the
numbers match the earlier query that used the UNION ALL operator, some of the rows have NULL values for
the CUST_INCOME_LEVEL and AGE_RANGE rows, and one row has a NULL in both of these columns. You saw
this type of result earlier in Table 7-1 as an expected part of the operation of CUBE. When generating the
combinations of all columns included in the arguments to CUBE, a NULL value will be generated n-1 times
for each column, where n is the number of columns in the list. In the example query, there are two
columns, so you can expect to see a NULL value for CUST_INCOME_LEVEL generated once for each distinct
value of AGE_RANGE. The same rule applies to the AGE_RANGE column.

CHAPTER 7 ■ ADVANCED GROUPING

208

These NULL values2 can be a problem if there are rows in the data that have NULL values for either of
these columns. How do you discern between NULLs in the data and NULLs inserted by the CUBE extension?
The GROUPING() function was introduced in Oracle 8i, and it may be used to identify these
superaggregate rows. The expression used as an argument to the GROUPING() function must match an
expression that appears in the GROUP BY clause. For example, write decode(grouping(age_range),1,'ALL
AGE',age_range) age_range to detect whether age_range is null due to a row generated by CUBE, or
whether it is null due to a row in the database. The value returned will be a 1 if the current row is a
superaggregate row generated by CUBE, and a 0 for all other cases.

When used in combination with a CASE expression or the DECODE() function, the NULL values in
superaggregate rows can be replaced with values that are useful in a report. In this case, the DECODE()
appears to be a better choice due to simplicity and the fact that there are only two possible return values
for the GROUPING() function. Listing 7-13 shows show how GROUPING() was used to modify the SQL
found in Listing 7-12. The relevant before and after parts of the SQL are shown, along with the output.
Now the report is easier to read, and superaggregate NULLs are discernable from NULLs occurring in the
data.

Listing 7-13. GROUPING() Function

Without GROUPING():

27 , cust_income_level
28 , age_range

With GROUPING():

27 -- either CASE or DECODE() works here. I prefer DECODE() for this
28 , case grouping(cust_income_level)
29 when 1 then 'ALL INCOME'
30 else cust_income_level
31 end cust_income_level
32 , decode(grouping(age_range),1,'ALL AGE',age_range) age_range

QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------------------ -------------------- -------- ---------------
...
Q2 Hardware K: 250,000 - 299,999 ALL AGE $26,678.00
Q2 Hardware L: 300,000 and above ALL AGE $28,974.28
Q1 Hardware F: 110,000 - 129,999 70-80 $30,477.16
Q2 Hardware J: 190,000 - 249,999 ALL AGE $43,761.47
Q2 Hardware B: 30,000 - 49,999 ALL AGE $53,612.04
Q2 Hardware A: Below 30,000 ALL AGE $55,167.88
Q2 Hardware I: 170,000 - 189,999 ALL AGE $57,089.05
Q2 Hardware C: 50,000 - 69,999 ALL AGE $76,612.64
Q3 Hardware ALL INCOME 60-70 $85,314.04
Q3 Hardware ALL INCOME 10-20 $90,849.87

2 The NVL() function is used to provide a default value for sh.customers.cust_income_level so that output of examples
may be easier to compare.

CHAPTER 7 ■ ADVANCED GROUPING

209

Q3 Hardware ALL INCOME 0-10 $92,207.47
Q3 Hardware ALL INCOME 50-60 $93,811.96
Q3 Hardware ALL INCOME 80-90 $95,391.82
Q2 Hardware H: 150,000 - 169,999 ALL AGE $95,437.74
Q3 Hardware ALL INCOME 40-50 $97,492.51
Q3 Hardware ALL INCOME 20-30 $101,140.69
Q2 Hardware D: 70,000 - 89,999 ALL AGE $102,940.44
Q3 Hardware ALL INCOME 30-40 $102,946.85
Q3 Hardware ALL INCOME 90-100 $110,310.69
Q2 Hardware G: 130,000 - 149,999 ALL AGE $112,688.64
Q3 Hardware ALL INCOME 70-80 $117,920.88
Q2 Hardware E: 90,000 - 109,999 ALL AGE $135,154.59
Q2 Hardware F: 110,000 - 129,999 ALL AGE $199,270.01
Q4 Hardware ALL INCOME ALL AGE $987,386.78

Extending Reports with GROUPING()
Another use of GROUPING() is in the HAVING clause, where it can be used to control which aggregation
levels appear in the output. The report seen in previous examples creates about five pages of output,
which may be more than the customer cares to see. By using the GROUPING() function, these
aggregations can be condensed to roll up the totals for either or all of the columns used in the CUBE
extension. Several variations of GROUPING() have been used to modify the previous SQL. The
modifications and resulting output are shown in Listing 7-14.

Examining the data in Listing 7-14 you can see that applying GROUPING() to the CUST_INCOME_LEVEL
column created aggregates from all AGE_RANGE values to be accumulated across all income levels. Doing
so for the AGE_RANGE column had similar effects, with totals aggregated for all values of INCOME_LEVEL
without regard to the value of AGE_RANGE. Including all of the columns from the CUBE extension as
arguments to the GROUPING() function will cause the aggregations to be condensed to a single row,
similar to what could be done with SUM(PROFIT) and a simple GROUP BY PROD_CATEGORY. Using the CUBE
extension, however, allows simple changes to the HAVING clause to create several different reports.

Listing 7-14. GROUPING() in the HAVING Clause

CUST_INCOME_LEVEL

35 group by prod_category, cube(cust_income_level,age_range)
36 having grouping(cust_income_level)=1

QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------------------ -------------------- -------- ---------------
Q3 Hardware ALL INCOME 60-70 $85,314.04
Q3 Hardware ALL INCOME 10-20 $90,849.87
Q3 Hardware ALL INCOME 0-10 $92,207.47
...

CHAPTER 7 ■ ADVANCED GROUPING

210

Q4 Hardware ALL INCOME ALL AGE $987,386.78

AGE_RANGE

35 group by prod_category, cube(cust_income_level,age_range)
36 having grouping(age_range)=1

QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------------------ -------------------- -------- ---------------
Q2 Hardware K: 250,000 - 299,999 ALL AGE $26,678.00
Q2 Hardware L: 300,000 and above ALL AGE $28,974.28
Q2 Hardware J: 190,000 - 249,999 ALL AGE $43,761.47
...
Q4 Hardware ALL INCOME ALL AGE $987,386.78

CUST_INCOME_LEVEL, AGE_RANGE

35 group by prod_category, cube(cust_income_level,age_range)
36 having grouping(cust_income_level)=1 and grouping(age_range)=1

QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------------------ -------------------- -------- ---------------
Q4 Electronics ALL INCOME ALL AGE $838,994.19
Q4 Hardware ALL INCOME ALL AGE $987,386.78
Q4 Peripherals and Accessories ALL INCOME ALL AGE $1,751,079.16
Q4 Photo ALL INCOME ALL AGE $1,570,866.04
Q4 Software/Other ALL INCOME ALL AGE $873,603.25

Extending Reports With GROUPING_ID()
The GROUPING_ID()function is relatively new compared to the GROUPING() function, having been
introduced in Oracle 9i, and is somewhat similar to the GROUPING() function. Whereas GROUPING()
evaluates the expression and returns a 0 or 1, the GROUPING_ID() function evaluates an expression,
determines which, if any, of the columns in its arguments are being used to generate a superaggregate
row, creates a bit vector, and returns that value as an integer.

Perhaps it would be simpler to see how GROUPING_ID() works with an example. The SQL in
Listing 7-15 first creates a single row consisting of two columns, BIT_1 and BIT_0, with values of 1 and 0
respectively. The subquery cubed uses GROUP BY CUBE to generate four rows from the single row of input.
The GROUPING_ID() function returns the decimal value of the bit vector that represents the actions of CUBE to
the current row. The first two uses of the GROUPING() function then create a 1 or 0 based on the actions of
CUBE on the row. These will be used to create a bit vector in the final output. The next two GROUPING()
functions then create values displayed in the final output indicating which column that CUBE is currently
working on. The final output displays the decimal bit vector, as well as a binary representation of the
vector. As would be expected with two binary digits, there are four rows of output.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 7 ■ ADVANCED GROUPING

211

Listing 7-15. GROUPING_ID() Bit Vector

 1 with rowgen as (
 2 select 1 bit_1, 0 bit_0
 3 from dual
 4),
 5 cubed as (
 6 select
 7 grouping_id(bit_1,bit_0) gid
 8 , to_char(grouping(bit_1)) bv_1
 9 , to_char(grouping(bit_0)) bv_0
 10 , decode(grouping(bit_1),1,'GRP BIT 1') gb_1
 11 , decode(grouping(bit_0),1,'GRP BIT 0') gb_0
 12 from rowgen
 13 group by cube(bit_1,bit_0)
 14)
 15 select
 16 gid
 17 , bv_1 || bv_0 bit_vector
 18 , gb_1
 19 , gb_0
 20 from cubed
 21 order by gid;

 BIT GROUPING GROUPING
 GID VECTOR BIT 1 BIT 0
---- ------ --------- ---------
 0 00
 1 01 GRP BIT 0
 2 10 GRP BIT 1
 3 11 GRP BIT 1 GRP BIT 0

4 rows selected.

So, what good is it? You already know how to use GROUPING() to control output via the HAVING clause,

why learn another way? Those are fair questions when you consider that the examples in Listing 7-14
can already create the wanted output.

In the interest of database efficiency, a single GROUPING_ID() call can be used to replace all of the
different HAVING GROUPING() clauses from Listing 7-14. The GROUPING() function is limited in its ability to
discriminate rows, as it can return only a 0 or 1. Since the GROUPING_ID() function returns a decimal
value based on a bit vector, it can easily be used to make many different comparisons without any
changes to the SQL.

Why should you care about changing comparisons without changing the SQL? If you are building an
application based on the sales history examples, the user may be given four choices of output, and any
one or more of them may be chosen. The user choices can be used as inputs to a single SQL statement
that uses HAVING GROUPING_ID(), rather than multiple SQL statements based on different combinations
of HAVING GROUPING(), so it requires less parsing of SQL by the database. It will also result in fewer SQL
statements to execute, less IO, and less memory usage.

CHAPTER 7 ■ ADVANCED GROUPING

212

Just as using CUBE eliminated multiple SQL statements joined by UNION ALL, GROUPING_ID() can
eliminate multiple SQL statements in your application. The choices given to the user will be as follows:

ALL DATA– Display all income level and age range aggregations

ALL AGE– Aggregate all age ranges together

ALL INCOME– Aggregate all income levels together

SUMMARY – Summary only

The application, a SQL*Plus script in this case, will assign to variables values corresponding to the
user’s choices. The SQL statement, in turn, will evaluate those variables via HAVING GROUPING_ID() to
output the requested rows. Listing 7-16 simulates the choices a user might make and demonstrates how
to use these inputs in the SQL. In the example, the only rows to be output will be those that are
aggregates of all income levels regardless of age group (ALL_AGE) and the summary columns for each
product category (ALL_AGE and ALL_INCOME_LEVEL). This is accomplished by setting N_AGE_RANGE and
N_SUMMARY to 2 and 4, respectively. These values correspond to the bit vector generated by the
GROUPING_ID() function found in the HAVING clause.

As used in the HAVING clause, 1 is added to the value generated by GROUPING_ID(). This is to enable
some consistency in setting the values of the variables that control the output. Without adding 1 to the
value, the N_ALL_DATA variable would be set to 0 to enable output, and some other value, such as -1 to
disable it. Increasing this comparison values by 1 makes it possible to consistently use 0 as a value to
disable output.

Listing 7-16. GROUPING_ID() To Control Report Output

SQL> variable N_ALL_DATA number
SQL> variable N_AGE_RANGE number
SQL> variable N_INCOME_LEVEL number
SQL> variable N_SUMMARY number
SQL>
SQL> begin
 2 -- set values to 0 to disable
 3 :N_ALL_DATA := 0; -- 1 to enable
 4 :N_AGE_RANGE := 2; -- 2 to enable
 5 :N_INCOME_LEVEL := 0; -- 3 to enable
 6 :N_SUMMARY := 4; -- 4 to enable
 7 end;
 8 /

 1 with tsales as (
 2 select /*+ gather_plan_statistics */
 3 s.quantity_sold
 4 , s.amount_sold
 5 , to_char(mod(cust_year_of_birth,10) * 10) || '-' ||
 6 to_char((mod(cust_year_of_birth,10) * 10) + 10) age_range
 7 , nvl(c.cust_income_level,'A: Below 30,000') cust_income_level
 8 , p.prod_name
 9 , p.prod_desc
 10 , p.prod_category

CHAPTER 7 ■ ADVANCED GROUPING

213

 11 , (pf.unit_cost * s.quantity_sold) total_cost
 12 , s.amount_sold - (pf.unit_cost * s.quantity_sold) profit
 13 from sh.sales s
 14 join sh.customers c on c.cust_id = s.cust_id
 15 join sh.products p on p.prod_id = s.prod_id
 16 join sh.times t on t.time_id = s.time_id
 17 join sh.costs pf on
 18 pf.channel_id = s.channel_id
 19 and pf.prod_id = s.prod_id
 20 and pf.promo_id = s.promo_id
 21 and pf.time_id = s.time_id
 22 where (t.fiscal_year = 2001)
 23)
 24 select
 25 'Q' || to_char(grouping_id(cust_income_level,age_range)+1) query_tag
 26 , prod_category
 27 , decode(grouping(cust_income_level),1,'ALL INCOME',cust_income_level)
cust_income_level
 28 , decode(grouping(age_range),1,'ALL AGE',age_range) age_range
 29 , sum(profit) profit
 30 from tsales
 31 group by prod_category, cube(cust_income_level,age_range)
 32 having grouping_id(cust_income_level,age_range)+1
 33 in(:N_ALL_DATA,:N_AGE_RANGE,:N_INCOME_LEVEL,:N_SUMMARY)
 34 order by prod_category, profit;

QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------------------ -------------------- -------- ---------------
...
Q2 Hardware K: 250,000 - 299,999 ALL AGE $26,678.00
Q2 Hardware L: 300,000 and above ALL AGE $28,974.28
Q2 Hardware J: 190,000 - 249,999 ALL AGE $43,761.47
...
Q2 Hardware E: 90,000 - 109,999 ALL AGE $135,154.59
Q2 Hardware F: 110,000 - 129,999 ALL AGE $199,270.01
Q4 Hardware ALL INCOME ALL AGE $987,386.78
...
65 rows selected.

To be fair, it is possible to achieve the same results using the GROUPING() function, but it requires

several tests to be placed in the HAVING clause. The queries of sample sales history data include only two
columns in the CUBE arguments. The total number of tests required in the HAVING clause is four, as
GROUPING() clause will return either a 1 or a 0, so there are two possible values for each of your columns,
resulting in four tests. That doesn’t seem too bad, but consider what happens when there three
columns: the number of tests goes up to nine. The number of tests required will be 2^n where n is the
number of columns or expressions in arguments to CUBE.

CHAPTER 7 ■ ADVANCED GROUPING

214

Listing 7-17 shows the HAVING clause as it might appear using GROUPING() rather than GROUPING_ID().
This approach would soon become unwieldy if there were many arguments required for the CUBE
extension. The four separate tests shown should not be too much trouble to maintain. However, if the
number of column in the CUBE arguments goes up from two to three, there will then be nine tests. This is
not code that lends itself well to maintenance.

Listing 7-17. Using GROUPING() instead of GROUPING_ID()

32 having -- bin_to_num() requires 9i+
33 (bin_to_num(grouping(cust_income_level), grouping(age_range))+1 = :N_ALL_DATA)
34 or (bin_to_num(grouping(cust_income_level), grouping(age_range))+1 = :N_AGE_RANGE)
35 or (bin_to_num(grouping(cust_income_level), grouping(age_range))+1 = :N_INCOME_LEVEL)
36 or (bin_to_num(grouping(cust_income_level), grouping(age_range))+1 = :N_SUMMARY)

EXPERIMENT WITH GROUPING() AND GROUPING_ID()

As an exercise, modify the code from Listing 7-16 so that it adds another column to the arguments to
CUBE. Then modify the call to GROUPING_ID() in the HAVING clause to work with the new column. This
will require a new variable as well in the PL/SQL block.

After you have that working, replace the GROUPING_ID() call with all the tests needed to accomplish the same
output control with GROUPING(). Do you like the results? Is this code that you would like to maintain?

GROUPING SETS and ROLLUP()
There is yet another method that may be used to obtain the results seen in the previous two examples.
The GROUPING SETS() extension to GROUP BY made its debut with Oracle 9i. The entire GROUP BY … HAVING
clause of the previous example can be replaced with GROUP BY GROUPING SETS(). However, just because
you can do something doesn’t mean you should. Let’s look at example to understand just why you may
not want to use GROUPING SETS(). Lines 31–33 in Listing 7-16 can be replaced by lines 31–36 in
Listing 7-18.

Listing 7-18. GROUPING SETS()

 1 with tsales as (
 2 select /*+ gather_plan_statistics */
 3 s.quantity_sold
 4 , s.amount_sold
 5 , to_char(mod(cust_year_of_birth,10) * 10) || '-' ||
 6 to_char((mod(cust_year_of_birth,10) * 10) + 10) age_range
 7 , nvl(c.cust_income_level,'A: Below 30,000') cust_income_level
 8 , p.prod_name
 9 , p.prod_desc
 10 , p.prod_category

CHAPTER 7 ■ ADVANCED GROUPING

215

 11 , (pf.unit_cost * s.quantity_sold) total_cost
 12 , s.amount_sold - (pf.unit_cost * s.quantity_sold) profit
 13 from sh.sales s
 14 join sh.customers c on c.cust_id = s.cust_id
 15 join sh.products p on p.prod_id = s.prod_id
 16 join sh.times t on t.time_id = s.time_id
 17 join sh.costs pf on
 18 pf.channel_id = s.channel_id
 19 and pf.prod_id = s.prod_id
 20 and pf.promo_id = s.promo_id
 21 and pf.time_id = s.time_id
 22 where (t.fiscal_year = 2001)
 23)
 24 select
 25 'Q' || to_char(grouping_id(cust_income_level,age_range)+1) query_tag
 26 , prod_category
 27 , decode(grouping(cust_income_level),1,'ALL INCOME',cust_income_level)
cust_income_level
 28 , decode(grouping(age_range),1,'ALL AGE',age_range) age_range
 29 , sum(profit) profit
 30 from tsales
 31 group by prod_category, grouping sets(
 32 rollup(prod_category), -- sub total by product category
 33 (cust_income_level), -- aggregate by category and income levels only
 34 (age_range), -- aggregate by category and age only
 35 (cust_income_level,age_range) -- aggregates by category, all age and income
 36)
 37 --having group_id() < 1
 38 order by prod_category, profit;

QUERY AGE
TAG PRODUCT CATEGORY INCOME LEVEL RANGE PROFIT
------ ------------------------------ -------------------- -------- ---------------
...
Q2 Software/Other E: 90,000 - 109,999 ALL AGE $124,416.04
Q2 Software/Other F: 110,000 - 129,999 ALL AGE $169,482.11
Q4 Software/Other ALL INCOME ALL AGE $873,603.25
Q4 Software/Other ALL INCOME ALL AGE $873,603.25

756 rows selected.

The output shown in Listing 7-18 is similar to that seen when the SQL from Listing 7-16 is executed
with all of the output categories enabled. That is a major difference between using GROUP BY CUBE
HAVING GROUPING_ID() and GROUP BY GROUPING SETS. The former may be used to easily modify the
output simply by setting variables to the correct values, while output from the latter cannot be modified
except by modifying or dynamically generating the SQL. Modifying the SQL means there will be more
code to maintain and more resources consumed in the database. Dynamically generating the SQL is,

CHAPTER 7 ■ ADVANCED GROUPING

216

well, usually just not a good idea if it can be avoided: it will consume more database resources, and it is
much harder to troubleshoot when problems arise.

As mentioned previously, the output in Listing 7-18 is similar to that in Listing 7-16, but not the
same. The last two lines of the output shown are duplicates. Sometimes the GROUPING_SETS() extension
can cause duplicates to appear in the output. In this case, the duplicates are caused by the
ROLLUP(PROD_CATEGORY) line. You can prove that to yourself by removing ROLLUP() from the code in
Listing 7-18 and rerunning it. The duplicate lines will no longer appear. However, the totals for each
Product Category will no longer appear either. The solution is to use the GROUP_ID() function to identify
those duplicate rows, and insert it into a HAVING clause.

The HAVING clause can be seen commented out in Listing 7-18. If you uncomment it and then re-run
the script, the output will appear as expected without the duplicate rows. Interestingly, if the
ROLLUP(PROD_CATEGORY) line is replaced with (NULL), the HAVING clause can be removed, and the output
will appear as expected.

The ROLLUP() extension to GROUP BY can also be used by itself to create running subtotals that would
otherwise require multiple queries joined by UNION ALL. Suppose that someone from the Sales
Department asked you to create a report showing totals of all purchases by customers whose last name
begins with “Sul.” In addition, there need to be subtotals for each year by customer, each product
category by customer, and a grand total of all sales. This kind of task is easily handled by ROLLUP().
Listing 7-19 shows one way to write a query to satisfy that request.

Notice that the DECODE() and GROUPING() functions are again used to indicate subtotal rows. Also, the
grand total is forced to appear at the end of the report by the use of GROUPING(M.CUST_NAME). As the only
time this value will be > 0 is when the total for all customers is calculated, the grand total appears at the
end of the report as expected.

Listing 7-19. ROLLUP() Subtotals

 1 with mysales as (
 2 select
 3 c.cust_last_name ||',' || c.cust_first_name cust_name
 4 , p.prod_category
 5 , to_char(trunc(time_id,'YYYY'),'YYYY') sale_year
 6 , p.prod_name
 7 , s.amount_sold
 8 from sh.sales s
 9 join sh.products p on p.prod_id = s.prod_id
 10 join sh.customers c on c.cust_id = s.cust_id
 11 where c.cust_last_name like 'Sul%'
 12 --where s.time_id = to_date('01/01/2001','mm/dd/yyyy')
 13)
 14 select
 15 decode(grouping(m.cust_name),1,'GRAND TOTAL',m.cust_name) cust_name
 16 , decode(grouping(m.sale_year),1,'TOTAL BY YEAR',m.sale_year) sale_year
 17 , decode(grouping(m.prod_category),1,'TOTAL BY CATEGORY',m.prod_category)
prod_category
 18 , sum(m.amount_sold) amount_sold
 19 from mysales m
 20 group by rollup(m.cust_name, m.prod_category, m.sale_year)
 21 order by grouping(m.cust_name), 1,2,3;

CHAPTER 7 ■ ADVANCED GROUPING

217

CUSTOMER SALE_YEAR PRODUCT CATEGORY AMT SOLD
------------------------------ ------------- ------------------------------ --------------
…
Sullivan,Rue 1998 Peripherals and Accessories $259.90
Sullivan,Rue 1998 Software/Other $19.59
Sullivan,Rue 2000 Electronics $2,213.30
Sullivan,Rue 2000 Hardware $1,359.06
Sullivan,Rue 2000 Peripherals and Accessories $1,169.94
Sullivan,Rue 2000 Photo $331.33
Sullivan,Rue 2000 Software/Other $933.87
Sullivan,Rue TOTAL BY YEAR Electronics $2,213.30
Sullivan,Rue TOTAL BY YEAR Hardware $1,359.06
Sullivan,Rue TOTAL BY YEAR Peripherals and Accessories $1,429.84
Sullivan,Rue TOTAL BY YEAR Photo $331.33
Sullivan,Rue TOTAL BY YEAR Software/Other $953.46
Sullivan,Rue TOTAL BY YEAR TOTAL BY CATEGORY $6,286.99
GRAND TOTAL TOTAL BY YEAR TOTAL BY CATEGORY $86,994.89

68 rows selected.

GROUP BY Restrictions
Your study of GROUP BY would be incomplete without considering what it cannot do. The list of
restrictions placed on GROUP BY is not very long. The restrictions are listed in the Oracle 11.2 SQL
Language Reference for Oracle 11.2. For example:

• LOB columns, nested tables, or arrays may not be used as part of a GROUP BY expression.

• Scalar subquery expressions are not allowed.

• Queries cannot be parallelized if the GROUP BY clause references any object type columns.

SQL queries were constructed to demonstrate the first two restrictions as shown in Listing 7-20 and
7-21. The error messages clearly show that LOB columns and scalar subqueries cannot be used as part
of GROUP BY clause.

Listing 7-20. GROUP BY Restrictions – LOB Not Allowed

SQL> @l_7_2
 1 with lobtest as (
 2 select to_clob(d.dname) dname
 3 from scott.emp e
 4 join scott.dept d on d.deptno = e.deptno
 5)
 6 select l.dname
 7 from lobtest l
 8* group by l.dname
group by l.dname;
 *

CHAPTER 7 ■ ADVANCED GROUPING

218

ERROR at line 8:
ORA-00932: inconsistent datatypes: expected - got CLOB

Listing 7-21. GROUP BY Restrictions – Scalar Subquery Not Allowed

 1 select d.dname, count(empno) empcount
 2 from scott.emp e
 3 join scott.dept d on d.deptno = e.deptno
 4 group by (select dname from scott.dept d2 where d2.dname = d.dname)
 5 order by d.dname;
group by (select dname from scott.dept d2 where d2.dname = d.dname);
 *
ERROR at line 4:

ORA-22818: subquery expressions not allowed here

The final restriction listed appears to be a documentation error. Evidence for that can be seen in

Listing 7-22 where the GROUP BY on an OBJECT datatype is being executed in parallel, contrary to what the
documentation states. The member function match in the dept_location type body is used to compare
the value for city, and this in turn is used by GROUP BY to group employees by CITY. Should you need to
create aggregations based on data in an OBJECT column, you can certainly do so as of Oracle 11.1.0.7.
Testing has shown that the GROUP BY of Listing 7-22 will not be executed in parallel in Oracle 11.1.0.6.

Listing 7-22. GROUP BY on Object Column in Parallel

SQL> create type dept_location_type
 2 as object
 3 (
 4 street_address VARCHAR2(40)
 5 , postal_code VARCHAR2(10)
 6 , city VARCHAR2(30)
 7 , state_province VARCHAR2(10)
 8 , country_id CHAR(2)
 9 , order member function match (e dept_location_type) return integer
 10);
 11 /

Type created.

SQL>
SQL> create or replace type body dept_location_type
 2 as order member function match (e dept_location_type) return integer
 3 is
 4 begin
 5 if city < e.city then
 6 return -1;
 7 elsif city > e.city then
 8 return 1;
 9 else
 10 return 0;

CHAPTER 7 ■ ADVANCED GROUPING

219

 11 end if;
 12 end;
 13 end;
 14 /

Type body created.

SQL>
SQL> create table deptobj
 2 as
 3 select d.deptno,d.dname
 4 from scott.dept d;
Table created.
SQL> alter table deptobj add (dept_location dept_location_type);
Table altered.
SQL> update deptobj set dept_location =
 2 dept_location_type('1234 Money St', '97401','Eugene', 'OR', 'US')
 3 where deptno=20;
1 row updated.
SQL> update deptobj set dept_location =
 2 dept_location_type('459 Durella Street', '97463','Oakridge', 'OR', 'US')
 3 where deptno=40;
1 row updated.
SQL> update deptobj set dept_location =
 2 dept_location_type('12642 Rex Rd', '97006','Beavertown', 'OR', 'US')
 3 where deptno=10;
1 row updated.
SQL> update deptobj set dept_location =
 2 dept_location_type('9298 Hamilton Rd', '97140','George', 'WA', 'US')
 3 where deptno=30;
1 row updated.

1 commit;
Commit complete.
PL/SQL procedure successfully completed.

 1 select /*+ gather_plan_statistics parallel(e 2)*/
 2 d.dept_location, count(e.ename) ecount
 3 from scott.emp e, deptobj d
 4 where e.deptno = d.deptno
 5 group by dept_location
 6 order by dept_location;

CHAPTER 7 ■ ADVANCED GROUPING

220

DEPT_LOCATION(STREET_ADDRESS, POSTAL_CODE, CITY, STATE_PROVI ECOUNT
-- ------
DEPT_LOCATION_TYPE('1234 Money St', '97401', 'Eugene', 'OR', 'US') 5
DEPT_LOCATION_TYPE('12642 Rex Rd', '97006', 'Beavertown','OR','US') 3
DEPT_LOCATION_TYPE('9298 Hamilton Rd', '97140', 'George','WA','US') 6
3 rows selected.

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Starts | E-Rows | A-Rows |

0	SELECT STATEMENT		1		3
1	PX COORDINATOR		1		3
2	PX SEND QC (ORDER)	:TQ10002	0	14	0
3	SORT GROUP BY		0	14	0
4	PX RECEIVE		0	14	0
5	PX SEND RANGE	:TQ10001	0	14	0
6	HASH GROUP BY		0	14	0
* 7	HASH JOIN		0	14	0
8	BUFFER SORT		0		0
9	PX RECEIVE		0	4	0
10	PX SEND BROADCAST	:TQ10000	0	4	0
11	TABLE ACCESS FULL	DEPTOBJ	1	4	4
12	PX BLOCK ITERATOR		0	14	0
* 13	TABLE ACCESS FULL	EMP	0	14	0

Summary
Oracle has provided some excellent tools for the SQL practitioner in the form of extensions to the GROUP
BY clause. Not only do they reduce code, they improve database efficiency. They do, however, take some
dedication and practice to learn how best to use them. The introduction here to advanced grouping
features is by no means comprehensive. Most of these features can be combined for many different
effects, far more than is practical to include in a book. Please endeavor to make use of these features in
your own applications and continue to experiment with them based on what you have learned here.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 8

■ ■ ■

221

Analytic Functions

Riyaj Shamsudeen

Online Analytic Processing (OLAP) queries perform multi-dimensional aggregation and are useful in
business decision-making processes in areas such as sales, marketing, and business intelligence. Fast
execution is important for OLAP queries as key decisions hinge on the outcome of OLAP queries and
reports.

Although conventional SQL statements can be used to implement OLAP queries, these statements
usually result in multiple self-joins, leading to poorly performing queries. In addition, multi-dimensional
analysis usually requires aggregation at various levels, and both aggregated and non-aggregated rows
must be returned. In the case of conventional SQL statements, fetching the aggregated and non-
aggregated values in the same row usually results in a multitude of self-joins.

Analytic function is a new class of functions introduced in Oracle Database version 9i and enhanced
in the later releases of Oracle Database. These functions provide the ability to reference values across
rows, multi-level aggregation, and granular control of sort order in a subset of data. In contrast to
grouping functions, analytic functions do not aggregate a result set into fewer rows.

With the use of analytic functions, you can fetch both aggregated and non-aggregated values
without any self-joins. Consider that fetching the salary of an employee, with average salary by
department and average salary by location in the same row, would require multiple self-joins to
employees table. Analytic functions can be used to write this query without any self-joins.

Analytic functions are sometimes termed as window functions. Analytic functions perform
calculations within a subset of result set related to the current row by some means. That subset can be
termed the window.

Example Data
To begin your investigation of the analytic SQL functions, you will create a denormalized fact table using
the script in Listing 8-1. All the tables in this chapter refer to the objects in SH Schema supplied by
Oracle Corporation Example scripts.

■NOTE To install the Example schema, software can be downloaded from http://download.oracle.com/otn/
solaris/oracle11g/R2/solaris.sparc64_11gR2_examples.zip for the 11gR2 Solaris platform. Refer to the
Readme document in the unzipped software directories for installation instructions. Zip files for other platforms
and versions are also available at this Oracle web site.

http://download.oracle.com/otn

CHAPTER 8 ■ ANALYTIC FUNCTIONS

222

Listing 8-1. Denormalized sales_fact Table

drop table sales_fact;
CREATE table sales_fact AS
SELECT country_name country,country_subRegion region, prod_name product,

calendar_year year, calendar_week_number week,
SUM(amount_sold) sale,
sum(amount_sold*
 (case
 when mod(rownum, 10)=0 then 1.4
 when mod(rownum, 5)=0 then 0.6
 when mod(rownum, 2)=0 then 0.9
 when mod(rownum,2)=1 then 1.2
 else 1
 end)) receipts

FROM sales, times, customers, countries, products
WHERE sales.time_id = times.time_id AND
sales.prod_id = products.prod_id AND
sales.cust_id = customers.cust_id AND
customers.country_id = countries.country_id
GROUP BY
country_name,country_subRegion, prod_name, calendar_year, calendar_week_number;

function1 (argument1, argument2,..argumentN)
 over ([partition-by-clause] [order-by-clause] [windowing-clause])

Anatomy of Analytic Functions
Analytic functions have three basic components: partitioning-clause, order-by-clause, and the
windowing clause. Basic syntax of an analytic function is:

function1 (argument1, argument2,..argumentN)
 over ([partition-by-clause] [order-by-clause] [windowing-clause])

Function1 is the analytic function to call which accepts zero or more arguments. The partitioning

clause groups the rows by partitioning column values. All rows with the same value for the partitioning
column are grouped as a data partition.

Operationally, rows are sorted by the partitioning columns and partitioned into data partitions. For
example, the SQL clause partition by product, country partitions the data using the Product and
Country columns. Rows are sorted by both Product and Country columns and grouped into one
partition for each combination of product and country.

The order-by clause sorts the rows in a data partition by a column or expression. In an analytic SQL
statement, the position of a row in the data partition is important and it is controlled by the order-by
clause. Rows are sorted by the sort columns within a data partition. Since the partitioning clause sorts
the rows by the partitioning columns, you actually end up with one sort that includes columns specified
in the partitioning clause and order-by clause.

CHAPTER 8 ■ ANALYTIC FUNCTIONS

223

Sort order can be specified as ascending or descending order. Nulls can be specified to sort to the
top or bottom in a data partition using the clause NULLS FIRST or NULLS LAST.

The windowing clause specifies the subset of rows on which the analytic function operates. This
window can be dynamic and is aptly termed a sliding window. You can specify the top and bottom
boundary condition of the sliding window using the window specification clause. Syntax for the window
specification clause is:

[ROWS | RANGE] BETWEEN <Start expr> AND <End expr>

Whereas
<Start expr> is [UNBOUNDED PRECEDING | CURRENT ROW | n PRECEDING | n FOLLOWING]
<End expr> is [UNBOUNDED FOLLOWING | CURRENT ROW | n PRECEDING | n FOLLOWING]

The keyword PRECEDING specifies the top boundary condition, and the clause FOLLOWING or CURRENT

ROW specifies the bottom boundary condition for the window. A sliding window provides the ability to
compute complex metrics with ease. For example, you can compute the running sum of the Sale column
by the clause rows between unbounded preceding and current row. In this example, the top row in the
window is the first row in the current partition and the bottom row in the window is the current row.

■NOTE The windowing clause is not supported by all analytic functions.

Analytic functions may not be nested. But a nesting effect can be achieved by placing the
encompassing SQL statement in an inline view, and then applying analytic functions outside the view.
Analytic functions can be used in deeply nested inline views, too.

List of Functions
The following section tabulates the analytic functions for easy reference.

Table 8-1. Analytic Functions

Sl. No Function Description

1 Lag To access prior row in a partition or result set.

2 Lead To access later row in a partition or result set

3 First_value To access first row in a partition or result set.

4 Last_value To access last row in a partition or result set.

5 Nth_value To access any arbitrary row in a partition or result set.

6 Rank To rank the rows in a sort order. Ranks are skipped in the case of ties.

continued

CHAPTER 8 ■ ANALYTIC FUNCTIONS

224

Table 8-1. Continued

Sl. No Function Description

7 Dense_rank To rank the rows in a sort order. Ranks are not skipped in the case of
ties.

8 Row_number To sort the rows and add unique number to each row. This is a non-
deterministic function.

9 Ratio_to_report To compute the ratio of value to the report.

10 Percent_rank To compute the rank of value normalized to a value between 0 and 1.

11 Percentile_cont To retrieve the value matching with the specified percent_rank.
Reverse of percent_rank function.

12 Percentile_dist To retrieve the value matching with the specified percent_rank.
Assumes discreet distribution model.

13 Ntile To group rows in to units.

14 Listagg To convert column values from different rows in to a list format.

Aggregation Functions
Aggregation functions can operate in analytic mode or conventional non-analytic mode. Aggregation
functions in non-analytic mode reduce the result set to fewer rows. However, in analytic mode,
aggregation functions do not reduce the result set. Further, the aggregation functions can fetch both
aggregated and non-aggregated columns in the same row. Aggregation functions in analytic mode
provide the ability to aggregate data at different levels without any need for a self-join.

Analytic functions are useful in writing complex report queries aggregating data at different levels.
Consider a demographic market analysis report for a product, a favorite among advertising executives,
which requires sales data to be aggregated at myriad levels such as age, gender, store, district, region,
and country. Aggregation functions in the analytic mode can be effectively utilized to implement this
market analysis report with ease. Analytic functions will markedly improve the clarity and performance
of the SQL statements, compared to its non-analytic counterparts.

Let’s review the example in the Listing 8-2. The SQL statement is calculating the running of sum of
Sale column from the beginning of the year for a product, country, region, and year combination. The
clause partition by product, country, region, year specifies the partition columns. Within the data
partition, rows are sorted by the Week column using the clause order by week.

In Listing 8-2, the SQL is calculating the running of sum of Sale column, so the analytic function
must operate on window of rows from the beginning of the year to the current week. That goal is
achieved by the windowing clause rows between unbounded preceding and current row. The sum(sale)
function calculates the sum of Sale column values over this window of rows. Since the rows are sorted by
the Week column, the sum function is operating over a set of rows from the beginning of the year until
the current week.

CHAPTER 8 ■ ANALYTIC FUNCTIONS

225

Listing 8-2. Running Sum of Sale Column

1 select year, week,sale,
2 sum (sale) over(
3 partition by product, country, region, year
4 order by week
5 rows between unbounded preceding and current row
6) running_sum_ytd
7 from sales_fact
8 where country in ('Australia') and product ='Xtend Memory'
9* order by product, country,year, week
/
 YEAR WEEK SALE RUNNING_SUM_YTD
----- ---- ---------- ----------------
...
 2000 49 42.38 3450.85
 2000 50 21.19 3472.04
 2000 52 67.45 3539.49
 2001 1 92.26 92.26
 2001 2 118.38 210.64
 2001 3 47.24 257.88
 2001 4 256.70 514.58
...

Notice in the output of Listing 8-2, column Running_sum_ytd is the output of the sum function in

the analytic mode. The column value resets at the onset of the new year 2001. Since year is also a
partitioning column, so a new partition starts with each new year.

When a new year begins, the window slides to the next data partition, and the sum function begins
aggregating from Week 1. Implementing this functionality with a conventional SQL statement would
lead multiple self-joins and/or costly column level sub queries.

Aggregate Function Over An Entire Partition
In some cases, analytic functions might need to be applied over all rows in a given data partition. For
example, computing the maximum value of the Sale column for the entire year would require a window
encompassing every row in the data partition. In the Listing 8-3, you use the SQL clause rows between
unbounded preceding and unbounded following to specify that the MAX function applies to all rows in a
data partition. The key difference between Listing 8-2 and Listing 8-3 is that the clause unbounded
following specifies the window size to include all rows in a data partition.

Listing 8-3. Maximum of Sale Column

1 select year, week,sale,
2 max (sale) over(
3 partition by product, country, region ,year
4 order by week
5 rows between unbounded preceding and unbounded following
6) Max_sale
7 from sales_fact

CHAPTER 8 ■ ANALYTIC FUNCTIONS

226

8 where country in ('Australia') and product ='Xtend Memory'
9* order by product, country,year, week
/
 YEAR WEEK SALE MAX_SALE
----- ---- ---------- ---------------
...
 2000 44 135.24 246.74
 2000 45 67.62 246.74
 2000 46 246.74 246.74
...
 2000 50 21.19 246.74
 2000 52 67.45 246.74
 2001 1 92.26 278.44
 2001 2 118.38 278.44
...

Granular Window Specifications
Window specification can be more granular, too. Let’s say that you want to calculate the Maximum of
Sale column for a five week window period encompassing two weeks prior to the current week, the
current week, and the two weeks following the current week. You can do that using the clause rows
between 2 preceding and 2 following.

In the Listing 8-4, for week 36, the maximum value for the Sale column in the 5 week window is
178.52. For week 37, the maximum value for the Sale column in the 5 week window is 118.41. You can see
those values in the MAX_WEEKS_5 column of the output.

Listing 8-4. Maximum of Sale Column for a Span of Five Weeks Window

1 select year, week,sale,
2 max (sale) over(
3 partition by product, country, region ,year
4 order by week
5 rows between 2 preceding and 2 following
6) max_weeks_5
7 from sales_fact
8 where country in ('Australia') and product ='Xtend Memory'
9* order by product, country,year, week
/
YEAR WEEK SALE MAX_WEEKS_5
---- ---- ---------- -----------
...
2000 34 178.52 178.52
2000 35 78.82 178.52
2000 36 118.41 178.52
2000 37 117.96 118.41
2000 38 79.36 118.41
...

CHAPTER 8 ■ ANALYTIC FUNCTIONS

227

Default Window Specification
The default windowing clause is rows between unbounded preceding and current row. If you do not
explicitly specify a window, you’ll get the default window. It is a good approach to specify this clause
explicitly to avoid ambiguities.

Lead and Lag
Lag and lead functions provide inter-row referencing ability. Lag provides the ability to access prior row
in the result set. The lead function allows access to later row in the result set.

In retail industry, same-store sales is a metric calculated to measure an outlet’s performance, usually
sales data compared to the same quarter last year. With normalized data model, this metric calculation
would require accessing another row as the Sale column values for current and prior years are stored in
different rows. Using the powerful inter-row referencing ability of lead and lag functions, this metric can
be calculated with ease.

Another example is percentage increase or decrease calculations requiring access to the prior or
following row. This calculation can be optimally written using lead and lag functions, too.

Syntax and Ordering
As discussed earlier, data in analytic SQL is partitioned on a partitioning column. Fetching a prior row is
a position-dependant operation, and the order of the rows in a data partition is important in
maintaining logical consistency. Within a data partition, rows are sorted with an order by clause to
control the position of a row in the result set. Syntax for the lag function is:

 lag (expression, offset, default) over (partition-clause order-by-clause)

Lead and lag functions do not support windowing clause. Only partition-by and order by clauses

are supported with these two functions.

Example 1: Returning a Value from Prior Row
Let’s say that you need to fetch the sales quantity for the current week and prior week in the same row.
Your requirement indicates an inter-row reference, and this in turn necessitates a need for a self-join in
a non-analytic SQL statement. However, the lag function provides this inter-row reference without a
self-join.

Listing 8-5 uses lag(sale,1,sale) to retrieve the Sale column value from one row prior in the result
set. The clause order by year, week specifies the column sort order in each data partition. Since the
rows are ordered by the columns Year and Week, the function lag(sale,1,sale) is retrieving the sale
column value from the prior row, which is the Sale column value from the prior week (assuming no gaps
in the week Column). For example, refer to the row where Year=1998 and week=3. For that row, the lag
function is retrieving the Sale column value from the prior row where Year=1998 and week=2. Notice
that analytic function does not specify the partitioning column in the clause lag(sale,1,sale). It is
implicitly referring to the current partition.

CHAPTER 8 ■ ANALYTIC FUNCTIONS

228

Listing 8-5. Lag Function

col product format A30
col country format A10
col region format A10
col year format 9999
col week format 99
col sale format 999999.99
col receipts format 999999.99
set lines 120 pages 100
1 select year, week,sale,
2 lag(sale,1,sale) over(
3 partition by product, country, region
4 order by year, week
5) prior_wk_sales
6 from sales_fact
7 where country in ('Australia') and product ='Xtend Memory'
8 order by product, country,year, week
9 /

YEAR WEEK SALE PRIOR_WK_SALES
---- ---- ---------- --------------
1998 1 58.15 58.15
1998 2 29.39 58.15
1998 3 29.49 29.39
...
1998 52 86.38 58.32
1999 1 53.52 86.38
1999 3 94.60 53.52

The third argument in the lag function specifies a default value and it is optional. If the analytic
function refers to a non-existent row, then a null is returned. That’s the default behavior, which you can
modify by specifying some other return value in the third argument. For example, consider the row with
Year=1998 and Week=1. That is the first row in its data partition. In that row’s case, the lag function is
accessing a non-existing prior row. Because the third argument to lag is Sale, the lag function will return
the current row’s Sale value when the referenced row does not exist.

Understanding that Offset is in Rows
It is possible to access any row within a data partition by specifying a different offset. In Listing 8-6, the
lag function is using an offset of 10 to access prior tenth row. Output also shows that at row with
Year=2001 and Week=52, the lag function is accessing the tenth prior row in the result set, which is for
the week=40. Notice that Lag (sale,10,sale) is not accessing the week=42 by subtracting 10 from the
current week column value of 52; rather, this clause is accessing tenth prior row in the partition. In this
case, the tenth prior row is the row with a Week column value equal to 40.

This issue is tricky, as usually data gaps are not detected in the development environment. But in
the production environment, this problem manifests itself as a bug. If there are gaps in the data, as in
this example, you have a few options: populate dummy values for the missing rows or use the model
clause discussed in Chapter 9.

CHAPTER 8 ■ ANALYTIC FUNCTIONS

229

Listing 8-6. Lag Function with Offset of 10

1 select year, week,sale,
2 lag(sale,10,sale) over(
3 partition by product, country, region
4 order by year, week
5) prior_wk_sales_10
6 from sales_fact
7 where country in ('Australia') and product ='Xtend Memory'
8 order by product, country,year, week
9 /

 YEAR WEEK SALE PRIOR_WK_SALES_10
----- ---- ---------- -----------------
2001 38 139.00 139.28
2001 39 115.57 94.48
2001 40 45.18 116.85
2001 41 67.19 162.91
...
2001 49 45.26 93.16
2001 50 23.14 139
2001 51 114.82 115.57
2001 52 23.14 45.18

Example 2: Returning a Value from an Upcoming Row
The lead function is similar to the lag function, except that the lead function accesses later rows in the
ordered result set. For example, in the Listing 8-7, the clause lead(sale, 1,sale) is accessing a later row
in the ordered result set.

Listing 8-7. Lead Function

 1 select year, week,sale,
 2 lead(sale, 1,sale) over(
 3 partition by product, country, region
 4 order by year, week
 5) prior_wk_sales
 6 from sales_fact
 7 where country in ('Australia') and product ='Xtend Memory'
 8* order by product, country,year, week

YEAR WEEK SALE PRIOR_WK_SALES
---- ---- ---------- --------------
2000 31 44.78 134.11
2000 33 134.11 178.52
2000 34 178.52 78.82
2000 35 78.82 118.41
...

CHAPTER 8 ■ ANALYTIC FUNCTIONS

230

The partition-by clause can be used to specify different partition boundaries and the order-by
clause can be used to alter the sorting order within a partition. With effective choice of partitioning and
order by columns, any row in a result set can be accessed.

First_value & Last_value
First_value and last_value functions are useful in calculating the maximum and minimum values in an
ordered result set. The first_value function retrieves the column value from the first row in a window of
rows, and the last_value function retrieves the column value from the last row in that window. Queries
generating reports such as Top Store by Sales for a product and market segment are classic use cases for
these analytic functions. Usually, store details and sales amounts would be shown in the report together
for the store with maximum value in the Sale column. With proper partition-clause specification, the
first_value function can be used retrieve these values in an optimal manner. Essentially, any report
calculating maximum and minimum values can utilize first_value and last_value functions.

Power of first_value and last_value functions emanates from the support for partitioning and
windowing clauses. Multi-level aggregation can be implemented concisely using the partitioning clause.
For example, if the goal is to fetch the rows with maximum or minimum column values aggregated at
different levels such as country, product, or region from the Sales table, then implementing the multi-
level aggregation is akin to deciding the columns to include in the partitioning clause.

Utilizing windowing clause, you can define sliding dynamic window for these functions to operate.
This window can be defined to include just a few prior and/or later rows or every row in a data partition.
Specifically, queries computing metrics such as maximum sales so far can be implemented using these
functions. As the window can be defined to be a sliding window, these two functions can be used to
answer questions such as Which store had maximum sales in the past three weeks?, Which product had
maximum returns in the last two weeks, etc.

Syntax for the first_value function is:

first_value(expression) over (partition-clause order-by-clause windowing-clause)

In Listing 8-8, the clause partition by product, country, region, year is partitioning the rows
using the specified partitioning columns. The rows are sorted in a descending order on the Sale column
values by the clause order by sale desc.

The top and bottom boundary condition of the window is specified by the clause rows between
unbounded preceding and unbounded following. In this example, you are retrieving the top sales value at
a level of Product, Country, Region, and Year columns and hence, the window includes all rows in a data
partition.

Operationally, data is sorted by Product, Country, Region, Year, and Sale columns. Sorting order for
the Sale column is descending order, though. The first row in every data partition will have the highest
value for the Sale column due to descending sort order specification of the Sale column. So, the
first_value(sale) clause is fetching the maximum Sale column value in the data partition.

In addition to fetching the maximum column value, you might want to fetch other columns from
that top row. For example, you might want to fetch the Year and Week column value in which the
maximum sale occurred. In conventional SQL statement, implementing this would result in a join and
subquery. But, with analytic functions it is simpler to fetch other attributes from that top row too.
Hence, the first_value(week) clause, with other parts of the analytic function kept the same as the
first_value(sale), will fetch the Week column value associated with that top row.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 ■ ANALYTIC FUNCTIONS

231

Example: First_value to Calculate Maximum
In Listing 8-8 output, the Top_sale_year column is an aggregated column calculating the maximum
value of the Sale column. The Sale column is non-aggregated column. Both aggregated and not-
aggregated column values are fetched in the same row without a self join.

Aggregation can be performed at a different level with a different partitioning clause. For example,
to compute the maximum value at product, country, and region level, the partitioning clause would be
partition by product, country, region.

Listing 8-8. First_value Function

 1 select year, week,sale,
 2 first_value (sale) over(
 3 partition by product, country, region ,year
 4 order by sale desc
 5 rows between unbounded preceding and unbounded following
 6) top_sale_value,
 7 first_value (week) over(
 8 partition by product, country, region ,year
 9 order by sale desc
10 rows between unbounded preceding and unbounded following
11) top_sale_week
12 from sales_fact
13 where country in ('Australia') and product ='Xtend Memory'
14* order by product, country,year, week;

 YEAR WEEK SALE TOP_SALE_VALUE TOP_SALE_WEEK
----- ---- ---------- -------------- -------------
 2000 49 42.38 246.74 46
 2000 50 21.19 246.74 46
 2000 52 67.45 246.74 46
 2001 1 92.26 278.44 16
 2001 2 118.38 278.44 16
 2001 3 47.24 278.44 16
 2001 4 256.70 278.44 16

Example: Last_value to Calculate Minimum
Similarly, you can use last_value function to calculate minimum or maximum values. The last_value
function fetches the column values from the last row in a window of rows. For example, if you want to
calculate the minimum Sale column value, then you could use the combination of the clause
Last_value(sale) and the clause order by sale desc sorting order. The clause order by sale desc will
sort the rows by Sale column values in a descending order, and the clause Last_value(sale) will fetch
the Sale column value from the last row. Listing 8-9 provides an example for last_value function usage.

CHAPTER 8 ■ ANALYTIC FUNCTIONS

232

Listing 8-9. last_value Function

 1 select year, week,sale,
 2 last_value (sale) over(
 3 partition by product, country, region ,year
 4 order by sale desc
 5 rows between unbounded preceding and unbounded following
 6) low_sale
 7 from sales_fact
 8 where country in ('Australia') and product ='Xtend Memory'
 9* order by product, country,year, week

YEAR WEEK SALE LOW_SALE
----- ---- ---------- ------------
...
2000 49 42.38 19.84
2000 50 21.19 19.84
2000 52 67.45 19.84
2001 1 92.26 22.37
2001 2 118.38 22.37
2001 3 47.24 22.37
...

Granular control of window specification can be effectively utilized to produce complex reports. For

example, the clause rows between 10 preceding and 10 following is specifying a window of 21 rows to
calculate maximum or minimum value.

Null values are handled by the clause [RESPECT NULLS|IGNORE NULLS]. Clause RESPECT NULLS is the
default, and the first_value function returns the null value if the column value in the first row is null, by
default. If the clause IGNORE NULLS is specified, then the first_value function returns the first non-null
column value in a window of rows.

Other Analytic Functions
Oracle Database implements a great many other analytic functions. Some of those more commonly used
are described in the following subsections. The functions that follow are the ones that should be on your
short list of good functions to know about.

Nth_value (11gR2)
While first_value and last_value functions provide the ability to fetch the first or last row in an ordered
result set, it is not quite straightforward to fetch any arbitrary row with these functions. In fact, fetching
the second row using either the first_value or last_value function is a complex task.

Oracle Database Version 11gR2 introduced another analytic function: nth_value, which is a
generalization of first_value and first_value functions. Using nth_valuefunction, you can fetch any
row in the ordered result set, not just first or last values. The first_value function can be written as
nth_value (column_name, 1).

CHAPTER 8 ■ ANALYTIC FUNCTIONS

233

In statistics analysis, outliers can occur in the head or tail of the result set. In some cases, it might be
important to ignore first_value or first_value in an ordered result set and fetch the value from the
next row. The second value in a result set can be fetched using the nth_value function passing two as
the offset to the function.

The nth_value function also supports windowing clauses. As discussed earlier, a windowing clause
provides the ability to implement sliding dynamic window. This, in turn, effectively allows you to write
simple queries to answer complex questions such as Which store had second highest Sales in a span of 12
weeks for a product?

Syntax for the nth_value function is:
NTH_VALUE (measure, n) [FROM FIRST| FROM LAST] [RESPECT NULLS|IGNORE NULLS]
 OVER (partitioning-clause order-by-clause windowing-clause)

The first argument to the nth_value function is the column name, and the second argument is the
offset in a window. For example, the clause nth_value(sale, 2) is accessing the second row in a
window. In the Listing 8-10, the SQL statement is fetching the Week column value with the second
highest Sale column value at product, country, region, and year level. The second row in this result set is
the row with second highest value for the Sale column since the rows are sorted by Sale column in the
descending order. The clause partition by product, country, region, year is specifying the
partitioning columns.

Listing 8-10. Nth Value

 1 select year, week, sale,
 2 nth_value (sale, 2) over (
 3 partition by product,country, region, year
 4 order by sale desc
 5 rows between unbounded preceding and unbounded following
 6) sale_2nd_top
 7 from sales_fact
 8 where country in ('Australia') and product='Xtend Memory'
 9* order by product, country , year, week

 YEAR WEEK SALE SALE_2ND_TOP
---------- ---------- ---------- ------------
...
 2000 49 42.38 187.48
 2000 50 21.19 187.48
 2000 52 67.45 187.48
 2001 1 92.26 256.7
 2001 2 118.38 256.7
 2001 3 47.24 256.7
...

For the nth_value function, clauses FROM FIRST and RESPECT NULLS are the defaults. If the clause FROM
FIRST is specified, then the nth_value function finds the offset row from the beginning of the window.
The clause RESPECT NULLS returns null values if the column contains null values in the offset row.

With an ability to specify a windowing clause, the nth_value function is quite powerful in accessing
an arbitrary row in the result set or in a partition.

CHAPTER 8 ■ ANALYTIC FUNCTIONS

234

Rank
The rank function returns the position of a row, as a number, in an ordered set of rows. If the rows are
sorted by columns, then the position of a row in a window reflects the rank of the value in that window
of rows. In the case of a tie, rows with equal value will have the same rank and the ranks are skipped,
leaving gaps in the rank values. This means that two rows can have the same rank, and the ranks are not
necessarily consecutive.

The rank function is useful to compute the top or bottom N rows. For example, a query to find the
top 10 weeks by sales quantity is a typical retail industry data warehouse query. Such a query will greatly
benefit from the use of rank. If you need to write any query that computes top or bottom N-elements of a
result set, use the rank or dense_rank function.

The rank function is also useful in finding inner-N rows. For example, if the goal is to fetch rows
from 21 through 40 sorted by sales, then you can use the rank function in a subquery with a predicate
between 21 and 40 filtering 20 inner rows.

Syntax for the rank function is:

rank() over (partition-clause order-by-clause)

In the Listing 8-11, you calculate the top 10 rows by sale for a Product, Country, Region, and Year

column values. The clause partition by product, country, region, week is specifying the partitioning
columns and the rows are sorted by Sale column descending order in that data partition using the order
by Sale desc clause. The rank function is calculating the rank of the row in that data partition. This SQL
is wrapped inside an inline view, and then a predicate of sales_rank <=10 is applied to fetch the top ten
weeks by Sale column.

Also, notice that the windowing clause is not applicable in the rank functions and the rank function
is applied over all the rows in a data partition.

Listing 8-11. Use of Rank Function: Top 10 Sales Weeks

 1 select * from (
 2 select year, week,sale,
 3 rank() over(
 4 partition by product, country, region ,year
 5 order by sale desc
 6) sales_rank
 7 from sales_fact
 8 where country in ('Australia') and product ='Xtend Memory'
 9 order by product, country,year, week
10) where sales_rank<=10
11* order by 1,4

YEAR WEEK SALE SALES_RANK
---- ---- ---------- ----------
...
2001 16 278.44 1
2001 4 256.70 2
2001 21 233.70 3
2001 48 182.96 4
2001 30 162.91 5
2001 14 162.91 5

CHAPTER 8 ■ ANALYTIC FUNCTIONS

235

2001 22 141.78 7
2001 43 139.58 8
...

The rank function assigns same rank in case of ties. In the output of Listing 8-11, notice that there
are two rows with a sales rank of 5, as the Sale column value is 162.91 for these two rows. Also, notice
that next rank is 7, not 6. In a nutshell, the rank function skips the ranks if there are ties. Number of rank
values skipped equals to number of rows with tied values. If there have been ties for three rows, then the
next rank will be 8.

Dense_rank
Dense_rank is a variant of the rank function. The difference between the rank and dense_rank functions is
that the dense_rank function does not skip the ranks in case of ties. As discussed in the earlier section,
the dense_rank function is useful in finding top, bottom, or Inner N rows in a result set. In the Listing 8-
12, the dense_rank function is used instead of rank function. Note that rank column for the week=22 is 6
in the Listing 8-12 and it is 7 in the Listing 8-11.

The dense_rank function is useful in the queries where the ranks need to be consecutive. For
example, ranks may not be skipped in a query to compute the top 10 students in a class roster. On the
other hand, the rank function is useful where the ranks need not be consecutive.

Listing 8-12. dense_rank Function

 1 select * from (
 2 select year, week,sale,
 3 dense_rank() over(
 4 partition by product, country, region ,year
 5 order by sale desc
 6) sales_rank
 7 from sales_fact
 8 where country in ('Australia') and product ='Xtend Memory'
 9 order by product, country,year, week
10) where sales_rank<=10
11* order by 1,4
/
 YEAR WEEK SALE SALES_RANK
----- ---- ---------- ----------
 2001 16 278.44 1
 2001 4 256.70 2
 2001 21 233.70 3
 2001 48 182.96 4
 2001 14 162.91 5
 2001 30 162.91 5
 2001 22 141.78 6

Sort order for nulls can be controlled by the NULLS FIRST or NULLS LAST clause in the dense_rank

function. NULLS LAST is the default for ascending sort order, and NULLS FIRST is the default for the
descending sort order. In the Listing 8-12, descending sort order is used and the default NULLS FIRST
clause is in effect. Rows with null values will have a rank of 1 in this case.

CHAPTER 8 ■ ANALYTIC FUNCTIONS

236

Row_number
The row_number function assigns a unique number for each row in the ordered result set. If the
partitioning clause is specified, then each row is assigned a number unique within a data partition,
based upon its position in the sort order in that partition. If the partitioning clause is not specified, then
each row in the result set is assigned a unique number.

The row_number function is also useful to fetch top, bottom, or Inner N queries, similar to rank and
dense_rank functions. Even though the rank, dense_rank, and row_number functions have similar
functionality, there are subtle differences between them. One is that the row_number function does not
allow windowing clauses.

Syntax for the row_number function is:

Row_number() over (partition-clause order-by-clause)

The row_number function is a non-deterministic function. The value of the row_number function is

undetermined if two rows have same value in a data partition. For example, in the Listing 8-13, rows
with column values of 19, 8, 12, and 4 have same value of 46.54 in the Sale column. The row_number
function returns values of 31, 32, 34, and 33 respectively for these rows, in the example output. But the
result could just as easily be 34, 31, 32, 33 or 32, 34, 31, 33. In fact, you might get different results with
execution of the query. On the contrary, rank and dense_rank functions are deterministic and will always
return consistent values if a query is re-executed.

Listing 8-13. row_number Function

 1 select year, week,sale,
 2 row_number() over(
 3 partition by product, country, region ,year
 4 order by sale desc
 5) sales_rn,
 6 rank() over(
 7 partition by product, country, region ,year
 8 order by sale desc
 9) sales_rank
10 from sales_fact
11 where country in ('Australia') and product ='Xtend Memory'
12* order by product, country,year,sales_rank

 YEAR WEEK SALE SALES_RN SALES_RANK
----- ---- ---------- ---------- ----------
...
 2000 19 46.54 31 31
 2000 8 46.54 32 31
 2000 12 46.54 34 31
 2000 4 46.54 33 31
...

CHAPTER 8 ■ ANALYTIC FUNCTIONS

237

Ratio_to_report
The analytic function ratio_to_report calculates the ratio of a value to the sum of values in the data
partition. If the partitioning clause is not specified, this function calculates the ratio of a value to the sum
values in the whole result set. This analytic function is very useful in calculating ratios at various levels
without a need for self-joins.

Ratio_to_report is useful in computing the percentage of a value compared to the total value in a
report. For example, consider a sales report of a product in a retail chain. Each outlet in the retail chain
contributed to the total sum of sales computed for that product, and knowing what percentage of sales is
generated from an outlet is quite useful for market trend analysis. Ratio_to_report allows you to
compute the percentage easily. Further, this ratio can be calculated at various levels such as district,
region, and country. Essentially, data can be diced and sliced at various ways for market trend analysis.

In the Listing 8-14, the SQL statement is computing two ratios: Sales_ratio_yr is computed at
product, country, region, and year level and the ratio sales_ratio_prod is computed at the product,
country, and region level. Ratio_to_report function returns a ratio and it is multipled by 100 to compute
percentage.

The ratio_to_report(sale) over(partition by product, country, region, year) clause
calculates the ratio of Sale column value to the sum of Sale column values in a data partition, partitioned
by the columns Product, Country, Region, and Year. The next clause ratio_to_report(sale) over(
partition by product, country, region) is different as the Year column is not included in the
partitioning columns. So, the ratio is calculated for all years.

The ratio_to_report function will return a null value if the expression or column specified in the
function returns null values. But other null values in the data partition will be handled as either zero
values or empty strings, similar to aggregation functions.

Listing 8-14. ratio_to_report Function

 1 select year, week,sale,
 2 trunc(100*
 3 ratio_to_report(sale) over(partition by product, country, region ,year)
 4 ,2) sales_yr,
 5 trunc(100*
 6 ratio_to_report(sale) over(partition by product, country, region)
 7 ,2) sales_prod
 8 from sales_fact
 9 where country in ('Australia') and product ='Xtend Memory'
10 order by product, country,year, week
/

YEAR WEEK SALE SALES_YR SALES_PROD
---- ---- ---------- ---------- ----------
2000 1 46.70 1.31 .35
2000 3 93.41 2.63 .7
2000 4 46.54 1.31 .35
2000 5 46.70 1.31 .35
2000 7 70.80 2 .53
2000 8 46.54 1.31 .35
...

CHAPTER 8 ■ ANALYTIC FUNCTIONS

238

Percent_rank
The percent_rank function returns the rank of a value in a data partition, expressed as a fraction between
0 and 1. Percent_rank is calculated as (rank -1)/(N-1) whereas N is the number of elements in the data
partition if the partitioning clause is specified or the total number of rows in the result set if the
partitioning clause is not specified. The percent_rank function is useful to compute the relative standing
of a value in a result set, as a percentile.

This relative rank can be calculated relative to a partition or the whole result set. For example,
computing the sales percentile of a retail outlet in a district or region helps find the top performing
outlets or the worst performing outlet.

In Listing 8-15, you calculate the top fifty sale percentile by year using the percent_rank function.
The clause percent_rank() over(partition by product, country, region , year order by sale desc)
calculates the percent rank of the Sale column in a data partition defined by the partitioning columns
Product, Country, Region, and Year. Rows are ordered by the Sale column in descending order. Function
output is multiplied by 100 to compute percentile.

Listing 8-15. percent_rank Function

 1 select * from (
 2 select year, week,sale,
 3 100 * percent_rank() over(
 4 partition by product, country, region , year
 5 order by sale desc
 6) pr
 7 from sales_fact
 8 where country in ('Australia') and product ='Xtend Memory'
 9) where pr <50
10* order by year, sale desc

 YEAR WEEK SALE PR
----- ---- ---------- -------
2001 16 278.44 .00
2001 4 256.70 2.27
2001 21 233.70 4.55
2001 48 182.96 6.82
...

Percentile_cont
The percentile_cont function is useful to compute the interpolated values, such as the median
household income per region or city. The percentile_cont function takes a probability value between 0
and 1 and returns an interpolated percentile value that would equal the percent_rank value with respect
to the sort specification. In fact, percentile_cont function performs inverse of percent_rank function
and it is easier to understand the percentile_cont function in conjunction with the output of
percent_rank function.

The percentile_cont function retrieves the column value matching (or interpolated) with the
percent_rank of the argument. For example, the clause percentile_cont(0.25) retrieves the value that
has percent_rank of 0.25, assuming matching sort order for these two functions. Another example is
computing the median household income in a city or region. The median value will have a percent_rank
of 0.5 by the definition of median value. The clause percentile_cont(0.5) will return the median value

CHAPTER 8 ■ ANALYTIC FUNCTIONS

239

as the percentile_cont function is calculating the value with a percent_rank of 0.5. In fact, median
function is a specific case of the percentile_cont function with a default value of 0.5.

Nulls are ignored by the function. This function does not support windowing clauses either.
Syntax for the percentile_cont function is:

Percentile_cont(expr) within group (sort-clause)
 over (partition-clause order-by-clause)

The syntax for the percentile_cont function is slightly different from the analytic functions

discussed so far. A new clause within group (order by sale desc) replaces the order-by clause, and it
is functionally same as specifying an order-by clause. In Listing 8-16, the clause percentile_cont (0.5)
within group (order by sale desc) over(partition by product, country, region , year) is calling
the percentile_cont function and passing a probability value of 0.5. Sort order is defined by the clause
within group (order by sale desc). The partition-by clause over(partition by product, country,
region , year) is specifying the partitioning columns.

Listing 8-16 shows the output of percent_rank in a side-by-side comparison to that from
percentile_cont, with a similar partition-by clause and order-by clause. Notice that for the column
values year=2001 and week=5, the Sale column value is 93.44 and the percent_rank of that value is 0.5.
Essentially, value of 93.44 is occurring with a percent_rank of 0.5 in the descending order of Sale column
values in that data partition. In a nutshell, the value of 93.44 is a median value and thus the percent_rank
is 0.5. Hence the percent_rank function with an argument of 0.5 returns a value of 93.44.

Further, note that the output row for the column values with year=2000. There is no Sale column
value with a percent_rank matching exactly to 0.5 in the data partition. If there is no value matching
exactly, then the percentile_cont function computes an interpolated value using the nearest values.
Note that there is a row in that data partition with a percent_rank of 0.48 for the Sale column value of
79.36 and the next row in that sort order has a percent_rank of 0.51 for the Sale column value of 78.82.
Since the specified percent_rank of 0.5 is between 0.48 and 0.51, the percentile_cont function
interpolated these two corresponding Sale column values 79.36 and 78.82 and calculated
percentile_cont (0.5) as 79.09, an average of those two Sale column values. Values are averaged as this
function assumes continuous distribution.

Notice that output rows are not sorted in the Listing 8-16. Reason is that, even though there is an
order-by clause specified in the analytic function specification (line 3 and line 7), there is no order-by
clause in the main body of the query. Should you need rows to be sorted, you need to specify sorting
order explicitly in the main body of the query also.

Listing 8-16. The percentile_cont Function

 1 select year, week,sale,
 2 percentile_cont (0.5) within group
 3 (order by sale desc)
 4 over(partition by product, country, region , year) pc,
 5 percent_rank () over (
 6 partition by product, country, region , year
 7 order by sale desc) pr
 8 from sales_fact
 9* where country in ('Australia') and product ='Xtend Memory'

YEAR WEEK SALE PC PR
---- ---- ---------- ---------- ----------
...
2001 27 94.48 93.44 .454545455

CHAPTER 8 ■ ANALYTIC FUNCTIONS

240

2001 46 93.58 93.44 .477272727
2001 5 93.44 93.44 .5
2001 37 93.16 93.44 .522727273
2001 9 92.67 93.44 .545454545
...
2000 40 89.56 79.09 .435897436
2000 28 88.96 79.09 .461538462
2000 38 79.36 79.09 .487179487
2000 35 78.82 79.09 .512820513
2000 7 70.80 79.09 .538461538
2000 15 70.47 79.09 .564102564
...

Percentile_disc
The percentile_disc function is functionally similar to percentile_cont except that the
percentile_cont function uses a continuous distribution model and the percentile_disc function
assumes a discrete distribution model. As discussed in the earlier section, when there is no value
matching exactly with the specified percent_rank, then the percentile_cont (0.5) computes an average
of two nearest values. In contrast, the percentile_disc function retrieves the value with a percent_rank
just greater than the passed argument, in the case of ascending order. In the case of descending order,
the percentile_cont function retrieves the value that has a percent_rank just smaller than the passed
argument.

In Listing 8-17, the percentile_cont function is replaced by two calls to the percentile_disc
function. The first call to the function starting in line 2 specifies descending sort order, and the next call
in line 4 specifies no sort order, so it defaults to ascending sort order. In both calls to the
percentile_disc function, an argument of 0.5 is passed. As there is no row with a percent_rank of 0.5,
the percentile_disc function with the descending sort order specification returns a value of 79.36, as
this value has a percent_rank of 0.48 just below the specified argument 0.5. For the ascending order, this
function returns a value of 78.82 as this value has a percent_rank of 0.51—just above 0.5.

Listing 8-17. The percentile_disc Function

 1 select year, week,sale,
 2 percentile_disc (0.5) within group (order by sale desc)
 3 over(partition by product, country, region , year) pd_desc,
 4 percentile_disc (0.5) within group (order by sale)
 5 over(partition by product, country, region , year) pd_asc,
 6 percent_rank () over (
 7 partition by product, country, region , year
 8 order by sale desc) pr
 9 from sales_fact
10* where country in ('Australia') and product ='Xtend Memory'

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 8 ■ ANALYTIC FUNCTIONS

241

YEAR WEEK SALE PD_DESC PD_ASC PR
---- ---- ---------- ---------- ---------- ----------
2000 3 93.41 79.36 78.82 .41025641
2000 40 89.56 79.36 78.82 .435897436
2000 28 88.96 79.36 78.82 .461538462
2000 38 79.36 79.36 78.82 .487179487
2000 35 78.82 79.36 78.82 .512820513
2000 7 70.80 79.36 78.82 .538461538
2000 15 70.47 79.36 78.82 .564102564
2000 45 67.62 79.36 78.82 .58974359
2000 52 67.45 79.36 78.82 .615384615

NTILE
The NTILE function divides an ordered set of rows in a data partition, groups them in to buckets, and
assigns a unique group number to each group. This function is useful in statistical analysis. For example,
if you want to remove the outliers (values that are outside the norm), you can group them in the top or
bottom buckets and eliminate those values from the statistical analysis. Oracle Database statistics
collection packages also use NTILE functions to calculate histogram boundaries. In statistical
terminology, the NTILE function creates equi-width histograms.

The number of buckets is passed as the argument to this analytic function. For example, ntile(100)
will group the rows into 100 buckets, assigning an unique number for each bucket. This function does
not support windowing clauses, however.

In the Listing 8-18, you split a data partition into 10 buckets using the clause ntile (10). Rows are
sorted by the Sale column in the descending order. The NTILE function groups rows into buckets with
each bucket containing equal number of rows. Since the rows are sorted by the Sale column values in
descending order, rows with lower group numbers have higher Sale column value. Outliers in the data
can be easily removed with this technique.

There may be a row count difference of at most 1 between the buckets if the rows can not be divided
equally. In this example, rows for the year= 2001 is divided in to 10 buckets, each bucket having 5 rows,
but the last bucket 10 has only 4 rows.

Listing 8-18. NTILE Function

 1 select year, week,sale,
 2 ntile (10) over(
 3 partition by product, country, region , year
 4 order by sale desc
 5) group#
 6 from sales_fact
 7* where country in ('Australia') and product ='Xtend Memory'

 YEAR WEEK SALE GROUP#
----- ---- ---------- ----------
 2001 16 278.44 1
 2001 4 256.70 1
 2001 21 233.70 1

CHAPTER 8 ■ ANALYTIC FUNCTIONS

242

 2001 48 182.96 1
 2001 14 162.91 1
...
 2001 52 23.14 9
 2001 50 23.14 10
 2001 6 22.44 10
 2001 23 22.38 10
 2001 18 22.37 10

The NTILE function is useful in real world applications such as dividing total work among N parallel

processes. Let’s say you have ten parallel processes; you can divide the total work in to10 buckets and
assign each bucket to a process.

Stddev
The stddev function can be used to calculate standard deviation among a set of rows in a data partition
or in the result set if no partitioning clause is specified. This function calculates the standard deviation,
defined as square root of variance, for a data partition specified using a partitioning clause. If
partitioning clause is not specified, this function calculates the stddev for all rows in the result set.

In the Listing 8-19, the clause stddev (sale) is calculating the stddev on Sale column among the
rows in a data partition. Partitioning clause partition by product, country, region, year specifies
the partitioning columns. The windowing clause rows between unbounded preceding and unbounded
following specifies the window as all rows in that data partition. Essentially, this SQL is calculating the
standard deviation on Sale column amongst all rows in a data partition.

Standard deviation can be calculated at coarser or granular level by specifying appropriate
partition-by clause and windowing clause.

Listing 8-19. STDDEV Function

1 select year, week,sale,
2 stddev (sale) over(
3 partition by product, country, region , year
4 order by Sale desc
5 rows between unbounded preceding and unbounded following
6) stddv
7 from sales_fact
8 where country in ('Australia') and product ='Xtend Memory'
9* order by year, week

 YEAR WEEK SALE STDDV
----- ---- ---------- ----------
 ...
 2000 50 21.19 49.8657423
 2000 52 67.45 49.8657423
 2001 1 92.26 59.1063592
 2001 2 118.38 59.1063592
 2001 3 47.24 59.1063592
 ...

CHAPTER 8 ■ ANALYTIC FUNCTIONS

243

There are various other statistics functions that can be used to calculate statistical metrics; for
example, stddev_samp calculates the cumulative sample standard deviation, stddev_pop calculates the
population standard deviation, etc. Detailed discussion about various statistics functions is out of the
scope of this book, however.

Listagg
Oracle Database version 11gR2 introduced another analytic function, the Listagg function, which is very
useful in string manipulation. This analytic function provides the ability to convert column values from
multiple rows in to a list format. For example, if you want to concatenate all the employee names in a
department, then you can use this function to concatenate all names in to a list.

Syntax for this function is of the format:

Listagg (string, separator) within group (order-by-clause)
 Over (partition-by-clause)

Syntax for the Listagg function uses the clause within group (order-by-clause) to specify sorting

order. This clause is similar to order-by clause in other analytic functions. The first argument to this
function is the string or column name to concatenate. The second argument is the separator for the
values. In the Listing 8-20, the partitioning clause is not specified and rows are ordered by the Country
column in the descending order. The output shows that country names are converted to a list separated
by comma.

Note that Listagg function does not support windowing clauses.

Listing 8-20. LISTAGG Function

 1 select listagg (country, ',')
 2 within group (order by country desc)
 3 from (
 4 select distinct country from sales_fact
 5 order by country
 6*)

LISTAGG(COUNTRY,',')WITHINGROUP(ORDERBYCOUNTRYDESC)
--
United States of America,United Kingdom,Turkey,Spain,Singapore,
Saudi Arabia,Poland,New Zealand, Japan,Italy,Germany,France,
Denmark,China,Canada,Brazil,Australia,Argentina

Performance Tuning
Analytic functions are very useful in tuning complex SQL statements. Inter-row referencing, aggregation
at multiple levels, and nth-row access are a few of the important features analytic functions provide. For
example, a typical query fetching both aggregated and non-aggregated rows must perform a self-join. In
a data warehouse environments, due to the sheer size of the tables involved, these self-joins can be cost
prohibitive.

The efficiency that analytics bring to the table often makes them useful tools in rewriting queries
that do not perform well. In turn, however, you can sometimes face the need to tune an analytic

CHAPTER 8 ■ ANALYTIC FUNCTIONS

244

function. To that end, there are some useful things to know about analytic functions and execution
plans, analytics and predicates, and strategies for indexing.

Execution Plans
Analytic function introduces few new operations in the SQL execution plan. Presence of the keywords
WINDOW SORT indicate that the SQL statement utilizes an analytic function. In this section, I will review
the mechanics of analytic function execution.

Listing 8-21 shows a typical execution plan of a SQL statement. Execution of this plan starts at step 4
and works its way outwards to step 1:

4. Table SALES_FACT is accessed using Full Table Scan access path.

3. Filter predicates on Product, Country, Region, and Year column are applied filtering required
rows.

2. Analytic functions are applied over the filtered rows from the step 3.

1. Predicate on Week column applied after the execution of these analytic functions.

■NOTE The Cost Based Optimizer does not assign or calculate a cost for analytic functions (as of 11gR2). The
cost of the SQL statement is calculated without considering the cost of analytic functions.

Listing 8-21. Execution Plan

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		5	290	581 (3)
* 1	VIEW	MAX_5_WEEKS_VW	5	290	581 (3)
2	WINDOW SORT		5	330	581 (3)
* 3	TABLE ACCESS FULL	SALES_FACT	5	330	580 (3)
--

Predicate Information (identified by operation id):

 1 - filter("WEEK"<14)
 3 - filter("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia' AND
 "REGION"='Australia' AND "YEAR"=2000)

Predicates
Predicates must be applied on the tables as early as possible to reduce the result set for better
performance. Rows must be filtered earlier so that analytic functions are applied to relatively fewer rows.
Predicate safety is an important consideration in executing analytic functions as not all predicates can
be applied beforehand.

CHAPTER 8 ■ ANALYTIC FUNCTIONS

245

In the Listing 8-22, a view called max_5_weeks_vw is defined and a SQL statement is accessing the
view with the predicates on Country, Product, Region, Year, and Week columns. The execution plan
shows that the following filter predicates are applied in step 3:

filter(("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia'
AND "REGION"='Australia' AND "YEAR"=2000))

However, the predicate "WEEK"<14 is not applied in step 3, and is only applied in step 1, indicating

that the predicate is applied after executing the analytic functions in step 2’s WINDOW SORT step. All
supplied predicates except that on the Week column were pushed into the view. Filtering of those
predicates then took place before executing the analytic functions.

Predicates on partitioning columns are applied before executing analytic functions, as generally
speaking, predicates on partitioning column can be pushed safely into the view. But columns in the
order-by-clause of the analytic function syntax can’t be pushed safely as the inter-row references need
access to other rows in the same partitions, even if those rows are not returned in the final result set.

Listing 8-22. Predicates

 create or replace view max_5_weeks_vw as
 select country , product, region, year, week,sale,
 max (sale) over(
 partition by product, country, region ,year
 order by year, week
 rows between 2 preceding and 2 following
) max_weeks_5
 from sales_fact
/
1 select year, week, sale, max_weeks_5 from max_5_weeks_vw
2 where country in ('Australia') and product ='Xtend Memory' and
3 region='Australia' and year= 2000 and week <14
4* order by year, week
/

| Id | Operation | Name | E-Rows |

0	SELECT STATEMENT		
* 1	VIEW	MAX_5_WEEKS_VW	5
2	WINDOW SORT		5
* 3	TABLE ACCESS FULL	SALES_FACT	5

Predicate Information (identified by operation id):

 1 - filter("WEEK"<14)
 3 - filter(("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia' AND
 "REGION"='Australia' AND "YEAR"=2000))

CHAPTER 8 ■ ANALYTIC FUNCTIONS

246

Indexes
A good strategy for index selection is to match the predicates applied on the table access step. As
discussed in the earlier section, predicates on partitioning columns are pushed into the view and these
predicate are applied before executing the analytic functions. So, it’s probably a better approach to
index the partitioning columns if the SQL statements are using those predicates.

In the Listing 8-23, a new index is added on the columns Country and Product. Step 4 in the
execution plan shows that index-based access is used. The predicate Information section shows that
predicates on all four partitioning columns were applied at step 4 and step 3 before executing analytic
function. But the predicate on Week column was applied much later in the execution plan at step 1. So,
in this case, adding Week column to the index is not useful as the predicates are not applied until after
the analytic function execution completes.

Listing 8-23. Predicates and Indices

create index sales_fact_i1 on sales_fact(country, product);

1 select year, week, sale, max_weeks_5 from max_5_weeks_vw
2 where country in ('Australia') and product ='Xtend Memory' and
3 region='Australia' and year= 2000 and week <14
4* order by year, week
/
--
| Id | Operation | Name | E-Rows |
--
0	SELECT STATEMENT		
* 1	VIEW	MAX_5_WEEKS_VW	5
2	WINDOW SORT		5
* 3	TABLE ACCESS BY INDEX ROWID	SALES_FACT	5
* 4	INDEX RANGE SCAN	SALES_FACT_I1	147
--

Predicate Information (identified by operation id):

 1 - filter("WEEK"<14)
 3 - filter(("REGION"='Australia' AND "YEAR"=2000))
 4 - access("COUNTRY"='Australia' AND "PRODUCT"='Xtend Memory') fs

Advanced topics
A few advanced topics about the analytic functions are worthy of discussion. I will discuss topics such as
dynamic analytic statements, nesting of analytic functions, parallelism, and PGA size.

CHAPTER 8 ■ ANALYTIC FUNCTIONS

247

Dynamic SQL
A common question about the analytic SQL statement is whether a bind variable can be used in place of
partitioning or sorting columns. No. If you want the flexibility to modify the partitioning or sorting
columns dynamically, you need to use dynamic SQL statements. Static analytic SQL statements can not
change the partitioning or sorting columns.

If your goal is to modify the partitioning columns dynamically, then consider creating a packaged
procedure to capture the logic in the procedure. In the Listing 8-24, the procedure Analytic_dynamic_
prc accepts a string to be used as partitioning columns. A SQL statement is constructed using the
arguments passed and executed dynamically using Execute immediate syntax. Result of the analytic
statement is fetched into an array and printed using a call to dbms_output package.

In the first call, the analytic_dynamic_prc passes the string product, country, region as the first
argument and the columns in this list are used as the partitioning columns. The second call to the
procedure uses the string product, country, region, year to use a different list of columns for the
partitioning-clause.

Note that this procedure is given as an example and as such may not be construed as a production-
ready code.

Listing 8-24. Dynamic SQL Statement

create or replace procedure
 analytic_dynamic_prc (part_col_string varchar2, v_country varchar2, v_product varchar2)
is
 type numtab is table of number(18,2) index by binary_integer;
 l_year numtab;
 l_week numtab;
 l_sale numtab;
 l_rank numtab;
 l_sql_string varchar2(512) ;
begin
 l_sql_String :=
 'select * from (
 select year, week,sale,
 rank() over(

 partition by ' ||part_col_string ||'

 order by sale desc
) sales_rank
 from sales_fact
 where country in (' ||chr(39) || v_country || chr(39) || ') and
 product =' || chr(39) || v_product || chr(39) ||
 ' order by product, country,year, week
) where sales_rank<=10
 order by 1,4';
 execute immediate l_sql_string bulk collect into l_year, l_week, l_sale, l_rank;
 for i in 1 .. l_year.count
 loop
 dbms_output.put_line (l_year(i) ||' |' || l_week (i) ||
 '|'|| l_sale(i) || '|' || l_rank(i));
 end loop;

CHAPTER 8 ■ ANALYTIC FUNCTIONS

248

 end;
/

exec analytic_dynamic_prc ('product, country, region','Australia','Xtend Memory');
...
1998 |48|172.56|9
2000 |46|246.74|3
2000 |21|187.48|5
2000 |43|179.12|7
2000 |34|178.52|8
2001 |16|278.44|1
2001 |4|256.7|2
exec analytic_dynamic_prc ('product, country,region, year','Australia','Xtend Memory');

1998 |48|172.56|1
1998 |10|117.76|2
1998 |18|117.56|3
1998 |23|117.56|3
1998 |26|117.56|3
1998 |38|115.84|6
1998 |42|115.84|6
...

Nesting Analytic Functions
Analytic functions can not be nested, but a nesting effect can be achieved with the use of subqueries. For
example, the clause lag(first_value(column,1),1) is syntactically incorrect. Subqueries can be used to
create a nesting effect, as you’ll see below.

Suppose your goal is to fetch the maximum Sale column value for the year and the prior year in the
same row; if so, then analytic functions lag and first_value can be used in the subqueries to write a SQL
statement. In Listing 8-25, inner subquery is fetching the Year and Week Sale column value in which the
maximum sale occurred, in addition to fetching the maximum Sale column value for that year. The lag
function in the outer query retrieves the prior Year Maximum Sale column value.

Notice that the partitioning clause is different between lag and first_value functions. Analytic
function first_value is computing the top Sale row in a partition specified by the partitioning columns
product, country, region, year whereas the lag is fetching the first row from the prior year specifying
only sorting-clause: order by year desc.

With multi-level nesting of analytic functions, complex goals can be implemented concisely using
the analytic functions.

Listing 8-25.Nesting Analytic Functions

select year, week, top_sale_year,
 lag(top_sale_year) over (order by year desc) prev_top_sale_yer
from (
 select distinct
 first_value (year) over (
 partition by product, country, region ,year

CHAPTER 8 ■ ANALYTIC FUNCTIONS

249

 order by sale desc
 rows between unbounded preceding and unbounded following
) year,
 first_value (week) over (
 partition by product, country, region ,year
 order by sale desc
 rows between unbounded preceding and unbounded following
) week,
 first_value (sale) over(
 partition by product, country, region ,year
 order by sale desc
 rows between unbounded preceding and unbounded following
) top_sale_year
 from sales_fact
 where country in ('Australia') and product ='Xtend Memory'
)
 order by year, week
/

 YEAR WEEK TOP_SALE_YEAR PREV_TOP_SALE_YER
----- ---- ------------- -----------------
 1998 48 172.56 148.12
 1999 17 148.12 246.74
 2000 46 246.74 278.44
 2001 16 278.44

Parallelism
By specifying a parallel hint in the SQL statement or by setting parallelism at the object level, analytic
functions can be parallelized. If you have huge amount of data that needs to be processed using analytic
functions, parallelism is a good choice. A SQL statement using multi-level nesting also can benefit from
parallelism.

Listing 8-26 shows the execution plan for the query in the Listing 8-25 using parallelism. In the
execution plan, there are two WINDOW operations as the SQL statement has nested the lag and
first_value analytic functions.

Optimal distribution of rows between the PQ slaves is critical to maintain functional correctness
and that is automatically handled by Oracle database.

Listing 8-26.Parallelism

--
 Id | Operation | Name

 0 | SELECT STATEMENT |
 1 | SORT ORDER BY |
 2 | WINDOW BUFFER |
 3 | PX COORDINATOR |

7

CHAPTER 8 ■ ANALYTIC FUNCTIONS

250

 4 | PX SEND QC (ORDER) | :TQ10003
 5 | SORT ORDER BY |
 6 | PX RECEIVE |
 7 | PX SEND RANGE | :TQ10002
 8 | VIEW |
 9 | HASH UNIQUE |
 10 | PX RECEIVE |
 11 | PX SEND HASH | :TQ10001
 12 | WINDOW SORT |
 13 | PX RECEIVE |
 14 | PX SEND HASH | :TQ10000
 15 | PX BLOCK ITERATOR |
* 16 | TABLE ACCESS FULL| SALES_FACT

PGA size
Most operations associated with the analytic functions are performed in the Program Global Area (PGA)
of the process. So, for optimal performance it is important to have a big enough memory area so that
programs can execute analytic functions without spilling to the disk. This is very analogous to a Sort
operation. If the Sort operation spills to the disk due to a lower value of the memory size, then the
performance of the Sort operation will not be optimal. Similarly, the execution performance of analytic
functions will suffer if the operation spills to the disk.

Database initialization parameter PGA_AGGREGATE_TARGET (PGAT) controls the cumulative
maximum size of the PGA. By default, a serial process can allocate a PGA up to the maximum size of 5%
of PGAT value. For parallel processes, the limit is up to 30% of PGAT. It is essential to keep PGAT to a
bigger value to improve the performance of analytic functions.

Organizational Behavior
The hardest thing about analytic functions is the organizational resistance to change. Developers and
database administrators are comfortable writing SQL statements using conventional syntax. Using
analytic syntax will not come easy. However, these developers and database administrators need to
embrace the change. Another plus: use of analytic functions forces one to think in terms of sets.

Oracle Corporation releases new features in every major release of Oracle Database. We need to
harness the new features to write more efficient and concise SQL statements. Proper training for these
new features is also essential and hopefully, this chapter provided an insight in to analytic functions.

When you start writing SQL statement utilizing the analytic functions, start with simpler SQL
statement. Then add more complexity to meet the goal.

Summary
Complex SQL statements can be written using analytic functions concisely. Understanding analytic
function provides you whole new way of thinking, analytically speaking. The ability to reference another
row combined with partitioning and windowing clause allows you to simplify complex SQL statements.
Many performance issues can be resolved rewriting the SQL statement using analytic functions. You
may find resistance from developers and DBAs alike when it comes to using analytic functions, and that
resistance can be easily overcome by showing the performance improvements with analytic functions.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

C H A P T E R 9

251

The Model Clause

Riyaj Shamsudeen

The Model clause introduced in the Oracle Database version 10g provides an elegant method to
replace the spreadsheet. With the Model clause, it is possible to utilize powerful features such as
aggregation, parallelism, and multi-dimensional, multi-variate analysis in SQL statements. If you
enjoy working with Excel spreadsheets to calculate formulas, you will enjoy working with the Model
clause, too.

In situations where the amount of data to be processed is small, the inter-row referencing and
calculating power of the spreadsheet is sufficient to accomplish the task at hand. However, scalability
of such a spreadsheet as a data warehouse application is limited and cumbersome. For example,
spreadsheets are generally limited to two or three dimensions, and creating spreadsheets with more
dimensions is a manually intensive task. Also, as the amount of data increases, the execution of
formulas slows down in a spreadsheet. Furthermore, there is an upper limit on the number of rows in a
spreadsheet workbook.

Since the Model clause is an extension to the SQL language application. the Model clause is highly
scalable, akin to the Oracle database’s scalability. Multi-dimensional, multi-variate calculations over
millions of rows, if not billions of rows, can be implemented easily with the Model clause, unlike with
spreadsheets. Also, many database features such as object partitioning and parallel execution can be
used effectively with the Model clause, thereby further improving scalability.

Aggregation of the data is performed inside the RDBMS engine, avoiding costly round-trip calls as
in the case of the third party datawarehouse tools. Scalability is further enhanced by out-of-the-box
parallel processing capabilities and query rewrite facilities.

The key difference between conventional SQL statement and the Model clause is that the Model
clause supports inter-row references, multi-cell references, and cell aggregation. It is easier to
understand the Model clause with examples, so I will introduce the Model clause with examples. Then
I’ll discuss the advanced features in the Model clause.

Spreadsheets
Let’s consider the spreadsheet in Listing 9-1. In this spreadsheet, the inventory for a region and week
is calculated using a formula: current inventory is the sum of last week’s inventory and the quantity
received in this week minus the quantity sold in this week. This formula is shown in the example using
Excel spreadsheet notation. For example, the formula for week 2’s inventory would be =B5+C4-C3,
where B5 is the prior week’s inventory, C4 is the current week’s receipt_qty and C3 is the current
week’s sales_qty. Essentially, this formula uses an inter-row reference to calculate the inventory.

CHAPTER 9 THE MODEL CLAUSE

252

Listing 9-1. Spreadsheet Formula to Calculate Inventory

Product = Xtend Memory, Country =’Australia’
 A B C D E F G ...

 Year=2001 Week

 1 2 3 4 5 6

Sale 92.26 118.38 47.24 256.70 93.44 43.17

Receipts 96.89 149.17 49.60 259.10 98.66 20.20

Inventory 4.63 35.42 37.78 40.18 45.41 22.44

 =B5+C4-C3

While it’s easy to calculate this formula for a few dimensions using a spreadsheet, it’s much more

difficult to perform these calculations with more dimensions. Performance suffers as the amount of
data increases in the spreadsheet. These issues can be remedied by using the Model clause that the
Oracle Database provides. Not only does the Model clause provide for efficient formula calculations,
but the writing of multi-dimensional, multi-variate analysis also becomes much more practical.

Inter-Row Referencing via the Model clause
In a conventional SQL statement, emulating the spreadsheet described in Listing 9-1 is achieved by a
multitude of self-joins. With the advent of the Model clause, you can implement the spreadsheet
without self-joins because the Model clause provides inter-row referencing ability.

Example Data
To begin your investigation of the Model clause, you will create a de-normalized fact table using the
script in Listing 9-2. All the tables referred in this chapter refer to the objects in SH Schema supplied by
the Oracle Corporation Example scripts.

NOTE To install the Example schema, you can download software from Oracle Corporation at http://
download.oracle.com/otn/solaris/oracle11g/R2/solaris.sparc64_11gR2_examples.zip for the 11gR2
Solaris platform. Refer to the Readme document in the unzipped software directories for installation instructions.
Zip files for other platforms and versions are available in this Oracle site.

Listing 9-2. Denormalized sales_fact Table

drop table sales_fact;
CREATE table sales_fact AS
SELECT country_name country,country_subRegion region, prod_name product,

calendar_year year, calendar_week_number week,
SUM(amount_sold) sale,
sum(amount_sold*

http://download.oracle.com/otn/solaris/oracle11g/R2/solaris.sparc64_11gR2_examples.zip
http://download.oracle.com/otn/solaris/oracle11g/R2/solaris.sparc64_11gR2_examples.zip

CHAPTER 9 THE MODEL CLAUSE

253

 (case
 when mod(rownum, 10)=0 then 1.4
 when mod(rownum, 5)=0 then 0.6
 when mod(rownum, 2)=0 then 0.9
 when mod(rownum,2)=1 then 1.2
 else 1
 end)) receipts

FROM sales, times, customers, countries, products
WHERE sales.time_id = times.time_id AND
sales.prod_id = products.prod_id AND
sales.cust_id = customers.cust_id AND
customers.country_id = countries.country_id
GROUP BY
country_name,country_subRegion, prod_name, calendar_year, calendar_week_number;

Anatomy of a Model Clause
Listing 9-3 shows a SQL statement using the Model clause and emulating the functionality of the
spreadsheet discussed earlier. Let’s explore this SQL statement in detail. I’ll look at the columns
declared in the Model clause and then I’ll discuss rules.

In the Listing 9-3, line 3 declares that this statement is using the Model clause with the keywords
Model return updated rows. In a SQL statement using the Model clause, there are three groups of
columns: partitioning columns, dimension columns, and measures columns. Partitioning columns are
analogous to a sheet in the spreadsheet. Dimension columns are analogous to row tags (A,B,C..) and
column tags (1,2,3..). The measures columns are analogous to cells with formulas.

Line 5 identifies the columns Product and Country as partitioning columns with the clause
partition by (product, country. Line 6 identifies columns Year and Week as dimension columns
with the clause dimension by (year, week. Line 7 identifies columns Inventory, Sales, and, Receipts as
measures columns with the clause measures (0 inventory, sale, receipts). A rule is similar to a
formula, and one such rule is defined in lines 8 through 13.

Listing 9-3. Inventory Formula Calculation using Model Clause

 col product format A30
 col country format A10
 col region format A10
 col year format 9999
 col week format 99
 col sale format 999999
 set lines 120 pages 100

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 model return updated rows
 4 where country in ('Australia') and product ='Xtend Memory'
 5 partition by (product, country)
 6 dimension by (year, week)

CHAPTER 9 THE MODEL CLAUSE

254

 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)]
 13)
 14* order by product, country,year, week
/
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
..
Xtend Memory Australia 2001 1 4.634 92.26 96.89
Xtend Memory Australia 2001 2 35.424 118.38 149.17
Xtend Memory Australia 2001 3 37.786 47.24 49.60
...
Xtend Memory Australia 2001 9 77.372 92.67 108.64
Xtend Memory Australia 2001 10 56.895 69.05 48.57
..

In a mathematical sense, the Model clause is implementing partitioned arrays. Dimension
columns are indices into array elements. Each array element, also termed as a cell, is a measures
column.

All rows with the same value for the partitioning column(s) are considered to be in a partition. In
this example, all rows with the same value for product and country are in a partition. Within a
partition, the dimension columns uniquely identify a row. Rules implement formulas to derive the
measures columns and they operate within a partition boundary, so partitions are not mentioned
explicitly in a rule.

NOTE It is important to differentiate between partitioning columns in the Model clause and the object
partitioning feature. While you can use the keyword partition in the Model clause also, it’s different from the
object partitioning scheme used to partition large tables.

Rules
Let’s revisit the rules section from Listing 9-3. You can see both the rule and the corresponding
formula together in Listing 9-4. The formula is accessing the prior week’s inventory to calculate
current week’s inventory, so it requires an inter-row reference. You can see that there is a great
similarity between the formula and the rule.

The SQL statement in Listing 9-4 introduces a useful function named CV. CV stands for Current
Value and can be used to refer to a column value in the right hand side of the rule from the left hand
side of the rule. For example, cv(year) refers to the value of the Year column from the left hand side of
the rule. If you think of a formula when it is being applied to a specific cell in a spreadsheet, the CV
function allows you to reference the index values for that cell.

CHAPTER 9 THE MODEL CLAUSE

255

Listing 9-4. Rule and Formula

Formula for inventory:

Inventory for (year, week) = Inventory (year, prior week)
 - Quantity sold in this week

 + Quantity received in this week

Rule from the SQL:

 8 inventory [year, week] =
 9 nvl(inventory [cv(year), cv(week)-1] ,0)
 10 - sale[cv(year), cv(week)] +
 11 + receipts [cv(year), cv(week)]

Let’s discuss rules with substituted values, as in Listing 9-5. Let’s say that a row with (year, week)
column values of (2001, 3) is being processed. The left hand side of the rule will have the values of
(2001, 3) for the year and column. The cv(year) clause in the right hand side of the rule refers to the
value of the Year column from the left hand side of the rule, that is 2001. Similarly, the clause cv(week)
refers to the value of the Week column from the left hand side of the rule, that is 3. So, the clause
inventory [cv(year), cv(week)-1] will return the value of the inventory measures for the year equal
to 2001 and the prior week, i.e. week equal 2.

Similarly, clauses sale[cv(year), cv(week)] and receipts[cv(year), cv(week)] are referring to
the Sale and Receipts column values for the Year equal to 2001 and Week equal to 3 using CV function.

Notice that the partitioning columns Product and Country are not specified in these rules. Rules
implicitly refer to the column values for the Product and Country column in the current partition.

Listing 9-5. Rule Example

Rule example:
 1 rules (
 2 inventory [2001 , 3] = nvl(inventory [cv(year), cv(week)-1] ,0)
 3 - sale [cv(year), cv(week)] +
 4 + receipts [cv(year), cv(week)]
 5)

 rules (
 inventory [2001 , 3] = nvl(inventory [2001, 3-1] ,0)
 - sale [2001, 3] +
 + receipts [2001, 3]
 = 35.42 – 47.24 + 49.60
 = 37.78
)

Positional and Symbolic References
As discussed previously, the CV function provides the ability to refer to a single cell. It is also possible
to refer to an individual cell or group of cells using positional or symbolic notations. In addition, you
can write FOR loops as a way to create or modify many sells in an array-like fashion.

CHAPTER 9 THE MODEL CLAUSE

256

Positional Notation
Positional notation provides the ability to insert a new cell or update an existing cell in the result set.
If the referenced cell exists in the result set, then the cell value is updated; if the cell doesn’t exist, then
a new cell will be added. This concept of “update if exists, insert if not” is termed as an UPSERT feature,
a fused version of the Update and Insert facilities. Positional notation provides UPSERT capability.

Suppose that you need to add new cells to initialize the column values for the year equal to 2002
and week equal to 1. You could achieve that with a rule defined using a positional notation. In the
Listing 9-6, line 13 and line 14 are adding new cells for the Year equal to 2002 and Week equal to 1
using the positional notation with the clause sale[2002,1]=0. Within the square brackets, the position
of the value refers to the column order declared in the dimension clause. In this case, column order is
(year, week, hence the clause sale[2002,1] refers to the Sale column value for the row satisfying the
predicate year=2002 and week=1. There are no rows with a column value of year equal to 2002 and
week equal to 1, and a new row was inserted with a zero value for the Sale column for the year =2002
and week=1. The last row in the output was inserted by this rule.

Listing 9-6. Positional Reference to Initialize for Year 2002 - UPSERT

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)],
 13 sale [2002, 1] = 0,
 14 receipts [2002,1] =0
 15)
 16* order by product, country,year, week
...

PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2001 49 2.519 45.26 47.33
Xtend Memory Australia 2001 50 11.775 23.14 32.40
Xtend Memory Australia 2001 51 -20.617 114.82 82.43
Xtend Memory Australia 2001 52 -22.931 23.14 20.83
Xtend Memory Australia 2002 1 0 .00 .00
...

CHAPTER 9 THE MODEL CLAUSE

257

Symbolic Notation
Symbolic notation provides the ability to specify a range of values in the left hand side of a rule. Let’s
say that you want to update the sales column values to 110% of their actual value for the weeks 1, 52,
and 53 for the years 2000 and 2001. The SQL in the Listing 9-7 does that. The clause year in
(2000,2001) in line 9 uses an IN operator to specify a list of values for the Year column. Similarly, the
clause week in (1,52,53) specifies a list of values for the week column.

Note that the output in the Listing 9-7 is not a partial output and that there are no rows for the
week equal to 53. Even though you specified 53 in the list of values for the week column in line 9, there
are no rows returned for that week. The reason is that symbolic notation can only update the existing
cells; it does not allow new cells to be added.

NOTE I will discuss a method to insert an array of cells in the upcoming section “For Loops.”

There is no data with a Week column value equal to 53 and no new row was added or updated in
the result set for the week=53. The ability to generate rows is a key difference between symbolic and
positional notations. Symbolic notation provides UPDATE-only facility and positional notation
provides UPSERT facility.

Listing 9-7. Symbolic Reference – UPDATE

 1 select product, country, year, week, sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (sale)
 8 rules(
 9 sale [year in (2000,2001), week in (1,52,53)] order by year, week
 10 = sale [cv(year), cv(week)] * 1.10
 11)
 12* order by product, country,year, week

PRODUCT COUNTRY YEAR WEEK SALE
------------ ---------- ----- ---- ----------
Xtend Memory Australia 2000 1 51.37
Xtend Memory Australia 2000 52 74.20
Xtend Memory Australia 2001 1 101.49
Xtend Memory Australia 2001 52 25.45

There are a few subtle differences between the SQL statement in Listing 9-7 and prior SQL
statements. For example, the statement in Listing 9-7 is missing automatic order in line 8. I’ll discuss
the implication of that in the “Rule Evaluation Order” section later in this chapter.

CHAPTER 9 THE MODEL CLAUSE

258

FOR Loops
FOR loops allow you to specify list of values in the left hand side of a rule. FOR loops can be defined in
the left hand side of the rule only to add new cells to the output; they can’t be used in the right hand
side of the rule. Syntax for the FOR loop is:

FOR dimension FROM <value1> TO <value2>

[INCREMENT | DECREMENT] <value3>

For example, say you want to add cells for the weeks ranging from 1 to 53 for the year 2002 and
initialize those cells with a value of 0. Line 13 in Listing 9-8 inserts new rows for the year 2002 and
weeks ranging from 1 to 53 using a FOR loop. Clause Increment 1 increments the week column values
to generate weeks from 1 to 53. Similarly, the receipts column is initialized using the clause receipts
[2002, for week from 1 to 53 increment 1] =0.

Listing 9-8. Positional Reference, Model and FOR Loops

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)],
 13 sale [2002, for week from 1 to 53 increment 1] = 0,
 14 receipts [2002,for week from 1 to 53 increment 1] =0
 15)
 16* order by product, country,year, week
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2001 52 -22.931 23.14 20.83
Xtend Memory Australia 2002 1 0 .00 .00
...
Xtend Memory Australia 2002 52 0 .00 .00
Xtend Memory Australia 2002 53 0 .00 .00
...

Returning Updated Rows
In Listing 9-7, just four rows were returned even though there are rows for other weeks. The clause
RETURN UPDATED ROWS controls this behavior and provides the ability to limit the cells returned by the
SQL statement. Without this clause, all rows are returned regardless of whether the rules updates the

CHAPTER 9 THE MODEL CLAUSE

259

cells or not. The rule in Listing 9-7 updates only four cells and other cells are untouched, and so just
four rows are returned.

What happens if you don’t specify the clause return updated rows? Listing 9-9 shows the output
without the return updated rows clause. The output in this listing shows that both updated and non-
updated rows are returned from the SQL statement. The rule updates cells for the weeks 1, 52, and 53
only, but the output rows in Listing 9-9 shows rows with other column values such as 2, 3, 4, too.

Listing 9-9. SQL without RETURN UPDATED ROWS

 1 select product, country, year, week, sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (sale)
 8 rules(
 9 sale [year in (2000,2001), week in (1,52,53)] order by year, week
 10 = sale [cv(year), cv(week)] * 1.10
 11)
 12* order by product, country,year, week

PRODUCT COUNTRY YEAR WEEK SALE
------------ ---------- ----- ---- ----------
...
Xtend Memory Australia 2000 50 21.19
Xtend Memory Australia 2000 52 74.20
Xtend Memory Australia 2001 1 101.49
Xtend Memory Australia 2001 2 118.38
Xtend Memory Australia 2001 3 47.24
Xtend Memory Australia 2001 4 256.70
...

The clause RETURN UPDATED ROWS is applicable to statements using positional notation also. In the
Listing 9-10, a rule using a positional notation is shown, inserting a row. Note that there are more
rows in the table matching with the predicate country in ('Australia') and product ='Xtend
Memory'. But, just one row is returned as only one cell is inserted by the rule in line 9. Essentially,
RETURN UPDATED ROWS clause is a limiting clause—it only fetches the rows modified by the rule.

Listing 9-10. RETURN UPDATED ROWS and UPSERT

 1 select product, country, year, week, sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (sale)
 8 rules(
 9 sale [2002, 1] = 0

CHAPTER 9 THE MODEL CLAUSE

260

 10)
 11* order by product, country,year, week
/
PRODUCT COUNTRY YEAR WEEK SALE
------------ ---------- ----- ---- ----------
Xtend Memory Australia 2002 1 .00

Evaluation Order
Multiple rules can be specified in the rules section, and the rules can be specified with dependencies
between them. The rule evaluation sequence can affect the functional behavior of the SQL statement,
as you will see in this section. Furthermore, even within a single rule, the evaluation of the rule must
adhere to a logical sequence. You will look at intra-rule valuation order first and then at inter-rule
evaluation.

Row Evaluation Order
Let’s look at row evaluation order within a rule. Listing 9-11 is copied from the Listing 9-3. However,
this time I’ve commented out the keywords AUTOMATIC ORDER in line 8. By commenting those keywords,
I force the default behavior of SEQUENTIAL ORDER.

The rule has an inter-row reference with the clause inventory [cv(year), cv(week)-1].
Inventory column values must be calculated in ascending order of the week. For example, the
inventory rule for the week 40 must be evaluated before evaluating the inventory rule for the week
41. With AUTOMATIC ORDER, the database engine identifies the row dependencies and evaluates the
rows in strict dependency order. Without the AUTOMATIC ORDER clause, row evaluation order is
undetermined. That leads to ORA-32637 errors, as shown in Listing 9-11.

Listing 9-11. Sequential with Error ORA-32637

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia')
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules -- Commented: automatic order
 9 (
10 inventory [year, week] =
11 nvl(inventory [cv(year), cv(week)-1] ,0)
12 - sale[cv(year), cv(week)] +
13 + receipts [cv(year), cv(week)]
14)
15* order by product, country,year, week
 *
ERROR at line 2:
ORA-32637: Self cyclic rule in sequential order MODEL

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 THE MODEL CLAUSE

261

It is a better practice to specify the row evaluation order explicitly to avoid this error. Listing 9-12
provides an example. In the rule section, you specify the order of row evaluation using an ORDER BY
year, week clause. This clause specifies that rules must be evaluated in the ascending order of Year,
Week column values. That is inventory rule for the Year=2000 and Week=40 must be evaluated before
evaluating the inventory rule for the Year=2000 and Week=41.

Listing 9-12. Evaluation Order at Cell Level

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia')
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules (
 9 inventory [year, week] order by year, week =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)]
 13)
 14* order by product, country,year, week

PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2001 49 2.519 45.26 47.33
Xtend Memory Australia 2001 50 11.775 23.14 32.40
...

Note that there is no consistency check performed to see if this specification of row evaluation

order is logically consistent or not. It is up to the coder—to you!—to understand the implications of
evaluation order. For example, the row evaluation order in Listing 9-13 is specified with the DESC
keyword. While the rule is syntactically correct, semantic correctness is only known to the coder.
Semantic correctness might well require the specification of ASC for an ascending sort. Only the
person writing the SQL statement can know which order meets the business problem being addressed.

Notice that Inventory column values are different between the Listings 9-12 and 9-13. You need to
ensure that the order of row evolution is consistent with the requirements.

Listing 9-13. Evaluation Order using the DESC Keyword

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product in ('Xtend Memory')
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules (

CHAPTER 9 THE MODEL CLAUSE

262

 9 inventory [year, week] order by year, week desc =
10 nvl(inventory [cv(year), cv(week)-1] ,0)
11 - sale[cv(year), cv(week)] +
12 + receipts [cv(year), cv(week)]
13)
14* order by product, country,year, week
PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2001 49 2.068 45.26 47.33
Xtend Memory Australia 2001 50 9.256 23.14 32.40
...

Rule Evaluation Order
In addition to the order in which rows are evaluated, you also have the question of the order in which
the rules are applied. In Listing 9-14, there are two rules with inter-dependency between them. The
first rule is evaluating the rule and refers to the Receipts column, which is calculated by the second
rule. These two rules can be evaluated in any order and the results will depend upon the order of rule
evaluation. It is important to understand the order of rule evaluation because the functional behavior
of the SQL statement can change with the rule evaluation order.

To improve clarity, you will filter on rows with week > 50. In Listing 9-14, line 9 specifies
sequential order. Sequential order specifies that the rules are evaluated in the order in which they are
listed. In this example, the rule for the Inventory column is evaluated, followed by the rule for the
Receipts column. Since the receipts rule is evaluated after the inventory rule, the inventory rule uses
the unaltered values before the evaluation of the receipts rule. Essentially, changes from the receipts
rule for the Receipts column calculation are not factored in to the Inventory calculation.

The situation with rule evaluation is the same as with rows. Only a coder will know what order of
evaluation is appropriate for the business problem being solved. Only the coder will know whether the
inventory rule should use altered values from execution of the receipts rule, or otherwise.

Listing 9-14. Rule Evaluation Order – Sequential Order

 1 select * from (
 2 select product, country, year, week, inventory, sale, receipts
 3 from sales_fact
 4 where country in ('Australia') and product in ('Xtend Memory')
 5 model return updated rows
 6 partition by (product, country)
 7 dimension by (year, week)
 8 measures (0 inventory , sale, receipts)
 9 rules sequential order (
10 inventory [year, week] order by year, week =
11 nvl(inventory [cv(year), cv(week)-1] ,0)
12 - sale[cv(year), cv(week)] +
13 + receipts [cv(year), cv(week)],
14 receipts [year in (2000,2001), week in (51,52,53)]
15 order by year, week

CHAPTER 9 THE MODEL CLAUSE

263

16 = receipts [cv(year), cv(week)] * 10
17)
18 order by product, country,year, week
19*) where week >50

PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2000 52 -6.037 67.45 614.13
Xtend Memory Australia 2001 51 -20.617 114.82 824.28
Xtend Memory Australia 2001 52 -22.931 23.14 208.26

Another method of evaluating the order employed by Oracle database is automatic order. In

Listing 9-15, the evaluation order is changed to automatic order. With automatic order, dependencies
between the rules are automatically resolved by Oracle and the order of rule evaluation depends upon
the dependencies between the rules.

The results from Listing 9-15 and Listing 9-14 do not match. For example, inventory for week 52 is
-22.931 in Listing 9-14, and it is 906.355 in Listing 9-15. By specifying automatic order, you allow the
database engine to identify a dependency between the rules. Thus, the engine evaluates the receipts
rule first, followed by the inventory rule.

Clearly, the order of rule evaluation can be quite important. If there are complex inter-
dependencies, then you might want to specify sequential order and list the rules in a strict evaluation
sequence. That way, you are in full control and nothing is left to doubt.

Listing 9-15. Rule Evaluation Order- Automatic Order

...
9 rules automatic order (
...

PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS
------------ ---------- ----- ---- ---------- ---------- ----------
...
Xtend Memory Australia 2000 52 546.68 67.45 614.13
Xtend Memory Australia 2001 51 721.235 114.82 824.28
Xtend Memory Australia 2001 52 906.355 23.14 208.26

Aggregation
Data aggregation is commonly used in the data warehouse queries. The Model clause provides the
ability to aggregate the data using aggregate functions over the range of dimension columns.

Many different aggregation function calls such as sum, max, avg, stddev, and OLAP function calls can
be used to aggregate the data in a rule. It is easier to understand aggregation with an example.

In Listing 9-16, the rule in lines 9 to 12 is calculating average inventory by Year using the clause
avg_inventory[year,ANY] = avg(inventory) [cv(year), week]. In the left hand side of the rule,
avg_invntory is the rule name. The first dimension in this rule is Year column. As the dimension
clause is specifying the Week column as the second dimension, specifying ANY in the second position

CHAPTER 9 THE MODEL CLAUSE

264

of the rule argument matches with any value of week column including nulls. In the right hand side of
the rule, the clause avg(inventory) applies the avg function on the Inventory column. The first
dimension is cv(year). The second dimension is specified as week. There is no need for the use of CV in
the second dimension, as the function must be applied on all weeks in the year as computed by the
clause cv(year).

Line 13 shows the use of avg. Line 14 shows an example of using the max function.

Listing 9-16. Aggregation

 1 select product, country, year, week, inventory, avg_inventory, max_sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory ,0 avg_inventory , 0 max_sale, sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
10 nvl(inventory [cv(year), cv(week)-1] ,0)
11 - sale[cv(year), cv(week)] +
12 + receipts [cv(year), cv(week)],
13 avg_inventory [year,ANY] = avg (inventory) [cv(year), week],
14 max_Sale [year, ANY] = max(sale) [cv(year), week]
15)
16* order by product, country,year, week

PRODUCT COUNTRY YEAR WEEK INVENTORY AVG_INVENTORY MAX_SALE
------------ ---------- ----- ---- ---------- ------------- ---------
...
Xtend Memory Australia 2001 42 17.532 28.60 278.44
Xtend Memory Australia 2001 43 24.511 28.60 278.44
Xtend Memory Australia 2001 44 29.169 28.60 278.44
...
Xtend Memory Australia 2001 52 -22.931 28.60 278.44

Iteration
Iteration provides another facility to implementing complex business requirements using a concise
Model SQL statement. A block of rules can be executed in a loop a certain number of times or while a
condition remains true. The syntax for the iteration is:

[ITERATE (n) [UNTIL <condition>]]

(<cell_assignment> = <expression> ...)

Use the syntax ITERATE (n) to execute an expression n times. Use the expression ITERATE UNTIL

<condition> to iterate while the given condition remains true.

CHAPTER 9 THE MODEL CLAUSE

265

An Example
Suppose the goal is to show five weeks of sale column values in a comma-separated list format. This
requirement is implemented in Listing 9-17.

NOTE Conversion of rows to columns is termed as pivoting. Oracle database 11g introduces syntax to
implement pivoting function natively. In Oracle database 10g, you could use the Model clause to implement
pivoting.

Line 8 specifies that the rules block is to be iterated five times for each row. That’s done through
the clause rules iterate(5). In line 10, you use Iteration_number, which is a variable available within
the rules section, to access the current iteration count of the loop. Iteration_number starts with a value
of 0 for the first iteration in the loop and ends at n-1 where n is the number of loops as specified in the
iterate(n) clause. In this example, the Iteration_number variable value ranges from 0 to 4. With
Iteration_number and bit of arithmetic, you can access the prior two weeks and the next two weeks’
values using the clause CV(week)-ITERATION_NUMBER +2. The CASE statement adds a comma for each
element in the list, except for the first element.

For example, let’s assume the current row in the process has a value of year=2001 and week=23. In
the first iteration of the loop, iteration_number will be zero, and the clause cv(week)-ITERATION_NUMBER
+2 will access the row with week=23-0+2=25. In the next iteration, week 24 will be accessed, and so on.
The FOR loop is repeated for every row in the model output.

Let’s review the output rows in Listing 9-17. For the year 2001, week 23, column Sale_list has the
following list of values: 233.7, 141.78, 22.38, 136.92, 139.28. You can see how those values are
centered on the current week. The first two come from sales column for the immediately preceding
weeks. Then you have the current week’s sales, and then the values from the following two weeks.

Listing 9-17. Iteration

 1 select year, week,sale, sale_list
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (cast(' ' as varchar2(50)) sale_list, sale)
 8 rules iterate (5) (
 9 sale_list [year, week] order by year, week =
10 sale [cv(year), CV(week)-ITERATION_NUMBER +2] ||
11 case when iteration_number=0 then '' else ', ' end ||
12 sale_list [cv(year) ,cv(week)]
13)
14* order by year, week

CHAPTER 9 THE MODEL CLAUSE

266

 YEAR WEEK SALE SALE_LIST
----- ---- ---------- --
 2001 20 118.03 22.37, , 118.03, 233.7, 141.78
 2001 21 233.70 , 118.03, 233.7, 141.78, 22.38
 2001 22 141.78 118.03, 233.7, 141.78, 22.38, 136.92
 2001 23 22.38 233.7, 141.78, 22.38, 136.92, 139.28
 2001 24 136.92 141.78, 22.38, 136.92, 139.28,
 2001 25 139.28 22.38, 136.92, 139.28, , 94.48

PRESENTV and NULLs
If a rule is accessing a non-existent row, the rule will return a null value. Notice that in the output of
Listing 9-17, Sale_list column in the first row has two commas consecutively. The reason is that the
row for the week=19 does not exist in the data, so accessing that non-existent cell returns a null value.
You can correct this double comma issue using a function to check for cell existence using a PRESENTV
function. This function accepts three parameters and the syntax for the function is:

PRESENTV (cell_reference, expr1, expr2)

If cell_reference references an existing cell, then the PRESENTV function returns expr1. If the

Cell_reference references a non-existing cell, then the second argument expr2 is returned. In Listing
9-18, line 10 performs this existence check on the Sale column for the year and week combination
using a clause sale [cv(year), CV(week)-iteration_number + 2]. If the cell exists, then the function
adds the value of the cell and comma to the returned string (lines 11 to 13). If the cell does not exist, the
function returns the Sale_list column without altering the string (line 14). This solution eliminates the
double comma in the Sale_list column value.

Listing 9-18. Iteration and presntv

 1 select year, week,sale, sale_list
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (cast(' ' as varchar2(120)) sale_list, sale, 0 tmp)
 8 rules iterate (5) (
 9 sale_list [year, week] order by year, week =
10 presentv (sale [cv(year), CV(week)-iteration_number + 2],
11 sale [cv(year), CV(week)-iteration_number +2] ||
12 case when iteration_number=0 then '' else ', ' end ||
13 sale_list [cv(year) ,cv(week)] ,
14 sale_list [cv(year) ,cv(week)])
15)
16* order by year, week

CHAPTER 9 THE MODEL CLAUSE

267

 YEAR WEEK SALE SALE_LIST
----- ---- ---------- --
 2001 20 118.03 22.37, 118.03, 233.7, 141.78
 2001 21 233.70 118.03, 233.7, 141.78, 22.38
 2001 22 141.78 118.03, 233.7, 141.78, 22.38, 136.92
 ...
 2001 29 116.85 94.48, 116.85, 162.91, 92.21

The PRESENTNNV function is similar to PRESENTV, but provides the additional ability to differentiate

between references to non-existent cells and null values in existing cells. The syntax for the function
PRESENTNNV is

PRESENTNNV (cell_reference, expr1, expr2).

If the first argument cell_reference references an existing cell and if that cell contains non-null

value, then the first argument expr1 is returned, or else the second argument expr2 is returned. In
contrast, the PRESENTV function checks for just the existence of a cell, whereas the PRESENTNNV function
checks for both the existence of a cell and Null values in that cell. Table 9-1 lists shows the values
returned from these two functions in four different cases.

Table 9-1. Presentv and presentnnv Comparison

Cell exists? Null? Presentv Presentnnv

Y Not null expr1 expr1

Y Null expr1 expr2

N Not null expr2 expr2

N Null expr2 expr2

Lookup Tables
You can define a lookup table and refer to that lookup table in the rules section. Such a lookup table is
sometimes termed a reference table. Reference tables are defined in the initial section of the SQL
statement and then referred in the rules section of the SQL statement.

In Listing 9-19, lines 5 to 9 define a lookup table ref_prod using a Reference clause. Line 5
REFERENCE ref_prod is specifying ref_prod as a lookup table. Column Prod_name is a dimension
column as specified in line 8 and column Prod_list_price is a measures column. Note that the
reference table must be unique on dimension column and should retrieve exactly one row per
dimension column’s value.

Line 10 specifies the main model section starting with the keyword MAIN. This section is named as
main_section for ease of understanding, although any name can be used. In the line 15, a rule for the
column Prod_list_price is specified and populated from the lookup table ref_prod. Line 16 shows that
the reference table that measures columns is accessed using the clause ref_prod.prod_list_price
[cv(product)]. The current value of the Product column is passed as a lookup key in the lookup table
using the clause cv(product).

CHAPTER 9 THE MODEL CLAUSE

268

In summary, you define a lookup table using a REFERENCE clause, and then access that lookup table
using the syntax look_table_name.measures column. For example, the syntax in this example is
ref_prod.prod_list_price [cv(product)]. To access a specific row in the lookup table, you pass the
current value of the dimension column from the left hand side of the rule, in this example, using the
cv(product) clause. You might be able to understand better if you imagine ref_prod as a table,
cv(product) as primary key in to that table, and prod_list_price as a column to fetch from that lookup
table.

Listing 9-19. Reference Model

 1 select year, week,sale, prod_list_price
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows
 5 REFERENCE ref_prod on
 6 (select prod_name, max(prod_list_price) prod_list_price from products
 7 group by prod_name)
 8 dimension by (prod_name)
 9 measures (prod_list_price)
10 MAIN main_section
11 partition by (product, country)
12 dimension by (year, week)
13 measures (sale, receipts, 0 prod_list_price)
14 rules (
15 prod_list_price[year,week] order by year, week =
16 ref_prod.prod_list_price [cv(product)]
17)
18* order by year, week;

 YEAR WEEK SALE PROD_LIST_PRICE
----- ---- ---------- ---------------
 2000 31 44.78 20.99
 2000 33 134.11 20.99
 2000 34 178.52 20.99
...

More lookup tables can be added if needed. Suppose you also need to retrieve the
country_iso_code column values from another table. You achieved that by adding a lookup table
ref_country as shown in Listing 9-20 lines 10 to 13. Column Country_name is the dimension column
and Country_iso_code is a measures column. Lines 22 and 23 refer to the lookup table using a new
rule Iso_code. This rule is accessing the lookup table ref_country using the Current Value of the
Country column as the lookup key.

Listing 9-20. More Lookup Tables

 1 select year, week,sale, prod_list_price, iso_code
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model return updated rows

CHAPTER 9 THE MODEL CLAUSE

269

 5 REFERENCE ref_prod on
 6 (select prod_name, max(prod_list_price) prod_list_price from
 7 products group by prod_name)
 8 dimension by (prod_name)
 9 measures (prod_list_price)
10 REFERENCE ref_country on
11 (select country_name, country_iso_code from countries)
12 dimension by (country_name)
13 measures (country_iso_code)
14 MAIN main_section
15 partition by (product, country)
16 dimension by (year, week)
17 measures (sale, receipts, 0 prod_list_price ,
18 cast(' ' as varchar2(5)) iso_code)
19 rules (
20 prod_list_price[year,week] order by year, week =
21 ref_prod.prod_list_price [cv(product)],
22 iso_code [year, week] order by year, week =
23 ref_country.country_iso_code [cv(country)]
24)
25* order by year, week

YEAR WEEK SALE PROD_LIST_PRICE ISO_C
---- ---- ---------- --------------- -----
2000 31 44.78 20.99 AU
2000 33 134.11 20.99 AU
2000 34 178.52 20.99 AU
2000 35 78.82 20.99 AU
2000 36 118.41 20.99 AU
 ...

NULLs
In SQL statements using Model SQL, values can be null for two reasons: null values in the existing
cells and references to non-existent cells. I will discuss the later scenario in this section.

By default, the reference to non-existent cells will return null values. In Listing 9-21, the rule in
line 10 is accessing the Sale column for the year =2002 and the week =1 using the clause sale[2002,1].
There is no data in the sales_fact table for the year 2002 and so sale[2002,1] is accessing a non-
existent cell. Output in this listing is null due to the arithmetic operation with a null value.

In Line 4, I added a KEEP NAV clause after the Model keyword explicitly even though KEEP NAV is the
default value. NAV stands for Non Available Values and reference to a non-existent cell returns a null
value by default.

CHAPTER 9 THE MODEL CLAUSE

270

Listing 9-21. KEEP NAV Example

 1 select product, country, year, week, sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model KEEP NAV return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (sale)
 8 rules sequential order(
 9 sale[2001,1] order by year, week= sale[2001,1],
 10 sale [2002, 1] order by year, week = sale[2001,1] + sale[2002,1]
 11)
 12* order by product, country,year, week

PRODUCT COUNTRY YEAR WEEK SALE
------------------------------ ---------- ----- ---- ----------
Xtend Memory Australia 2001 1 92.26
Xtend Memory Australia 2002 1

This default behavior can be modified using the IGNORE NAV clause. Listing 9-22 shows an example.
If the non-existent cells are accessed, then 0 is returned for numeric columns and an empty string is
returned for text columns instead of null values. You can see that the output in Listing 9-22 shows that a
value of 92.26 is returned for the clause sale[2001,1] + sale[2002,1] as zero is retuned for the non
existing cell sale[2002,1].

Listing 9-22. IGNORE NAV

 1 select product, country, year, week, sale
 2 from sales_fact
 3 where country in ('Australia') and product ='Xtend Memory'
 4 model IGNORE NAV return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (sale)
 8 rules sequential order(
 9 sale[2001,1] order by year, week= sale[2001,1],
 10 sale [2002, 1] order by year, week = sale[2001,1] + sale[2002,1]
 11)
 12* order by product, country,year, week

PRODUCT COUNTRY YEAR WEEK SALE
------------------------------ ---------- ----- ---- ----------
Xtend Memory Australia 2001 1 92.26
Xtend Memory Australia 2002 1 92.26

The functions PRESENTV and PRESNTNNV are also useful in handling NULL values. Refer to the
earlier section called “Iteration” for discussion and examples of these two functions.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 THE MODEL CLAUSE

271

Performance Tuning with the Model Clause
As with all SQL, sometimes you need to tune statements using the Model clause. To that end, it helps to
know how to read execution plans involving the clause. It also helps to know about some of the issues
you’ll encounter—such as predicate pushing and partitioning—when working with Model clause
queries.

Execution Plans
In the Model clause, rule evaluation is the critical step. Rule evaluation can use one of five algorithm
types: ACYCLIC, ACYCLIC FAST, CYCLIC, ORDERED, and ORDERED FAST. The algorithm chosen depends upon
the complexity and dependency of the rules themselves. The algorithm chosen also affects the
performance of the SQL statement. But details of these algorithms are not well documented.

ACYCLIC FAST and ORDERED FAST algorithms are more optimized algorithms that allow cells to be
evaluated efficiently. However, the algorithm chosen depends upon the type of the rules that you
specify. For example, if there is a possibility of a cycle in the rules, then the algorithm that can handle
cyclic rules is chosen.

The algorithms of type ACYCLIC and CYCLIC are used if the SQL statement specifies the rules
automatic order clause. An ORDERED type of the rule evaluation algorithm is used if the SQL statement
specifies rules sequential order. If a rule is accessing individual cells without any aggregation, then
either the ACYCIC FAST or ORDERED FAST algorithm is used.

ACYCLIC
In Listing 9-23, a Model SQL statement and its execution plan is shown. Step 2 in the execution plan
shows that this SQL is using the SQL MODEL ACYCLIC algorithm for rule evaluation. The keyword ACYCLIC
indicates that there are no possible CYCLIC dependencies between the rules. In this example, with the
order by year, week clause you control the dependency between the rules, avoiding cycle
dependencies,

Listing 9-23. Automatic order and ACYCLIC

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] order by year, week =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)]
 13)
 14* order by product, country,year, week

CHAPTER 9 THE MODEL CLAUSE

272

| Id | Operation | Name | E-Rows |
--
0	SELECT STATEMENT		
1	SORT ORDER BY		147
2	SQL MODEL ACYCLIC		147
* 3	TABLE ACCESS FULL	SALES_FACT	147

ACYCLIC FAST
If a rule is a simple rule accessing just one cell, the ACYCLIC FAST algorithm can be used. The execution
plan in Listing 9-24 shows that the ACYCLIC FAST algorithm is used to evaluate the rule in this example.

Listing 9-24. Automatic Order and ACYCLIC FAST

 1 select distinct product, country, year,week, sale_first_Week
 2 from sales_fact
 3 where country in ('Australia') and product='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year,week)
 7 measures (0 sale_first_week ,sale)
 8 rules automatic order(
 9 sale_first_week [2000,1] = 0.12*sale [2000, 1]
 10)
 11* order by product, country,year, week

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT ORDER BY	
2	SQL MODEL ACYCLIC FAST	
* 3	TABLE ACCESS FULL	SALES_FACT
--

CYCLIC
The execution plan in Listing 9-25 shows the use of CYCLIC algorithm to evaluate the rules. The SQL in
Listing 9-25 is the copy of Listing 9-23 except for that the clause order by year, week is removed from
the rule in line 9. Without the order-by clause, row evaluation can happen in any order, and so the
CYCLIC algorithm is chosen.

CHAPTER 9 THE MODEL CLAUSE

273

Listing 9-25. Automatic Order and CYCLIC

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
10 nvl(inventory [cv(year), cv(week)-1] ,0)
11 - sale[cv(year), cv(week)] +
12 + receipts [cv(year), cv(week)]
13)
14* order by product, country,year, week

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT ORDER BY	
2	SQL MODEL CYCLIC	
* 3	TABLE ACCESS FULL	SALES_FACT
--

Sequential
If the rule specifies sequential order, then the evaluation algorithm of the rules is shown as ORDERED.
Listing 9-26 shows an example.

Listing 9-26. Sequential Order

 1 select product, country, year, week, inventory, sale, receipts
 2 from sales_fact
 3 where country in ('Australia') and product='Xtend Memory'
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules sequential order(
 9 inventory [year, week] order by year, week =
10 nvl(inventory [cv(year), cv(week)-1] ,0)
11 - sale[cv(year), cv(week)] +
12 + receipts [cv(year), cv(week)]
13)
14* order by product, country,year, week

CHAPTER 9 THE MODEL CLAUSE

274

| Id | Operation | Name |

0	SELECT STATEMENT	
1	SORT ORDER BY	
2	SQL MODEL ORDERED	
* 3	TABLE ACCESS FULL	SALES_FACT

In a nutshell, the complexity and inter-dependency of the rules plays a critical role in the
algorithm chosen. ACYCLIC FAST and ORDERED FAST algorithms are more scalable. This becomes
important as the amount of data increases.

Predicate Pushing
Conceptually, the Model clause is a variant of analytical SQL and is typically implemented in a view or
inline view. Predicates are specified outside the view, and these predicates must be pushed in to the
view for acceptable performance. In fact, predicate pushing is critical to performance of the Model
clause. Unfortunately, not all predicates can be pushed safely into the view due to the unique nature of
the Model clause. If predicates are not pushed, then the Model clause will execute on the larger set of
rows and can result in poor performance.

In Listing 9-27, an inline view is defined from lines 2 to 14 and then predicates on columns
Country and Product are added. Step 4 in the execution plan shows that both predicates are pushed into
the view, rows are filtered applying these two predicates, and then the Model clause executes on the
result set. This is good, as the Model clause is operating on a smaller set of rows than it would
otherwise—just 147 rows in this case.

Listing 9-27. Predicate Pushing

 1 select * from (
 2 select product, country, year, week, inventory, sale, receipts
 3 from sales_fact
 4 model return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)]
 13)
 14) where country in ('Australia') and product='Xtend Memory'
 15* order by product, country,year, week
...

CHAPTER 9 THE MODEL CLAUSE

275

select * from table (dbms_xplan.display_cursor('','','ALLSTATS LAST'));

| Id | Operation | Name | E-Rows | OMem | 1Mem | Used-Mem |

0	SELECT STATEMENT					
1	SORT ORDER BY		147	18432	18432	16384 (0)
2	VIEW		147			
3	SQL MODEL CYCLIC		147	727K	727K	358K (0)
* 4	TABLE ACCESS FULL	SALES_FACT	147			

Predicate Information (identified by operation id):

 4 - filter(("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia'))

Listing 9-28 enumerates an example in which the predicates are not pushed into the view. In this
example, predicate year=2000 is specified, but not pushed into the inline view. The optimizer estimates
show that the Model clause needs to operate on some 111,000 (110K) rows.

Predicates can be pushed into a view only if it’s safe to do so. The SQL in Listing 9-28 uses both the
Year and Week column as dimension columns. Generally, predicates on the partitioning columns can
be pushed in to a view safely, but not all predicates on the dimension column can be pushed.

Listing 9-28. Predicate not Pushed

 1 select * from (
 2 select product, country, year, week, inventory, sale, receipts
 3 from sales_fact
 4 mod el return updated rows
 5 partition by (product, country)
 6 dimension by (year, week)
 7 measures (0 inventory , sale, receipts)
 8 rules automatic order(
 9 inventory [year, week] =
 10 nvl(inventory [cv(year), cv(week)-1] ,0)
 11 - sale[cv(year), cv(week)] +
 12 + receipts [cv(year), cv(week)]
 13)
 14) where year=2000
 15* order by product, country,year, week

| Id | Operation | Name | E-Rows | OMem | 1Mem | Used-Mem |

0	SELECT STATEMENT					
1	SORT ORDER BY		111K	2604K	733K	2314K (0)
* 2	VIEW		111K			
3	SQL MODEL CYCLIC		111K	12M	1886K	12M (0)
4	TABLE ACCESS FULL	SALES_FACT	111K			

CHAPTER 9 THE MODEL CLAUSE

276

Predicate Information (identified by operation id):

 2 - filter("YEAR"=2000)

Materialized Views
Typically, SQL statements using the Model clause access very large tables. Oracle’s query Rewrite
feature and Materialized views can be combined to improve performance of such statements.

In Listing 9-29, a materialized view mv_model_inventory is created with the enable query rewrite
clause. Subsequent SQL in the listing executes the SQL statement accessing the Sales_fact table with
the Model clause. The execution plan for the statement shows that the query rewrite feature rewrote
the query redirecting access to the materialized view instead of the base table. The rewrite improves
the performance of the SQL statement since the materialized view has pre-evaluated the rules and
stored the results.

NOTE The fast incremental refresh is not available for materialized views involving the Model clause.

Listing 9-29. Materialized View and Query Rewrite

create materialized view mv_model_inventory
enable query rewrite as
 select product, country, year, week, inventory, sale, receipts
 from sales_fact
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)
 rules sequential order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
/
Materialized view created.

select * from (
 select product, country, year, week, inventory, sale, receipts
 from sales_fact
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)

CHAPTER 9 THE MODEL CLAUSE

277

 rules sequential order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
)
where country in ('Australia') and product='Xtend Memory'
order by product, country,year, week
/

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT ORDER BY	
* 2	MAT_VIEW REWRITE ACCESS FULL	MV_MODEL_INVENTORY
--

Predicate Information (identified by operation id):

 2 - filter(("MV_MODEL_INVENTORY"."COUNTRY"='Australia' AND
 "MV_MODEL_INVENTORY"."PRODUCT"='Xtend Memory'))

Parallelism
Model-based SQL works seamlessly with Oracle’s parallel execution features. Queries against
partitioned tables benefit greatly from parallelism and Model-based SQL statements.

An important concept with parallel query execution and Model SQL is that parallel query
execution needs to respect the partition boundaries. Rules defined in the Model clause-based SQL
statement might access another row. After all, accessing another row is the primary reason to use
Model SQL statements. So, a parallel query slave must receive all rows from a Model data partition so
that the rules can be evaluated. This distribution of rows to parallel query slaves is taken care of
seamlessly by the database engine. The first set of parallel slaves reads row pieces from the table and
distributes the row pieces to second set of slaves. That distribution is such that one slave receives all
rows of a given model partition.

Listing 9-30 shows an example of Model and parallel queries. Two set of parallel slaves are
allocated to execute the statement shown. The first set of slaves is read from the table. The second set
of slaves evaluates the Model rule.

Listing 9-30. Model and Parallel Queries

select /*+ parallel (sf 4) */
 product, country, year, week, inventory, sale, receipts
 from sales_fact sf
 where country in ('Australia') and product='Xtend Memory'
 model return updated rows
 partition by (product, country)

CHAPTER 9 THE MODEL CLAUSE

278

 dimension by (year, week)
 measures (0 inventory , sale, receipts)
 rules automatic order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
/
---...--------------------------
| Id | Operation | Name | TQ |IN-OUT| PQ Distrib |
--
0	SELECT STATEMENT		...		
1	PX COORDINATOR				
2	PX SEND QC (RANDOM)	:TQ10001	Q1,01	P->S	QC (RAND)
3	BUFFER SORT		Q1,01	PCWP	
4	SQL MODEL ACYCLIC		Q1,01	PCWP	
5	PX RECEIVE		Q1,01	PCWP	
6	PX SEND HASH	:TQ10000	Q1,00	P->P	HASH
7	PX BLOCK ITERATOR		Q1,00	PCWC	
* 8	TABLE ACCESS FULL	SALES_FACT	Q1,00	PCWP	
--
Predicate Information (identified by operation id):

 8 - access(:Z>=:Z AND :Z<=:Z)
 filter(("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia'))

Partitioning in Model Clause Execution
Table partitioning can be used to improve the performance of Model SQL statements. Generally, if the
partitioning column(s) in the Model SQL matches the partitioning keys of the table, partitions are
pruned. Partition pruning is a technique for performance improvement to limit scanning few
partitions.

In Listing 9-31, the table sales_fact_part is list-partitioned by year using the script
Listing_9_31_partition.sql (part of the example download for this book). The partition with
partition_id=3 contains rows with the value of 2000 for the Year column. Since the Model SQL is using
Year as the partitioning column and since a year=2000 predicate is specified, partition pruning lead to
scanning partition 3 alone. The execution plan shows that both Pstart and Pstop columns have a value
of 3, indicating that the range of partitions to be processed begins and ends with the single partition
having id=3.

Listing 9-31. Partition Pruning

select * from (
 select product, country, year, week, inventory, sale, receipts
 from sales_fact_part sf
 model return updated rows
 partition by (year, country)

CHAPTER 9 THE MODEL CLAUSE

279

 dimension by (product, week)
 measures (0 inventory , sale, receipts)
 rules automatic order(
 inventory [product, week] order by product, week =
 nvl(inventory [cv(product), cv(week)-1] ,0)
 - sale[cv(product), cv(week)] +
 + receipts [cv(product), cv(week)]
)
) where year=2000 and country='Australia' and product='Xtend Memory'
/
--...----------------
| Id | Operation | Name |... Pstart| Pstop |

0	SELECT STATEMENT			
1	SQL MODEL ACYCLIC			
2	PARTITION LIST SINGLE		KEY	KEY
* 3	TABLE ACCESS FULL	SALES_FACT_PART	3	3

Predicate Information (identified by operation id):

 1 - filter("PRODUCT"='Xtend Memory')
 4 - filter("COUNTRY"='Australia')

In Listing 9-32, columns Product and County are used as partitioning columns, but the table

Sales_fact_part has the Year column as the partitioning key. Step 1 in the execution plan indicates that
predicate year=2000 was not pushed into the view since the rule can access other partitions (as Year is
a dimension column). Because the partitioning key is not pushed into the view, partition pruning is
not allowed, and all partitions are scanned. You can see that Pstart and Pstop are 1 and 5, respectively,
in the execution plan.

Listing 9-32. No Partition Pruning

 select * from (
 select product, country, year, week, inventory, sale, receipts
 from sales_fact_part sf
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)
 rules automatic order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
) where year=2000 and country='Australia' and product='Xtend Memory'
/

CHAPTER 9 THE MODEL CLAUSE

280

--...-------------
| Id | Operation | Name | Pstart| Pstop |
--
0	SELECT STATEMENT			
* 1	VIEW			
2	SQL MODEL ACYCLIC			
3	PARTITION LIST ALL		1	5
* 4	TABLE ACCESS FULL	SALES_FACT_PART	1	5
--...-------------
Predicate Information (identified by operation id):

 1 - filter("YEAR"=2000)
 4 - filter(("PRODUCT"='Xtend Memory' AND "COUNTRY"='Australia'))

Indexes
Choosing indexes to improve the performance of SQL statements using a Model clause is no different
from choosing indexes for any other SQL statements. You use the access and filter predicates to
determine the optimal indexing strategy.

As an example, Listing 9-32’s execution plan shows that the filter predicates PRODUCT"='Xtend Memory'
AND "COUNTRY"='Australia' were applied at step 4. Indexing on the two columns Product and Country
will be helpful if there are many executions with these column predicates.

In the Listing 9-33, I added an index to the columns Country and Product. The resulting execution plan
shows table access via the index, possibly improving performance.

Listing 9-33. Indexing with SQL Access in Mind

 create index sales_fact_part_i1 on sales_fact_part (country, product) ;
 select * from (
 select product, country, year, week, inventory, sale, receipts
 from sales_fact_part sf
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)
 rules automatic order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
) where year=2000 and country='Australia' and product='Xtend Memory'
/

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 9 THE MODEL CLAUSE

281

| Id | Operation | Name | Pstart| Pstop |

0	SELECT STATEMENT			
* 1	VIEW			
2	SQL MODEL ACYCLIC			
3	TABLE ACCESS BY GLOBAL INDEX ROWID	SALES_FACT_PART	ROWID	ROWID
* 4	INDEX RANGE SCAN	SALES_FACT_PART_I1		

Predicate Information (identified by operation id):

 1 - filter("YEAR"=2000)
 4 - access("COUNTRY"='Australia' AND "PRODUCT"='Xtend Memory')

Subquery Factoring
In a business setting, requirements are complex and multiple levels of aggregation are often needed.
When writing complex queries, you can often combine subquery factoring with the Model clause to
prevent a SQL statement from becoming unmanageably complex.

Listing 9-34 provides one such example. Two Model clauses are coded in the same SQL statement.
The first Model clause is embedded within a view that is the result of a subquery being factored into the
WITH clause. The main query uses that view to pivot the value of the Sale column from the prior year.
The output shows that prior week sales are pivoted into the current week’s row.

Listing 9-34. More Indexing with SQL Access in Mind

with t1 as (
 select product, country, year, week, inventory, sale, receipts
 from sales_fact sf
 where country in ('Australia') and product='Xtend Memory'
 model return updated rows
 partition by (product, country)
 dimension by (year, week)
 measures (0 inventory , sale, receipts)
 rules automatic order(
 inventory [year, week] order by year, week =
 nvl(inventory [cv(year), cv(week)-1] ,0)
 - sale[cv(year), cv(week)] +
 + receipts [cv(year), cv(week)]
)
)
select product, country, year, week , inventory, sale,receipts,
 prev_sale

CHAPTER 9 THE MODEL CLAUSE

282

from t1
model return updated rows
partition by (product, country)
dimension by (year, week)
measures (inventory, sale, receipts,0 prev_sale)
rules sequential order (
 prev_sale [year, week] order by year, week =
 nvl (sale [cv(year) -1, cv(week)],0)
)
order by 1,2,3,4
/

PRODUCT COUNTRY YEAR WEEK INVENTORY SALE RECEIPTS PREV_SALE
------------ ---------- ------ ---- ---------- ---------- ---------- ----------
Xtend Memory Australia 1998 50 11.504 28.76 40.264 0
...
Xtend Memory Australia 2000 50 12.714 21.19 25.428 0
...
Xtend Memory Australia 2001 50 11.775 23.14 32.396 21.19

Summary
I can’t stress enough the importance of thinking in terms of sets when writing SQL statements. Many
SQL statements can be rewritten concisely using the Model clause discussed in this chapter. As an
added bonus, rewritten queries such as Model or analytic functions can perform much better than
traditional SQL statements. A combination of subquery factoring, Model, and analytic functions
features can be used effectively to implement complex requirements.

C H A P T E R 1 0

■ ■ ■

283

Subquery Factoring

Jared Still

You may not be familiar with the term subquery factoring. Prior to the release of Oracle 11gR2, the
official Oracle documentation barely mentions it, providing just a brief synopsis of its use, a couple of
restrictions, and a single example. If I instead refer to the WITH clause of the SELECT statement, you will
probably know immediately what I mean as this term is more recognizable. Both terms will be used in
this chapter.

With the release of Oracle 11gR2 (version 11.2), the WITH clause was enhanced with the ability to
recurse; that is, the factored subquery is allowed to call itself within some limitation. The value of this
may not be readily apparent. If you have used the CONNECT BY clause to create hierarchical queries, you
will appreciate that recursive subqueries allow the same functionality to be implemented in an ANSI
standard format.

If the term subquery factoring is not known to you, perhaps you have heard of the ANSI Standard
term common table expression (commonly called CTE). Common table expressions were first specified
in the 1999 ANSI SQL Standard. For some reason, Oracle has chosen to obfuscate this name. Other
database vendors refer to common table expressions, so perhaps Oracle chose subquery factoring just to
be different.

Standard Usage
One of the most useful features of the WITH clause when it was first introduced was to cleanup complex
SQL queries. When a large number of tables and columns are involved in a query, it can become difficult
to follow the flow of data through the query. Via the use of subquery factoring, a query can be made
more understandable by moving some of the complexity away from the main body of the query.

The query in Listing 10-1 generates a crosstab report using the PIVOT operator. The formatting helps
make the SQL somewhat readable, but there is quite a bit going on here. The innermost query is creating
a set of aggregates on key sales columns, while the next most outer query simply provides column names
that are presented to the PIVOT operator, where the final values of sales by channel and quarter for each
product are generated.

Listing 10-1. Crosstab without Subquery Factoring

select *
from (
 select /*+ gather_plan_statistics */
 product
 , channel
 , quarter

CHAPTER 10 ■ SUBQUERY FACTORING

284

 , country
 , quantity_sold
 from
 (
 select
 prod_name product
 , country_name country
 , channel_id channel
 , substr(calendar_quarter_desc, 6,2) quarter
 , sum(amount_sold) amount_sold
 , sum(quantity_sold) quantity_sold
 from
 sh.sales
 join sh.times on times.time_id = sales.time_id
 join sh.customers on customers.cust_id = sales.cust_id
 join sh.countries on countries.country_id = customers.country_id
 join sh.products on products.prod_id = sales.prod_id
 group by
 prod_name
 , country_name
 , channel_id
 , substr(calendar_quarter_desc, 6, 2)
)
) PIVOT (
 sum(quantity_sold)
 FOR (channel, quarter) IN
 (
 (5, '02') AS CATALOG_Q2,
 (4, '01') AS INTERNET_Q1,
 (4, '04') AS INTERNET_Q4,
 (2, '02') AS PARTNERS_Q2,
 (9, '03') AS TELE_Q3
)
)
order by product, country;

Now let’s use the WITH clause to break the query in byte-sized chunks that are easier to comprehend.
The SQL has been rewritten in Listing 10-2 using the WITH clause to create three subfactored queries,
named sales_countries, top_sales, and sales_rpt. Notice that both the top_sales and sales_rpt
subqueries are referring to other subqueries by name, as if they were a table or a view. By choosing
names that make the intent of each subquery easy to follow, the readability of the SQL is improved. For
instance, the subquery name sales_countries refers to the countries in which the sales took place,
top_sales collects the sales data, and the sales_rpt subquery aggregates the data. The results of the
sales_rpt subquery are used in the main query which answers the question, “What is the breakdown of
sales by product and country per quarter?” If you were not told the intent of the SQL in Listing 10-1, it
would take some time to discern its purpose; on the other hand, the structure of the SQL in Listing 10-2
with subfactored queries makes it easier to understand the intent of the code.

CHAPTER 10 ■ SUBQUERY FACTORING

285

In addition, the statements directly associated with the PIVOT operator are in the same section of the
SQL statement at the bottom, further enhancing readability.

Listing 10-2. Crosstab with Subquery Factoring

with sales_countries as (
 select /*+ gather_plan_statistics */
 cu.cust_id
 , co.country_name
 from sh.countries co, sh.customers cu
 where cu.country_id = co.country_id
),
top_sales as (
 select
 p.prod_name
 , sc.country_name
 , s.channel_id
 , t.calendar_quarter_desc
 , s.amount_sold
 , s.quantity_sold
 from
 sh.sales s
 join sh.times t on t.time_id = s.time_id
 join sh.customers c on c.cust_id = s.cust_id
 join sales_countries sc on sc.cust_id = c.cust_id
 join sh.products p on p.prod_id = s.prod_id
),
sales_rpt as (
 select
 prod_name product
 , country_name country
 , channel_id channel
 , substr(calendar_quarter_desc, 6,2) quarter
 , sum(amount_sold) amount_sold
 , sum(quantity_sold) quantity_sold
 from top_sales
 group by
 prod_name
 , country_name
 , channel_id
 , substr(calendar_quarter_desc, 6, 2)
)
select * from
(
 select product, channel, quarter, country, quantity_sold
 from sales_rpt
) pivot (
 sum(quantity_sold)

CHAPTER 10 ■ SUBQUERY FACTORING

286

 for (channel, quarter) in
 (
 (5, '02') as catalog_q2,
 (4, '01') as internet_q1,
 (4, '04') as internet_q4,
 (2, '02') as partners_q2,
 (9, '03') as tele_q3
)
)
order by product, country;

While this is not an extremely complex SQL example, it does serve to illustrate the point of how the
WITH clause can be used to make a statement more readable and easier to maintain. Large complex
queries can be made more understandable by using this technique.

Optimizing SQL
When a SQL query is designed or modified to take advantage of subquery factoring, there are some not-
so-subtle changes that may take place when the optimizer creates an execution plan for the query. The
following quote comes from the Oracle 11gR2 documentation in the Oracle Database SQL Language
Reference for SELECT, under the subquery_factoring_clause heading:

The WITH query_name clause lets you assign a name to a subquery block. You can
then reference the subquery block multiple places in the query by specifying
query_name. Oracle Database optimizes the query by treating the query name as
either an inline view or as a temporary table.

Notice that Oracle may treat the factored subquery as a temporary table. In queries where a table is
referenced more than once, this could be a distinct performance advantage, as Oracle can materialize
result sets from the query, thereby avoiding performing some expensive database operations more than
once. The caveat here is that it “could be” a distinct performance advantage. Keep in mind that
materializing the result set requires creating a temporary table and inserting the rows into it. Doing so
may be of value if the same result set is referred to many times, or it may be a big performance penalty.

Testing Execution Plans
When examining the execution plans for subfactored queries, it may not be readily apparent if Oracle is
choosing the best execution plan. It may seem that the use of the INLINE or MATERIALZE1 hint would
result in better performing SQL. In some cases it may, but the use of these hints needs to be tested and
considered in the context of overall application performance.

The need to test for optimum query performance can be illustrated by a report that management
has requested. The report must show the distribution of customers by country and income level,

1 Though well known in the Oracle community for some time now, the INLINE and MATERIALIZE hints remain
undocumented by Oracle.

CHAPTER 10 ■ SUBQUERY FACTORING

287

showing only those countries and income levels that make up 1% or more of the entire customer base. A
country and income level should also be reported if the number of customers in an income level bracket
is greater than or equal to 25% of all customers in that income bracket2.

The query in Listing 10-3 is the end result3. The cust factored subquery has been retained from
previous queries. New are the subqueries in the HAVING clause; these are used to enforce the rules
stipulated for the report.

Listing 10-3. WITH and MATERIALIZE

 1 with cust as (
 2 select /*+ materialize gather_plan_statistics */
 3 b.cust_income_level,
 4 a.country_name
 5 from sh.customers b
 6 join sh.countries a on a.country_id = b.country_id
 7)
 8 select country_name, cust_income_level, count(country_name) country_cust_count
 9 from cust c
 10 having count(country_name) >
 11 (
 12 select count(*) * .01
 13 from cust c2
 14)
 15 or count(cust_income_level) >=
 16 (
 17 select median(income_level_count)
 18 from (
 19 select cust_income_level, count(*) *.25 income_level_count
 20 from cust
 21 group by cust_income_level
 22)
 23)
 24 group by country_name, cust_income_level
 25 order by 1,2;
 CUSTOMER
COUNTRY INCOME LEVEL COUNT
------------------------------ -------------------- --------
France E: 90,000 - 109,999 585
France F: 110,000 - 129,999 651
...
United States of America H: 150,000 - 169,999 1857
United States of America I: 170,000 - 189,999 1395
...

2 If you run these examples on a version of Oracle other then 11gR2, the output may appear differently, as the test data
sometimes changes with versions of Oracle.
3 The MATERIALIZE hint was used to ensure that the example would work as expected, given that you may be testing
on a different version or patch level of Oracle. On the test system used by the author, this was the default action by
Oracle.

CHAPTER 10 ■ SUBQUERY FACTORING

288

35 rows selected.

Elapsed: 00:00:01.37

Statistics
--
 1854 recursive calls
 307 db block gets
 2791 consistent gets
 1804 physical reads
 672 redo size
 4609 bytes sent via SQL*Net to client
 700 bytes received via SQL*Net from client
 18 SQL*Net roundtrips to/from client
 38 sorts (memory)
 0 sorts (disk)
 35 rows processed

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time |

0	SELECT STATEMENT		1		35	00:00:11.74
1	TEMP TABLE TRANSFORMATION		1		35	00:00:11.74
2	LOAD AS SELECT		1		0	00:00:09.87
* 3	HASH JOIN		1	55500	55500	00:03:30.11
4	TABLE ACCESS FULL	COUNTRIES	1	23	23	00:00:00.04
5	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500	00:03:29.77
* 6	FILTER		1		35	00:00:01.88
7	SORT GROUP BY		1	18	209	00:00:01.84
8	VIEW		1	55500	55500	00:00:30.87
9	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500	00:00:30.73
10	SORT AGGREGATE		1	1	1	00:00:00.01
11	VIEW		1	55500	55500	00:00:00.21
12	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500	00:00:00.07
13	SORT GROUP BY		1	1	1	00:00:00.03
14	VIEW		1	11	13	00:00:00.03
15	SORT GROUP BY		1	11	13	00:00:00.03
16	VIEW		1	55500	55500	00:00:00.21
17	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500	00:00:00.07

When executing4 the SQL, all appears as you expect. Then you check the execution plan and find
that the join of the CUSTOMERS and COUNTRIES tables underwent a TEMP TABLE TRANSFORMATION, and the rest
of the query was satisfied by using the temporary table SYS_TEMP_0F5. At this point, you might rightly
wonder if the execution plan chosen was a reasonable one. That can easily be tested, thanks to the
MATERIALIZED and INLINE hints.

4 Initial executions are executed after first flushing the shared_pool and buffer_cache.
5 The actual table name was SYS_TEMP_0FD9D66A2_453290, but was shortened in the listing for formatting
purposes.

CHAPTER 10 ■ SUBQUERY FACTORING

289

By using the INLINE hint, Oracle can be instructed to satisfy all portions of the query without using a
TEMP TABLE TRANSFORMATION. The results of doing so are shown in Listing 10-4. Only the relevant portion
of the SQL that has changed is shown here, the rest of it being identical to that in Listing 10-3.

Listing 10-4. WITH and INLINE Hint

1 with cust as (
2 select /*+ inline gather_plan_statistics */
3 b.cust_income_level,
4 a.country_name
5 from sh.customers b
6 join sh.countries a on a.country_id = b.country_id
7)
...

COUNTRY INCOME LEVEL COUNT
------------------------------ -------------------- --------
France E: 90,000 - 109,999 585
France F: 110,000 - 129,999 651
...
United States of America I: 170,000 - 189,999 1395
United States of America J: 190,000 - 249,999 1390
...
35 rows selected.

Elapsed: 00:00:00.62

Statistics
--
 1501 recursive calls
 0 db block gets
 4758 consistent gets
 1486 physical reads
 0 redo size
 4609 bytes sent via SQL*Net to client
 700 bytes received via SQL*Net from client
 18 SQL*Net roundtrips to/from client
 34 sorts (memory)
 0 sorts (disk)
 35 rows processed

| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time |

0	SELECT STATEMENT		1		35	00:00:09.65
* 1	FILTER		1		35	00:00:09.65
2	SORT GROUP BY		1	20	236	00:00:09.53
* 3	HASH JOIN		1	55500	55500	00:03:09.16

CHAPTER 10 ■ SUBQUERY FACTORING

290

4	TABLE ACCESS FULL	COUNTRIES	1	23	23	00:00:00.03
5	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500	00:03:08.83
6	SORT AGGREGATE		1	1	1	00:00:00.07
* 7	HASH JOIN		1	55500	55500	00:00:00.41
8	INDEX FULL SCAN	COUNTRIES_PK	1	23	23	00:00:00.03
9	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500	00:00:00.09
10	SORT GROUP BY		1	1	1	00:00:00.06
11	VIEW		1	12	13	00:00:00.06
12	SORT GROUP BY		1	12	13	00:00:00.06
* 13	HASH JOIN		1	55500	55500	00:00:00.38
14	INDEX FULL SCAN	COUNTRIES_PK	1	23	23	00:00:00.01
15	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500	00:00:00.08

From the execution plan in Listing 10-4, you can see that three full scans were performed on the
CUSTOMERS table and one full scan on the COUNTRIES table. Two of the executions against the cust
subquery required only the information in the COUNTRIES_PK index, so a full scan of the index was
performed rather than a full scan of the table, saving a small bit of time and resources.

What may be surprising is that the execution using full table scans was .75 seconds, or about 100%,
faster than when a temporary table was used. Of course, the cache was cold for both queries, as both
the buffer cache and shared pool were flushed prior to running each query.

Testing Over Multiple Executions
What would happen if each query were run multiple times simultaneously from several different
database sessions? Using a modified version of Tom Kyte’s run_stats6 queries, each query was run in
twenty sessions, each session running the query twenty times. The results seem to indicate that using
the INLINE hint may offer a performance advantage. Of course, making such a judgment would require
testing in your own test environment, preferably while the application in question is running a normal
load.

In this case, the tests were run both without and with a load running on the database server. The
load consisted of 10 other sessions executing queries against another set of tables in the database. While
the runtimes did increase for both MATERIALIZED and INLINE, the ratios remained about the same, so
keeping the INLINE hint in this query seems to be a good idea.

Listing 10-5 shows some significant differences in the statistics reported for the two tests. Total
elapsed time for 400 executions by 20 sessions using 20 database sessions required 68.4 seconds when
the MATERIALIZED hint was used. When the INLINE hint was used, the elapsed time of 30.8 seconds was
an improvement in elapsed time of over 100%.

The physical IO rates between the two tests stand in stark contrast to each other. While the tests
using the INLINE hint performed approximately 1GB of physical IO, the test using the MATERIALIZE hint
performed nearly twice as much. That could certainly account for the few extra seconds of time.
Possibly even more telling are the values shown by the statistics gathered from v$session_event. The
queries with the MATERIALIZED hint spent 1308 seconds in wait time compared to 306 seconds for INLINE.

6 Available at www.oracle-developer.net/content/utilities/runstats.zip. The modified version used here is available
with the source code for this chapter. It does require a UNIX or Linux environment to operate.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.oracle-developer.net/content/utilities/runstats.zip

CHAPTER 10 ■ SUBQUERY FACTORING

291

Listing 10-5. Run_stats Comparison

NO LOAD TEST

SQL> @test_harness_m

MATERIALIZE

68.446 secs
avg response time: 0.171115

INLINE

30.774 secs
avg response time: 0.076935

SQL> @sr

NAME MATERIALIZE INLINE DIFF
--------------------------------------- --------------- --------------- ----------------
STAT...user I/O wait time 122,096 8,687 -113,409
...
STAT...physical writes direct temporary 118,000 0 -118,000
tablespace
...
STAT...physical writes 118,040 0 -118,040
STAT...db block gets 122,460 104 -122,356
STAT...DB time 0 147,349 147,349
STAT...free buffer requested 166,475 2 -166,473
LATCH.cache buffers lru chain 215,377 1 -215,376
LATCH.object queue header operation 340,352 27 -340,325
STAT...file io wait time 588,347,559 36,628 -588,310,931
STAT...physical read bytes 966,656,000 8,192 -966,647,808
STAT...physical write bytes 966,983,680 0 -966,983,680
STAT...physical read total bytes 967,491,584 499,712 -966,991,872
STAT...physical write total bytes 967,976,960 400,896 -967,576,064
STAT...cell physical IO interconnect byt 1,935,468,544 900,608 -1,934,567,936
es

71 rows selected.
SQL> @mse

 RUN 1 RUN 2
 TIME TIME
 WAITED WAITED TIME
EVENT SECONDS SECONDS DIFF
------------------------------ --------- --------- ---------
enq: TM - contention 74.63 175.72 -101.09
latch: cache buffers chains .00 38.89 -38.89
Disk file operations I/O 60.97 86.83 -25.86

CHAPTER 10 ■ SUBQUERY FACTORING

292

SQL*Net message to client .00 .00 -.00
library cache: mutex X .00 .00 .00
cursor: pin S wait on X .21 .00 .21
SQL*Net message from client 5.57 4.96 .62
buffer busy waits 2.24 .00 2.24
events in waitclass Other 3.90 .01 3.90
db file sequential read 8.32 .00 8.32
direct path write temp 572.13 .00 572.13
db file scattered read 579.60 .00 579.60
 --------- --------- ---------
sum 1307.59 306.41 1001.18

12 rows selected.

LOAD TEST

SQL> @test_harness_m

MATERIALIZE

310.908 secs
avg response time: 0.777270

INLINE

144.683 secs
avg response time: 0.361708

Run Stats omitted – they are very similar to NO LOAD TEST.

SQL> @mse
 RUN 1 RUN 2
 TIME TIME
 WAITED WAITED TIME
EVENT SECONDS SECONDS DIFF
------------------------------ --------- --------- ---------
enq: TM - contention 721.66 989.28 -267.62
latch: cache buffers chains 22.04 34.70 -12.66
SQL*Net message to client .00 .00 -.00
SQL*Net message from client .80 .77 .03
buffer busy waits 4.61 .00 4.61
events in waitclass Other 21.05 8.69 12.36
db file sequential read 33.71 .00 33.71
direct path write temp 95.53 .00 95.53
Disk file operations I/O 1995.29 814.54 1180.76
db file scattered read 1418.30 .00 1418.30
 --------- --------- ---------
sum 4313.00 1847.97 2465.02

CHAPTER 10 ■ SUBQUERY FACTORING

293

From these tests you might feel safe using the INLINE hint in this bit of code, convinced that it will
perform well. The amount of physical IO required in the first test outweighs the memory usage and
logical IO required for the second test. If you know for sure that the size of the data sets will not grow
and that the system load will remain fairly constant, using the INLINE hint in this query is probably a
good idea. The problem, however, is that data is rarely static; often, data grows to a larger size than what
was originally intended when developing a query. In that event, re-testing these queries would be in
order to see if the use of the INLINE hint is still valid.

Testing the Effects of Query Changes
Even as data does not remain static, SQL is not always static. Sometimes requirements change, so code
must be modified. What if the requirements changed for the examples in Listings 10-3 and 10-4? Would
minor changes invalidate the use of the hints embedded in the SQL? This is probably something worth
investigating, so let’s do so.

Previously, you were reporting on income brackets when the count of them for any country was
greater than or equal to 25% of the total global count for that bracket. Now you are asked to include an
income bracket if it is among those income brackets the number of which is greater than the median,
based on the number of customers per bracket. This SQL is seen in Listing 10-6. Notice that the INLINE
hint has been left in. So now there’s an additional full table scan and index scan as compared to the
execution plan in Listing 10-4. While the elapsed time has increased, it still seems reasonable.

Now that there’s an additional table scan and index scan, how do you think the performance of this
query will fare if temporary table transformations are allowed to take place? The results can be seen in
Listing 10-7.

Because there’s that additional scan taking place in the modified version of the query, the overhead
of logical IO becomes more apparent. It is significantly more efficient with this query to allow Oracle to
perform table transformations, writing the results of the hash join to a temporary table on disk where
they can be reused throughout the query.

Listing 10-6. Modified Income Search - INLINE

 1 with cust as (
 2 select /*+ inline gather_plan_statistics */
 3 b.cust_income_level,
 4 a.country_name
 5 from sh.customers b
 6 join sh.countries a on a.country_id = b.country_id
 7),
 8 median_income_set as (
 9 select /*+ inline */ cust_income_level, count(*) income_level_count
 10 from cust
 11 group by cust_income_level
 12 having count(cust_income_level) > (
 13 select median(income_level_count) income_level_count
 14 from (
 15 select cust_income_level, count(*) income_level_count
 16 from cust
 17 group by cust_income_level
 18)
 19)
 20)

CHAPTER 10 ■ SUBQUERY FACTORING

294

 21 select country_name, cust_income_level, count(country_name) country_cust_count
 22 from cust c
 23 having count(country_name) >
 24 (
 25 select count(*) * .01
 26 from cust c2
 27)
 28 or cust_income_level in (select mis.cust_income_level from median_income_set mis)
 29 group by country_name, cust_income_level;
 CUSTOMER
COUNTRY INCOME LEVEL COUNT
------------------------------ -------------------- --------
Argentina D: 70,000 - 89,999 25
Argentina E: 90,000 - 109,999 39
...
United States of America K: 250,000 - 299,999 1062
United States of America L: 300,000 and above 982

123 rows selected.

Elapsed: 00:00:01.26

Statistics
--
 1524 recursive calls
 0 db block gets
 23362 consistent gets
 1486 physical reads
 0 redo size
 15570 bytes sent via SQL*Net to client
 1195 bytes received via SQL*Net from client
 63 SQL*Net roundtrips to/from client
 3 sorts (memory)
 0 sorts (disk)
 123 rows processed

| Id | Operation | Name |Starts|E-Rows|A-Rows | A-Time |

0	SELECT STATEMENT		1		123	00:00:00.37
* 1	FILTER		1		123	00:00:00.37
2	SORT GROUP BY		1	20	236	00:00:00.08
* 3	HASH JOIN		1	55500	55500	00:00:00.38
4	TABLE ACCESS FULL	COUNTRIES	1	23	23	00:00:00.01
5	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500	00:00:00.08
6	SORT AGGREGATE		1	1	1	00:00:00.04

CHAPTER 10 ■ SUBQUERY FACTORING

295

* 7	HASH JOIN		1	55500	55500	00:00:00.43
8	INDEX FULL SCAN	COUNTRIES_PK	1	23	23	00:00:00.01
9	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500	00:00:00.10
* 10	FILTER		13		6	00:00:00.65
11	HASH GROUP BY		13	1	133	00:00:00.59
* 12	HASH JOIN		13	55500	721K	00:00:05.18
13	INDEX FULL SCAN	COUNTRIES_PK	13	23	299	00:00:00.01
14	TABLE ACCESS FULL	CUSTOMERS	13	55500	721K	00:00:01.10
15	SORT GROUP BY		1	1	1	00:00:00.06
16	VIEW		1	12	13	00:00:00.06
17	SORT GROUP BY		1	12	13	00:00:00.06
* 18	HASH JOIN		1	55500	55500	00:00:00.42
19	INDEX FULL SCAN	COUNTRIES_PK	1	23	23	00:00:00.01
20	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500	00:00:00.08

Listing 10-7. Modified Income Search - MATERIALIZE

1 with cust as (
2 select /*+ materialize gather_plan_statistics */
3 b.cust_income_level,
4 a.country_name
5 from sh.customers b
6 join sh.countries a on a.country_id = b.country_id
7),
...
 CUSTOMER
COUNTRY INCOME LEVEL COUNT
------------------------------ -------------------- --------
Argentina D: 70,000 - 89,999 25
Argentina E: 90,000 - 109,999 39
...
United States of America K: 250,000 - 299,999 1062
United States of America L: 300,000 and above 982

123 rows selected.

Elapsed: 00:00:00.87

Statistics
--
 2001 recursive calls
 324 db block gets
 3221 consistent gets
 1822 physical reads

CHAPTER 10 ■ SUBQUERY FACTORING

296

 1244 redo size
 15570 bytes sent via SQL*Net to client
 1195 bytes received via SQL*Net from client
 63 SQL*Net roundtrips to/from client
 38 sorts (memory)
 0 sorts (disk)
 123 rows processed

| Id |Operation |Name |Starts|E-Rows|A-Rows | A-Time |

0	SELECT STATEMENT		1		123	00:00:00.54
1	TEMP TABLE TRANSFORMATION		1		123	00:00:00.54
2	LOAD AS SELECT		1		0	00:00:00.37
* 3	HASH JOIN		1	55500	55500	00:00:03.21
4	TABLE ACCESS FULL	COUNTRIES	1	23	23	00:00:00.01
5	TABLE ACCESS FULL	CUSTOMERS	1	55500	55500	00:00:02.91
6	LOAD AS SELECT		1		0	00:00:00.10
* 7	FILTER		1		6	00:00:00.09
8	HASH GROUP BY		1	1	13	00:00:00.06
9	VIEW		1	55500	55500	00:00:00.24
10	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500	00:00:00.11
11	SORT GROUP BY		1	1	1	00:00:00.03
12	VIEW		1	12	13	00:00:00.03
13	SORT GROUP BY		1	12	13	00:00:00.03
14	VIEW		1	55500	55500	00:00:00.21
15	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500	00:00:00.07
* 16	FILTER		1		123	00:00:00.06
17	SORT GROUP BY		1	20	236	00:00:00.05
18	VIEW		1	55500	55500	00:00:00.21
19	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500	00:00:00.07
20	SORT AGGREGATE		1	1	1	00:00:00.01
21	VIEW		1	55500	55500	00:00:00.21
22	TABLE ACCESS FULL	SYS_TEMP_0F	1	55500	55500	00:00:00.07
* 23	VIEW		13	1	6	00:00:00.01
24	TABLE ACCESS FULL	SYS_TEMP_0F	13	1	63	00:00:00.01

Seizing Other Optimization Opportunities
There are other opportunities where subquery factoring may be used to your advantage. If you are
working on applications that were originally written several years ago, you may find that some of SQL
could use a bit of improvement based on the features offered by Oracle versions 9i and later. The query
in Listing 10-8, for example, does exactly what it was asked to do, which is to find the average, minimum,
and maximum costs for each product that was produced in the year 2000, with the costs calculated for
each of the sale channels the product was sold in. This SQL is not only difficult to read and hard to
modify, but is also somewhat inefficient.

CHAPTER 10 ■ SUBQUERY FACTORING

297

Listing 10-8. Old SQL to Calculate Costs

 1 select /*+ gather_plan_statistics */
 2 substr(prod_name,1,30) prod_name
 3 , channel_desc
 4 , (
 5 select avg(c2.unit_cost)
 6 from sh.costs c2
 7 where c2.prod_id = c.prod_id and c2.channel_id = c.channel_id
 8 and c2.time_id between to_date('01/01/2000','mm/dd/yyyy')
 9 and to_date('12/31/2000')
 10) avg_cost
 11 , (
 12 select min(c2.unit_cost)
 13 from sh.costs c2
 14 where c2.prod_id = c.prod_id and c2.channel_id = c.channel_id
 15 and c2.time_id between to_date('01/01/2000','mm/dd/yyyy')
 16 and to_date('12/31/2000')
 17) min_cost
 18 , (
 19 select max(c2.unit_cost)
 20 from sh.costs c2
 21 where c2.prod_id = c.prod_id and c2.channel_id = c.channel_id
 22 and c2.time_id between to_date('01/01/2000','mm/dd/yyyy')
 23 and to_date('12/31/2000')
 24) max_cost
 25 from (
 26 select distinct pr.prod_id, pr.prod_name, ch.channel_id, ch.channel_desc
 27 from sh.channels ch
 28 , sh.products pr
 29 , sh.costs co
 30 where ch.channel_id = co.channel_id
 31 and co.prod_id = pr.prod_id
 32 and co.time_id between to_date('01/01/2000','mm/dd/yyyy')
 33 and to_date('12/31/2000')
 34) c
 35 order by prod_name, channel_desc;

PRODUCT CHANNEL_DESC AVG COST MIN COST MAX COST
------------------------------ -------------------- ---------- ---------- ----------
1.44MB External 3.5" Diskette Direct Sales 8.36 7.43 9.17
1.44MB External 3.5" Diskette Internet 8.59 7.42 9.55
...
Y Box Internet 266.73 245.00 282.30
Y Box Partners 272.62 242.79 293.68
 ---------- ---------- ----------
sum 27,961.39 24,407.85 34,478.10

CHAPTER 10 ■ SUBQUERY FACTORING

298

216 rows selected.

COLD CACHE Elapsed: 00:00:02.30
WARM CACHE Elapsed: 00:00:01.09

--
| Id | Operation |Name |Sta|E-Rows|A-Rows | A-Time |
| | | |rts| | | |
--
0	SELECT STATEMENT		1		216	00:00:01.13
1	SORT AGGREGATE		216	1	216	00:00:00.33
* 2	FILTER		216		17373	00:00:00.37
3	PARTITION RANGE ITERATOR		216	96	17373	00:00:00.33
* 4	TABLE ACCESS BY LOCAL INDEX ROWID	COSTS	864	96	17373	00:00:00.36
5	BITMAP CONVERSION TO ROWIDS		864		52119	00:00:00.31
6	BITMAP AND		864		840	00:00:00.23
7	BITMAP MERGE		864		864	00:00:00.20
* 8	BITMAP INDEX RANGE SCAN	COSTS_TIME_BIX	864		79056	00:00:00.13
* 9	BITMAP INDEX SINGLE VALUE	COSTS_PROD_BIX	864		840	00:00:00.01
10	SORT AGGREGATE		216	1	216	00:00:00.33
* 11	FILTER		216		17373	00:00:00.32
12	PARTITION RANGE ITERATOR		216	96	17373	00:00:00.28
* 13	TABLE ACCESS BY LOCAL INDEX ROWID	COSTS	864	96	17373	00:00:00.35
14	BITMAP CONVERSION TO ROWIDS		864		52119	00:00:00.30
15	BITMAP AND		864		840	00:00:00.22
16	BITMAP MERGE		864		864	00:00:00.20
* 17	BITMAP INDEX RANGE SCAN	COSTS_TIME_BIX	864		79056	00:00:00.13
* 18	BITMAP INDEX SINGLE VALUE	COSTS_PROD_BIX	864		840	00:00:00.01
19	SORT AGGREGATE		216	1	216	00:00:00.37
* 20	FILTER		216		17373	00:00:00.35
21	PARTITION RANGE ITERATOR		216	96	17373	00:00:00.31
* 22	TABLE ACCESS BY LOCAL INDEX ROWID	COSTS	864	96	17373	00:00:00.39
23	BITMAP CONVERSION TO ROWIDS		864		52119	00:00:00.34
24	BITMAP AND		864		840	00:00:00.26
25	BITMAP MERGE		864		864	00:00:00.22
* 26	BITMAP INDEX RANGE SCAN	COSTS_TIME_BIX	864		79056	00:00:00.16
* 27	BITMAP INDEX SINGLE VALUE	COSTS_PROD_BIX	864		840	00:00:00.02
28	SORT ORDER BY		1	20640	216	00:00:01.13
29	VIEW		1	20640	216	00:00:00.10
30	HASH UNIQUE		1	20640	216	00:00:00.10
* 31	FILTER		1		17373	00:00:00.33
* 32	HASH JOIN		1	20640	17373	00:00:00.28
33	TABLE ACCESS FULL	PRODUCTS	1	72	72	00:00:00.01
* 34	HASH JOIN		1	20640	17373	00:00:00.18
35	TABLE ACCESS FULL	CHANNELS	1	5	5	00:00:00.01
36	PARTITION RANGE ITERATOR		1	20640	17373	00:00:00.08
* 37	TABLE ACCESS FULL	COSTS	4	20640	17373	00:00:00.04
--

CHAPTER 10 ■ SUBQUERY FACTORING

299

Examining the output of Listing 10-8, you see that the elapsed execution time on a cold cache is
2.30 seconds and 1.09 seconds on a warm cache. These times don’t seem all that bad at first. But when
you examine the execution plan, you find that this query can be improved upon from a performance
perspective as well as a readability perspective.

The Starts column is telling. Each execution against the COSTS table is executed 864 times. This is
due to there being 216 rows produced by a join between CHANNELS, PRODUCTS, and COSTS. Also, the COSTS
table is queried in four separate places for the same information. By using subquery factoring, not only
can this SQL be cleaned up and made easier to read, it can also be made more efficient.

As seen in Listing 10-9, you can start by putting the begin_date and end_date columns in a separate
query bookends, leaving only one place that the values need to be set. The data for products is placed in
the prodmaster subquery. While this bit of the SQL worked fine as subquery in the FROM clause, the
readability of the SQL statement as a whole is greatly improved by moving it to a factored subquery.

The calculations for the average, minimum, and maximum costs are replaced with a single subquery
called cost_compare. Finally, the SQL that joins the prodmaster and cost_compare subqueries is added.
The structure of the SQL is now much easier on the eyes and the overworked Developer’s brain. It’s also
simpler for the DBA to understand. The DBA will be especially happy with the execution statistics.

Where the old SQL queried the COSTS table and COSTS_TIME_BIX index several hundred times, the
new SQL queries each only eight times. That is quite an improvement, and it shows in the elapsed times.
The query time on a cold cache is 1.48 seconds, about 25% better than the old SQL. On a warm cache,
however, the re-factored SQL really shines, running at 0.17 seconds whereas the old SQL managed only
1.09 seconds.

Listing 10-9. Old SQL Refactored Using WITH Clause

 1 with bookends as (
 2 select
 3 to_date('01/01/2000','mm/dd/yyyy') begin_date
 4 ,to_date('12/31/2000','mm/dd/yyyy') end_date
 5 from dual
 6),
 7 prodmaster as (
 8 select distinct pr.prod_id, pr.prod_name, ch.channel_id, ch.channel_desc
 9 from sh.channels ch
 10 , sh.products pr
 11 , sh.costs co
 12 where ch.channel_id = co.channel_id
 13 and co.prod_id = pr.prod_id
 14 and co.time_id between (select begin_date from bookends)
 15 and (select end_date from bookends)
 16),
 17 cost_compare as (
 18 select
 19 prod_id
 20 , channel_id
 21 , avg(c2.unit_cost) avg_cost
 22 , min(c2.unit_cost) min_cost
 23 , max(c2.unit_cost) max_cost
 24 from sh.costs c2
 25 where c2.time_id between (select begin_date from bookends)
 26 and (select end_date from bookends)

CHAPTER 10 ■ SUBQUERY FACTORING

300

 27 group by c2.prod_id, c2.channel_id
 28)
 29 select /*+ gather_plan_statistics */
 30 substr(pm.prod_name,1,30) prod_name
 31 , pm.channel_desc
 32 , cc.avg_cost
 33 , cc.min_cost
 34 , cc.max_cost
 35 from prodmaster pm
 36 join cost_compare cc on cc.prod_id = pm.prod_id
 37 and cc.channel_id = pm.channel_id
 38 order by pm.prod_name, pm.channel_desc;

PRODUCT CHANNEL_DESC AVG COST MIN COST MAX COST
------------------------------ -------------------- ---------- ---------- ----------
1.44MB External 3.5" Diskette Direct Sales 8.36 7.43 9.17
1.44MB External 3.5" Diskette Internet 8.59 7.42 9.55

Y Box Internet 266.73 245.00 282.30
Y Box Partners 272.62 242.79 293.68
 ---------- ---------- ----------
sum 27,961.39 24,407.85 34,478.10

216 rows selected.

COLD CACHE Elapsed: 00:00:01.48
WARM CACHE Elapsed: 00:00:00.17

| Id |Operation |Name |Sta|E-Rows|A-Rows| A-Time |
| | | |rts| | | |

0	SELECT STATEMENT		1		216	00:00:00.09
1	SORT ORDER BY		1	17373	216	00:00:00.09
* 2	HASH JOIN		1	17373	216	00:00:00.09
3	VIEW		1	216	216	00:00:00.04
4	HASH GROUP BY		1	216	216	00:00:00.04
5	PARTITION RANGE ITERATOR		1	17373	17373	00:00:00.18
6	TABLE ACCESS BY LOCAL INDEX ROWID	COSTS	4	17373	17373	00:00:00.13
7	BITMAP CONVERSION TO ROWIDS		4		17373	00:00:00.02
* 8	BITMAP INDEX RANGE SCAN	COSTS_TIME_BIX	4		366	00:00:00.01
9	FAST DUAL		1	1	1	00:00:00.01
10	FAST DUAL		1	1	1	00:00:00.01
11	VIEW		1	17373	216	00:00:00.05
12	HASH UNIQUE		1	17373	216	00:00:00.05
* 13	HASH JOIN		1	17373	17373	00:00:00.19
14	TABLE ACCESS FULL	PRODUCTS	1	72	72	00:00:00.01
15	MERGE JOIN		1	17373	17373	00:00:00.10

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 ■ SUBQUERY FACTORING

301

16	TABLE ACCESS BY INDEX ROWID	CHANNELS	1	5	4	00:00:00.01
17	INDEX FULL SCAN	CHANNELS_PK	1	5	4	00:00:00.01
* 18	SORT JOIN		4	17373	17373	00:00:00.05
19	PARTITION RANGE ITERATOR		1	17373	17373	00:00:00.17
20	TABLE ACCESS BY LOCAL INDEX RO	COSTS	4	17373	17373	00:00:00.13
21	BITMAP CONVERSION TO ROWIDS		4		17373	00:00:00.03
* 22	BITMAP INDEX RANGE SCAN	COSTS_TIME_BIX	4		366	00:00:00.01
23	FAST DUAL		1	1	1	00:00:00.01
24	FAST DUAL		1	1	1	00:00:00.01

Applying Subquery Factoring to PL/SQL
Even PL/SQL can present golden opportunities for optimization using subquery factoring. Something
that most of us have done at one time or another is to write a PL/SQL routine when we cannot figure out
how to do what we want in a single SQL query. Sometimes it can be very difficult to capture everything
in a single statement. It’s often just easier to think procedurally rather than in sets of data, and just write
some code to do what we need. As you gain experience, you will rely less and less on thinking in terms of
“How would I code this in PL/SQL?” and more along the lines of “How do I capture this problem in a
single SQL statement?” The more advanced features that Oracle has packed into SQL can help as well.

Here’s an example. You’ve been asked to create a report with the following criteria:

• Only include customers that have purchased products in at least three different years.

• Compute total aggregate sales per customer, broken down by product category.

At first, this doesn’t seem too difficult. But you may struggle for a bit trying to capture this in one
SQL statement, so you decide to use a PL/SQL routine to get the needed data. The results may be similar
to those in Listing 10-10. The logic is simple. Find all customers that fit the criteria and store their IDs in
a temporary table. Then loop through the newly saved customer IDs and find all their sales, sum them
up, and add them to another temporary table. The results are then joined to the CUSTOMERS and
PRODUCTS tables to generate the report.

Listing 10-10. PL/SQL to Generate Customer Report

SQL> create global temporary table cust3year (cust_id number);
Table created.

SQL> create global temporary table sales3year(
 2 cust_id number ,
 3 prod_category varchar2(50),
 4 total_sale number
 5)
 6 /
Table created.

SQL> begin
 2 execute immediate 'truncate table cust3year';
 3 execute immediate 'truncate table sales3year';
 4

CHAPTER 10 ■ SUBQUERY FACTORING

302

 5 insert into cust3year
 6 select cust_id --, count(cust_years) year_count
 7 from (
 8 select distinct cust_id, trunc(time_id,'YEAR') cust_years
 9 from sh.sales
 10)
 11 group by cust_id
 12 having count(cust_years) >= 3;
 13
 14 for crec in (select cust_id from cust3year)
 15 loop
 16 insert into sales3year
 17 select s.cust_id,p.prod_category, sum(co.unit_price * s.quantity_sold)
 18 from sh.sales s
 19 join sh.products p on p.prod_id = s.prod_id
 20 join sh.costs co on co.prod_id = s.prod_id
 21 and co.time_id = s.time_id
 22 join sh.customers cu on cu.cust_id = s.cust_id
 23 where s.cust_id = crec.cust_id
 24 group by s.cust_id, p.prod_category;
 25 end loop;
 26 end;
 27 /
PL/SQL procedure successfully completed.

Elapsed: 00:01:17.48

SQL> break on report
SQL> compute sum of total_sale on report

SQL> select c3.cust_id, c.cust_last_name, c.cust_first_name, s.prod_category, s.total_sale
 2 from cust3year c3
 3 join sales3year s on s.cust_id = c3.cust_id
 4 join sh.customers c on c.cust_id = c3.cust_id
 5 order by 1,4;

 CUST ID LAST NAME FIRST NAME PRODUCT CATEGORY TOTAL SALE
--------- --------------- --------------- ------------------------------ ---------------
 6 Charles Harriett Electronics 2,838.57
 6 Charles Harriett Hardware 19,535.38
 ...
 50833 Gravel Grover Photo 15,469.64
 50833 Gravel Grover Software/Other 9,028.87

sum 167,085,605.71

16018 rows selected.

CHAPTER 10 ■ SUBQUERY FACTORING

303

The code in Listing 10-10 is fairly succinct, and it only takes 1:17 minutes to run. That’s not too bad,
is it? While this is a nice little chunk of PL/SQL, take another look at it and think in terms of subfactored
subqueries. The section that determines the correct customer IDs can be captured in a WITH clause fairly
easily. Once the customers are identified, it is a fairly easy job to then use the results of the subquery to
lookup the needed sales, product, and customer information to create the report.

Listing 10-11 has a single SQL statement that captures what is done with the PL/SQL routine from
Listing 10-10—without the need to manually create temporary tables or use PL/SQL loops. Should the
use of temporary tables make for a more efficient query, Oracle will do so automatically, or you can
choose how Oracle preserves the subquery results via the INLINE and MATERIALIZE hints. It is somewhat
more efficient, too, with an elapsed time of 6.13 seconds.

The WITH clause in Listing 10-11 actually uses two subqueries. These could be combined into a
single query, but I thought it easier to read broken out into two queries. Notice the use of the EXTRACT()
function—it simplifies comparing years by extracting the year from a date and converting it to an
integer.

Listing 10-11. Use WITH Clause to Generate Customer Report

 1 with custyear as (
 2 select cust_id, extract(year from time_id) sales_year
 3 from sh.sales
 4 where extract(year from time_id) between 1998 and 2002
 5 group by cust_id, extract(year from time_id)
 6),
 7 custselect as (
 8 select distinct cust_id
 9 from (
 10 select cust_id, count(*) over (partition by cust_id) year_count
 11 from custyear
 12)
 13 where year_count >= 3 -- 3 or more years as a customer during period
 14)
 15 select cu.cust_id, cu.cust_last_name, cu.cust_first_name, p.prod_category,
sum(co.unit_price * s.quantity_sold) total_sale
 16 from custselect cs
 17 join sh.sales s on s.cust_id = cs.cust_id
 18 join sh.products p on p.prod_id = s.prod_id
 19 join sh.costs co on co.prod_id = s.prod_id
 20 and co.time_id = s.time_id
 21 join sh.customers cu on cu.cust_id = cs.cust_id
 22 group by cu.cust_id, cu.cust_last_name, cu.cust_first_name, p.prod_category
 23 order by cu.cust_id;

 CUST ID LAST NAME FIRST NAME PRODUCT CATEGORY TOTAL SALE
--------- --------------- --------------- ------------------------------ ---------------
 6 Charles Harriett Electronics 2,838.57
 6 Charles Harriett Hardware 19,535.38
...

CHAPTER 10 ■ SUBQUERY FACTORING

304

 50833 Gravel Grover Photo 15,469.64
 50833 Gravel Grover Software/Other 9,028.87

sum 167,085,605.71

16018 rows selected.

Elapsed: 00:00:06.13

The SQL examples in this section of the chapter are not meant to be tuning exercises, but merely

demonstrations showing how subquery factoring may be used. When refactoring legacy SQL to take
advantage of the WITH clause, be sure to test the results. Subquery factoring can be used to better
organize some queries, and in some cases can even be used as an optimization tool. Learning to use it
adds another tool to your Oracle toolbox.

EXPERIMENT WITH SUBQUERY FACTORING

Included in this chapter are two scripts in the Exercises folder that you may want to experiment with.
These scripts both run against the SH demo schema.

Run these scripts with both the MATERIALIZE and INLINE hints to compare performance. In the tsales
subquery, a WHERE clause limits the data returned to a single year. Comment out the WHERE clause and
run the queries again. How does the efficiency of the two hints compare now? Would you feel
comfortable using these hints when the size of the data set is set at runtime by user input?

Recursive Subqueries
New to Oracle 11.2 is recursive subquery factoring (RSF for the remainder of this chapter). As you can
probably guess, the ANSI name for this feature is recursive common table expression. Regardless of what
you call it, Oracle has had a similar feature for a very long time in the form of the CONNECT BY7 clause of
the SELECT statement. This feature has been enhanced in Oracle 11gR2.

A CONNECT BY Example
Let’s begin by looking at a traditional CONNECT BY query such as in Listing 10-12. The emp inline view is
used to join the EMPLOYEE and DEPARTMENT tables, and then the single data set is presented to the SELECT …
CONNECT BY statement. The PRIOR operator is used to match the current EMPLOYEE_ID to rows where this
value is in the MANAGER_ID column. Doing so iteratively creates a recursive query.

7 CONNECT BY was first available in Oracle Version 2, or in others words, from the very beginning.

• Exercises/l_10_exercise_1.sql

• Exercises/l_10_exercise_2.sql

CHAPTER 10 ■ SUBQUERY FACTORING

305

Listing 10-12 contains a number of extra columns in the output to help explain how the PRIOR
operator works. Let’s take a look at the output beginning with the row for Lex De Haan. You can see that
the EMPLOYEE_ID for Lex is 102. The PRIOR operator will find all rows for which the MANAGER_ID is 102 and
include them under the hierarchy for Lex De Haan. The only row that meets these criteria is the one for
Alexander Hunold, with an EMPLOYEE_ID of 103. The process is then repeated for Alexander Hunold: are
there any rows for which the MANAGER_ID is 103? There are four rows found with a MANAGER_ID of 103:
those are for the employees Valli Pattaballa, Diana Lorentz, Bruce Ernst, and David Austin, so these are
included in the output below Alexander Hunold. As there were no rows for which any of the EMPLOYEE_ID
values for these four employees appears as a MANAGER_ID, Oracle moves back up to a level for which the
rows have not yet been processed (in this case, for Alberto Errazuriz) and continues on to the end until
all rows have been processed.

The START WITH clause is instructed to begin with a value for which MANAGER_ID is null. As this is an
organizational hierarchy with a single person at the top of the hierarchy, this causes the query to start
with Stephen King. As the CEO, Mr. King does not have a manager, so the MANAGER_ID column is set to
NULL for his row.

The LEVEL pseudocolumn holds the value for the depth of the recursion, allowing for a simple
method to indent the output so that the organizational hierarchy is visible.

Listing 10-12. Basic CONNECT BY

 1 select lpad(' ', level*2-1,' ') || emp.emp_last_name emp_last_name
 2 , emp.emp_first_name
 3 , emp.employee_id
 4 , emp.mgr_last_name, emp.mgr_first_name
 5 , emp.manager_id
 6 , department_name
 7 from (
 8 select /*+ inline gather_plan_statistics */
 9 e.last_name emp_last_name, e.first_name emp_first_name
 10 , e.employee_id, d.department_id
 11 , e.manager_id, d.department_name
 12 , es.last_name mgr_last_name, es.first_name mgr_first_name
 13 from hr.employees e
 14 left outer join hr.departments d on d.department_id = e.department_id
 15 left outer join hr.employees es on es.employee_id = e.manager_id
 16) emp
 17 connect by prior emp.employee_id = emp.manager_id
 18 start with emp.manager_id is null
 19 order siblings by emp.emp_last_name;

EMP_LAST_NAME EMP_FIRST_NAME EMP ID MGR_LAST_NAME MGR_FIRST_NAME MGR ID DEPARTMENT
---------------- --------------- ------ ---------------- --------------- ------ ------------
 King Steven 100 Executive
 Cambrault Gerald 148 King Steven 100 Sales
 Bates Elizabeth 172 Cambrault Gerald 148 Sales
 Bloom Harrison 169 Cambrault Gerald 148 Sales
 Fox Tayler 170 Cambrault Gerald 148 Sales
 Kumar Sundita 173 Cambrault Gerald 148 Sales

CHAPTER 10 ■ SUBQUERY FACTORING

306

 Ozer Lisa 168 Cambrault Gerald 148 Sales
 Smith William 171 Cambrault Gerald 148 Sales
 De Haan Lex 102 King Steven 100 Executive
 Hunold Alexander 103 De Haan Lex 102 IT
 Austin David 105 Hunold Alexander 103 IT
 Ernst Bruce 104 Hunold Alexander 103 IT
 Lorentz Diana 107 Hunold Alexander 103 IT
 Pataballa Valli 106 Hunold Alexander 103 IT
 Errazuriz Alberto 147 King Steven 100 Sales
 Ande Sundar 166 Errazuriz Alberto 147 Sales
 Banda Amit 167 Errazuriz Alberto 147 Sales
...

107 rows selected.

The Example Using an RSF
The example query on the EMPLOYEES table has been rewritten in Listing 10-13 to use RSF, where the
main subquery is emp_recurse. The anchor member in this case simply selects the top most row in the
hierarchy by selecting the only row where MANAGER_ID IS NULL. This is equivalent to START WITH
EMP.MANAGER_ID IS NULL in Listing 10-12. The recursive member references the defining query
emp_recurse by joining it to emp query. This join is used to locate the row corresponding to each
employee’s manager, which is equivalent to CONNECT BY PRIOR EMP.EMPLOYEE_ID = EMP.MANAGER_ID in
Listing 10-12. The results in Listing 10-13 are identical to those in Listing 10-12.

Listing 10-13. Basic Recursive Subquery Factoring

 1 with emp as (
 2 select /*+ inline gather_plan_statistics */
 3 e.last_name, e.first_name, e.employee_id, e.manager_id, d.department_name
 4 from hr.employees e
 5 left outer join hr.departments d on d.department_id = e.department_id
 6),
 7 emp_recurse (last_name,first_name,employee_id,manager_id,department_name,lvl) as (
 8 select e.last_name, e.first_name
 9 , e.employee_id, e.manager_id
 10 , e.department_name, 1 as lvl
 11 from emp e where e.manager_id is null
 12 union all
 13 select emp.last_name, emp.first_name
 14 , emp.employee_id, emp.manager_id
 15 ,emp.department_name, empr.lvl + 1 as lvl
 16 from emp
 17 join emp_recurse empr on empr.employee_id = emp.manager_id
 18)
 19 search depth first by last_name set order1
 20 select lpad(' ', lvl*2-1,' ') || er.last_name last_name

CHAPTER 10 ■ SUBQUERY FACTORING

307

 21 , er.first_name
 22 , er.department_name
 23 from emp_recurse er;

LAST_NAME FIRST_NAME DEPARTMENT
------------------------- -------------------- ------------
 King Steven Executive
 Cambrault Gerald Sales
 Bates Elizabeth Sales
 Bloom Harrison Sales
 Fox Tayler Sales
 Kumar Sundita Sales
 Ozer Lisa Sales
 Smith William Sales
 De Haan Lex Executive
 Hunold Alexander IT
 Austin David IT
 Ernst Bruce IT
 Lorentz Diana IT
 Pataballa Valli IT
 Errazuriz Alberto Sales
 Ande Sundar Sales
 Banda Amit Sales
 ...

107 rows selected.

 While the new RSF method may at first appear verbose, the basis of how it works is simpler to
understand than CONNECT BY and allows for more complex queries. The recursive WITH clause requires
two query blocks, the anchor member and the recursive member. These two query blocks must be
combined with the UNION ALL set operator. The anchor member is the query prior to the UNION ALL,
while the recursive member is the query following. The recursive member must reference the defining
subquery— by doing so, it is recursive.

Restrictions on RSF
As you might imagine, the use of RSF is quite a bit more flexible than CONNECT BY. There are some
restrictions on its use, however. As per the 11gR2 documentation for the SELECT statement, the
following elements cannot be used in the recursive member of an RSF:

• The DISTINCT keyword or a GROUP BY clause

• The model_clause

• An aggregate function. However, analytic functions are permitted in the select list.

• Subqueries that refer to query_name.

• Outer joins that refer to query_name as the right table.

CHAPTER 10 ■ SUBQUERY FACTORING

308

Differences from CONNECT BY
There are several differences when using RSF as compared to CONNECT BY, and some of them are
apparent in Listing 10-13. You may have wondered what happened to the LEVEL pseudocolumn, as it is
missing in this query, replaced by the LVL column. I’ll get to that one a little later on. Also notice that the
columns returned by an RSF query must be specified in the query definition as seen in line 7 of Listing
10-13. One more new feature is the SEARCH DEPTH FIRST seen on line 19. The default search is BREADTH
FIRST, which is not usually the output you want from a hierarchical query. Listing 10-14 shows the
output when the SEARCH clause is not used or it is set to BREADTH FIRST. This search returns rows of all
siblings at each level before returning any child rows. Specifying SEARCH DEPTH FIRST will return the
rows in hierarchical order. The SET ORDER1 portion of the SEARCH clause sets the value of the ORDER1
pseudocolumn to the value of the order the rows are returned in, similar to what you might see with
ROWNUM, but you get to name the column. This will also be used in later examples.

Listing 10-14. Default BREADTH FIRST Search

…
 search breadth first by last_name set order1
select lpad(' ', lvl*2-1,' ') || er.last_name last_name
…

LAST_NAME FIRST_NAME DEPARTMENT_NAME
------------------------- -------------------- -----------------
 King Steven Executive
 Cambrault Gerald Sales
 De Haan Lex Executive
 Errazuriz Alberto Sales
 Fripp Adam Shipping
 Hartstein Michael Marketing
 Kaufling Payam Shipping
 Kochhar Neena Executive
 Mourgos Kevin Shipping
 Partners Karen Sales
 Raphaely Den Purchasing
 Russell John Sales
 Vollman Shanta Shipping
 Weiss Matthew Shipping
 Zlotkey Eleni Sales
 Abel Ellen Sales
 Ande Sundar Sales
…

Notice that the SEARCH clause as it is used in Figures 10-13 and 10-14 specifies that the search be by
LAST_NAME. This could also be by FIRST_NAME, or by a column list, such as LAST_NAME,FIRST_NAME. Doing
so controls the order of the rows within each level. The SEARCH clause ends with SET ORDER1. This
effectively adds the ORDER1 pseudocolumn to the column list returned by the recursive subquery. You
will see it used more in some of the following examples.

p

CHAPTER 10 ■ SUBQUERY FACTORING

309

Duplicating CONNECT BY Functionality
As the Oracle database has progressed through several versions, the functionality of the CONNECT BY
clause has progressed as well. There are a number of hierarchical query operators, pseudocolumns, and
one function available to CONNECT BY that are not natively available to RSF. The functionality these
provide, however, can be duplicated in RSF. The functionality may not mimic exactly what occurs when
CONNECT BY is used, but it can likely be made to do what you need. The trick to getting what you want
from RSF sometimes requires stepping away from the keyboard and thinking about the results you want
to achieve, rather than thinking about how you are going to code it. It is amazing how the change in
perspective will help you easily achieve the desired output from the SQL you write.

The operators and pseudocolumns for CONNECT BY are listed in Table 10-1. I will go through each of
these as needed, showing example usages for CONNECT BY, and then duplicating that functionality with
RSF. Keep in mind that RSF is quite versatile, so TMTOWTDI8 is definitely in force. Feel free to
experiment and find other methods to achieve the same results.

Table 10-1. CONNECT BY Functions, Operators, and Pseudocolumns

Type Name Purpose

Function SYS_CONNECT_BY_PATH Returns all ancestors for the current row.

Operator CONNECT_BY_ROOT Returns the value from a root row.

Operator PRIOR Used to indicate hierarchical query.

Not needed in a recursive subquery.

Pseudocolumn CONNECT_BY_ISCYCLE Detects cycles in the hierarchy.

Parameter NOCYCLE Parameter for CONNECT BY. Used with
CONNECT_BY_ISCYCLE.

Pseudocolumn CONNECT_BY_ISLEAF Identifies leaf rows.

Pseudocolumn LEVEL Used to indicate level of depth in the hierarchy.

I will also cover the SEARCH clause of RSF as it is instrumental in solving some problems.

The LEVEL Pseudocolumn
Let’s start with the LEVEL pseudocolumn. This is frequently used in hierarchical queries to indent the
output, creating a visual representation of the hierarchy. Listing 10-15 contains a simple examples
showing how LEVEL is generated. As the hierarchy increases in depth, LEVEL in incremented. Likewise,
LEVEL is decremented when the hierarchy goes back a level.

8 There’s More Than One Way To Do It

CHAPTER 10 ■ SUBQUERY FACTORING

310

Listing 10-15. The LEVEL Pseudocolumn

 1 select lpad(' ', level*2-1,' ') || e.last_name last_name, level
 2 from hr.employees e
 3 connect by prior e.employee_id = e.manager_id
 4 start with e.manager_id is null
 5 order siblings by e.last_name;

LAST_NAME LEVEL
------------------------- ----------
 King 1
 Cambrault 2
 Bates 3
 Bloom 3
 Fox 3
 Kumar 3
 Ozer 3
 Smith 3
 De Haan 2
…

107 rows selected.

This can also be accomplished in RSF, though it does require a little effort on your part. It’s detailed
in Listing 10-16. It may be somewhat surprising to see that this actually works. The value for LVL is
never decremented, only incremented. Recall that the default search method for RSF is BREADTH
FIRST. It is apparent that Oracle is processing the rows in sibling order, with the top of the hierarchy
(King), followed by the child rows at the next level, continuing until the last row is reached. This
behavior will allow you to solve some other problems as well.

Listing 10-16. Create A LVL Column

 1 with emp_recurse(employee_id,manager_id,last_name,lvl) as (
 2 select e.employee_id, null, e.last_name, 1 as lvl
 3 from hr.employees e
 4 where e.manager_id is null
 5 union all
 6 select e1.employee_id, e1.manager_id, e1.last_name, e2.lvl + 1 as lvl
 7 from hr.employees e1
 8 join emp_recurse e2 on e2.employee_id= e1.manager_id
 9)
 10 search depth first by last_name set last_name_order
 11 select lpad(' ', r.lvl*2-1,' ') || r.last_name last_name, r.lvl
 12 from emp_recurse r
 13 order by last_name_order;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 ■ SUBQUERY FACTORING

311

LAST_NAME LVL
------------------------- ----------
 King 1
 Cambrault 2
 Bates 3
 Bloom 3
 Fox 3
 Kumar 3
 Ozer 3
 Smith 3
 De Haan 2
…

107 rows selected.

The SYS_CONNECT_BY_PATH Function
This function is used to return the values that comprise the hierarchy up to the current row. It’s best
explained with an example, such as the one seen in Listing 10-17. The SYS_CONNECT_BY_PATH function
here is used to build a colon delimited list of the hierarchy, complete from root to node.

Listing 10-17. SYS_CONNECT_BY_PATH

 1 select lpad(' ',2*(level-1)) || e.last_name last_name
 2 , sys_connect_by_path(last_name,':') path
 3 from hr.employees e
 4 start with e.manager_id is null
 5 connect by prior e.employee_id = e.manager_id
 6 order siblings by e.last_name;

LAST_NAME PATH
------------------------- --
King :King
 Cambrault :King:Cambrault
 Bates :King:Cambrault:Bates
 Bloom :King:Cambrault:Bloom
 Fox :King:Cambrault:Fox
 Kumar :King:Cambrault:Kumar
 Ozer :King:Cambrault:Ozer
 Smith :King:Cambrault:Smith
 De Haan :King:De Haan
…
107 rows selected.

Though the SYS_CONNECT_BY_PATH function is not available to RSF queries, this function can be
duplicated using much the same method that was used to reproduce the LEVEL pseudocolumn. Rather

CHAPTER 10 ■ SUBQUERY FACTORING

312

than incrementing a counter, however, you will now be appending to a string value. Listing 10-18 shows
how this is done.

Listing 10-18. Build Your Own SYS_CONNECT_BY_PATH

 1 with emp_recurse(employee_id,manager_id,last_name,lvl,path) as (
 2 select e.employee_id, null, e.last_name
 3 , 1 as lvl
 4 ,':' || to_char(e.last_name) as path
 5 from hr.employees e
 6 where e.manager_id is null
 7 union all
 8 select e1.employee_id, e1.manager_id, e1.last_name
 9 ,e2.lvl + 1 as lvl
 10 ,e2.path || ':' || e1.last_name as path
 11 from hr.employees e1
 12 join emp_recurse e2 on e2.employee_id= e1.manager_id
 13)
 14 search depth first by last_name set last_name_order
 15 select lpad(' ', r.lvl*2-1,' ') || r.last_name last_name, r.path
 16 from emp_recurse r
 17 order by last_name_order;

LAST_NAME PATH
------------------------- --
 King :King
 Cambrault :King:Cambrault
 Bates :King:Cambrault:Bates
 Bloom :King:Cambrault:Bloom
 Fox :King:Cambrault:Fox
 Kumar :King:Cambrault:Kumar
 Ozer :King:Cambrault:Ozer
 Smith :King:Cambrault:Smith
 De Haan :King:De Haan
…
107 rows selected.

The output of the SYS_CONNECT_BY_PATH as seen in Listing 10-17 is duplicated by the roll-your-
own version using RSF in Listing 10-18. Take another look at this SQL; you may notice that there’s
something here that SYS_CONNECT_BY_PATH cannot do. Consider, for instance, if you wanted the
hierarchy to be displayed as a comma delimited list. That is accomplished simply enough by changing
the colon “:” to comma “,”. The problem with SYS_CONNECT_BY_PATH is that the first character in the
output will always be a comma.

Using the RFS method, you can simply remove the delimiter in the anchor member, and then
change the delimiter in the recursive member to a comma. This is shown in Listing 10-19, along with a
sample of the output. Should you feel inclined, the first character of the path could remain a colon and
the values delimited by commas.

CHAPTER 10 ■ SUBQUERY FACTORING

313

Listing 10-19. Comma Delimited PATH

 1 with emp_recurse(employee_id,manager_id,last_name,lvl,path) as (
 2 select e.employee_id, null, e.last_name
 3 , 1 as lvl
 4 ,e.last_name as path
 5 from hr.employees e
 6 where e.manager_id is null
 7 union all
 8 select e1.employee_id, e1.manager_id, e1.last_name
 9 ,e2.lvl + 1 as lvl
 10 ,e2.path || ',' || e1.last_name as path
 11 from hr.employees e1
 12 join emp_recurse e2 on e2.employee_id= e1.manager_id
 13)
 14 search depth first by last_name set last_name_order
 15 select lpad(' ', r.lvl*2-1,' ') || r.last_name last_name, r.path
 16 from emp_recurse r
 17 order by last_name_order;

LAST_NAME PATH
------------------------- --
 King King
 Cambrault King,Cambrault
 Bates King,Cambrault,Bates
 Bloom King,Cambrault,Bloom
 Fox King,Cambrault,Fox
 Kumar King,Cambrault,Kumar
 Ozer King,Cambrault,Ozer
 Smith King,Cambrault,Smith
 De Haan King,De Haan
…
107 rows selected.

The CONNECT_BY_ROOT Operator
This operator enhances the CONNECT BY syntax by returning the root node of the current row. In the
example of the HR.EMPLOYEES table, all rows will return “King” as the root. You can change it up a bit,
however, by temporarily modifying the row for Neena Kochhar, putting her on the same level as the
company president, Steven King. Then the hierarchy can be shown for Ms. Kochhar by using the
CONNECT_BY_ROOT operator to restrict the output. You can see the results in Listing 10-20.

CHAPTER 10 ■ SUBQUERY FACTORING

314

Listing 10-20. CONNECT_BY_ROOT

 1* update hr.employees set manager_id= null where last_name ='Kochhar';
 1 row updated.

 1 select /*+ inline gather_plan_statistics */
 2 level
 3 , lpad(' ',2*(level-1)) || last_name last_name
 4 , first_name
 5 , CONNECT_BY_ROOT last_name as root
 6 , sys_connect_by_path(last_name,':') path
 7 from hr.employees
 8 where connect_by_root last_name = 'Kochhar'
 9 connect by prior employee_id = manager_id
 10 start with manager_id is null;

LEVEL LAST_NAME FIRST_NAME ROOT PATH
----- ------------ ------------ ------------ ------------------------------
 1 Kochhar Neena Kochhar :Kochhar
 2 Greenberg Nancy Kochhar :Kochhar:Greenberg
 3 Faviet Daniel Kochhar :Kochhar:Greenberg:Faviet
 3 Chen John Kochhar :Kochhar:Greenberg:Chen
 3 Sciarra Ismael Kochhar :Kochhar:Greenberg:Sciarra
 3 Urman Jose Manuel Kochhar :Kochhar:Greenberg:Urman
 3 Popp Luis Kochhar :Kochhar:Greenberg:Popp
 2 Whalen Jennifer Kochhar :Kochhar:Whalen
 2 Mavris Susan Kochhar :Kochhar:Mavris
 2 Baer Hermann Kochhar :Kochhar:Baer
 2 Higgins Shelley Kochhar :Kochhar:Higgins
 3 Gietz William Kochhar :Kochhar:Higgins:Gietz

12 rows selected.
1 rollback;

This functionality can be duplicated in RSF, but it does require a little more SQL. The code in
Listing 10-21 is based on the SYS_CONNECT_BY_PATH example, with some minor changes and additions.
The delimiting character is now prepended and appended to the value for PATH in the anchor member.
In the recursive member, the delimiter is appended to the PATH, whereas previously it was prepended to
the LAST_NAME column. Doing so ensures that the root records will always have a delimiting character at
the end of the value, allowing the SUBSTR() function in the emps subquery to correctly parse the root
from the string when the path comes from the anchor member only, such as the rows for King and
Kochar. This is probably better explained by examining the output from the query.

CHAPTER 10 ■ SUBQUERY FACTORING

315

Listing 10-21. Duplicate CONNECT_BY_ROOT

1 update hr.employees set manager_id= null where last_name ='Kochhar';
1 row updated.

 1 with emp_recurse(employee_id,manager_id,last_name,lvl,path) as (
 2 select /*+ gather_plan_statistics */
 3 e.employee_id
 4 , null as manager_id
 5 , e.last_name
 6 , 1 as lvl
 7 , ':' || e.last_name || ':' as path
 8 from hr.employees e
 9 where e.manager_id is null
 10 union all
 11 select
 12 e.employee_id
 13 , e.manager_id
 14 , e.last_name
 15 , er.lvl + 1 as lvl
 16 , er.path || e.last_name || ':' as path
 17 from hr.employees e
 18 join emp_recurse er on er.employee_id = e.manager_id
 19 join hr.employees e2 on e2.employee_id = e.manager_id
 20)
 21 search depth first by last_name set order1 ,
 22 emps as (
 23 select lvl
 24 , last_name
 25 , path
 26 , substr(path,2,instr(path,':',2)-2) root
 27 from emp_recurse
 28)
 29 select
 30 lvl
 31 , lpad(' ',2*(lvl-1)) || last_name last_name
 32 , root
 33 , path
 34 from emps
 35 where root = 'Kochhar';

 LVL LAST_NAME ROOT PATH
---------- --------------- --------------- ------------------------------
 1 Kochhar Kochhar :Kochhar:
 2 Baer Kochhar :Kochhar:Baer:
 2 Greenberg Kochhar :Kochhar:Greenberg:
 3 Chen Kochhar :Kochhar:Greenberg:Chen:
 3 Faviet Kochhar :Kochhar:Greenberg:Faviet:

CHAPTER 10 ■ SUBQUERY FACTORING

316

 3 Popp Kochhar :Kochhar:Greenberg:Popp:
 3 Sciarra Kochhar :Kochhar:Greenberg:Sciarra:
 3 Urman Kochhar :Kochhar:Greenberg:Urman:
 2 Higgins Kochhar :Kochhar:Higgins:
 3 Gietz Kochhar :Kochhar:Higgins:Gietz:
 2 Mavris Kochhar :Kochhar:Mavris:
 2 Whalen Kochhar :Kochhar:Whalen:

12 rows selected.
1* rollback;

This is not a perfect duplication of the CONNECT_BY_ROOT operator. In this case, it does exactly
what is needed. The built-in operator, however, does allow some flexibility in specifying the level and
returning the root at that level. The example given would need more modification to match that ability.
However, you may find that this example works well for most cases.

The CONNECT_BY_ISCYCLE Pseudocolumn and
NOCYCLE Parameter
The CONNECT_BY_ISCYCLE pseudocolumn makes it easy to detect loops in a hierarchy. This is
illustrated by the SQL in Listing 10-22. Here, an intentional error has been introduced by updating the
HR.EMPLOYEES row for the President, assigning Smith as King’s manager. This will cause an error in
the CONNECT BY.

Listing 10-22. Cycle Error in CONNECT BY

1 update hr.employees set manager_id = 171 where employee_id = 100;
1 row updated.
Elapsed: 00:00:00.02

 1 select lpad(' ',2*(level-1)) || last_name last_name
 2 ,first_name, employee_id, level
 3 from hr.employees
 4 start with employee_id = 100
 5* connect by prior employee_id = manager_id

LAST_NAME FIRST_NAME EMPLOYEE_ID LEVEL
------------------------- ------------ ----------- -----
King Steven 100 1
 Kochhar Neena 101 2
 Greenberg Nancy 108 3
...
 Smith William 171 3
 King Steven 100 4
...
ERROR:
ORA-01436: CONNECT BY loop in user data

CHAPTER 10 ■ SUBQUERY FACTORING

317

187 rows selected.
 1 rollback;

In the output, Smith appears as the Manager of King, which you know to be incorrect. But if you
didn’t already know what the problem was, how would you find it? That’s where the NOCYCLE parameter
and CONNECT_BY_ISCYCLE operator come in to play. These are used to detect a cycle in the hierarchy. The
NOCYCLE parameter prevents the ORA-1436 error from occurring, allowing all rows to be output. The
CONNECT_BY_ISCYCLE operator allows you to easily find the row causing the error.

As seen in Listing 10-23, the value of CONNECT_BY_ISCYCLE is 1, indicating that the row for Smith
is somehow causing the error. The next query looks up the data for Smith, and all appears normal.
Finally, you query the table again, this time using Smith’s employee ID to find all employees that he
manages. The error becomes apparent—the President of the company does not have a manager, so the
solution is to set the MANAGER_ID back to NULL for this row.

Listing 10-23. Detect the Cycle with CONNECT_BY_ISCYCLE

1* update hr.employees set manager_id = 171 where employee_id = 100
1 row updated.

 1 select lpad(' ',2*(level-1)) || last_name last_name
 2 ,first_name, employee_id, level
 3 , connect_by_iscycle
 4 from hr.employees
 5 start with employee_id = 100
 6 connect by nocycle prior employee_id = manager_id;

LAST_NAME FIRST_NAME EMPLOYEE_ID LEVEL CONNECT_BY_ISCYCLE
------------------------- ------------ ----------- ----- ------------------
King Steven 100 1 0
 Kochhar Neena 101 2 0
...

 Smith William 171 3 1

...
107 rows selected.

Elapsed: 00:00:00.03
 1 select last_name, first_name, employee_id, manager_id
 2 from hr.employees
 3* where employee_id = 171

LAST_NAME FIRST_NAME EMPLOYEE_ID MANAGER_ID
------------------------- ------------ ----------- ----------
Smith William 171 148

 1 select last_name, first_name, employee_id, manager_id
 2 from hr.employees
 3* where manager_id = 171

CHAPTER 10 ■ SUBQUERY FACTORING

318

LAST_NAME FIRST_NAME EMPLOYEE_ID MANAGER_ID
------------------------- ------------ ----------- ----------
King Steven 100 171

 1 rollback;

So, how do you do this with RSF? It’s really quite simple, as Oracle has provided the built-in CYCLE

clause that will make short work of detecting cycles in recursive queries. It is somewhat more robust
than the CONNECT_BY_ISCYCLE pseudocolum in that it lets you determine what values will be used to
indicate a cycle, as well as providing a column name at the same time. Listing 10-24 uses the same data
error as in Listing 10-23, but this time you will use a recursive subfactored query.

Listing 10-24. Detect Cycles in Recursive Queries

1 update hr.employees set manager_id = 171 where employee_id = 100;
1 row updated.
Elapsed: 00:00:00.00

 1 with emp(employee_id,manager_id,last_name,first_name,lvl) as (
 2 select e.employee_id
 3 , null as manager_id
 4 , e.last_name
 5 , e.first_name
 6 , 1 as lvl
 7 from hr.employees e
 8 where e.employee_id =100
 9 union all
 10 select e.employee_id
 11 , e.manager_id
 12 , e.last_name
 13 , e.first_name
 14 , emp.lvl + 1 as lvl
 15 from hr.employees e
 16 join emp on emp.employee_id = e.manager_id
 17)
 18 search depth first by last_name set order1
 19 CYCLE employee_id SET is_cycle TO '1' DEFAULT '0'
 20 select lpad(' ',2*(lvl-1)) || last_name last_name
 21 , first_name
 22 , employee_id
 23 , lvl
 24 , is_cycle
 25 from emp
 26 order by order1;

CHAPTER 10 ■ SUBQUERY FACTORING

319

LAST_NAME FIRST_NAME EMPLOYEE_ID LVL I
------------------------- ------------ ----------- ---------- -
King Steven 100 1 0
 Cambrault Gerald 148 2 0
 Bates Elizabeth 172 3 0
 Bloom Harrison 169 3 0
 Fox Tayler 170 3 0
 Kumar Sundita 173 3 0
 Ozer Lisa 168 3 0
 Smith William 171 3 0
 King Steven 100 4 1

...

108 rows selected.

Elapsed: 00:00:00.04
 1 select last_name, first_name, employee_id, manager_id
 2 from hr.employees
 3 where employee_id = 100;

LAST_NAME FIRST_NAME EMPLOYEE_ID MANAGER_ID
------------------------- ------------ ----------- ----------
King Steven 100 171
1 row selected.

 1 rollback;

Notice how the CYCLE clause lets you set the two possible values for the IS_CYCLE column to 0 or 1.

Only single value characters are allowed here. The name of the column is also user defined, and is set to
IS_CYCLE in this example. Examining the output, it appears that the CYCLE clause in RSF does a somewhat
better job of identifying the row that causes the data cycle. The row with the error is identified clearly as
that of King, so you can query that row and immediately determine the error.

The CONNECT_BY_ISLEAF Pseudocolumn
Finally, there is the CONNECT_BY_ISLEAF pseudocolumn. This permits easy identification of leaf9 nodes in
hierarchical data. You can see that leaf nodes are identified in the output of Listing 10-25 when the
value of CONNECT_BY_ISLEAF is 1.

Listing 10-25. CONNECT_BY_ISLEAF

 1 select lpad(' ',2*(level-1)) || e.last_name last_name, connect_by_isleaf
 2 from hr.employees e
 3 start with e.manager_id is null
 4 connect by prior e.employee_id = e.manager_id
 5 order siblings by e.last_name;

9 A leaf node is a node in the hierarchical tree that has no children.

CHAPTER 10 ■ SUBQUERY FACTORING

320

LAST_NAME CONNECT_BY_ISLEAF
------------------------- -----------------
King 0
 Cambrault 0
 Bates 1
 Bloom 1
 Fox 1
 Kumar 1
 Ozer 1
 Smith 1
 De Haan 0
 Hunold 0
 Austin 1
 Ernst 1
 Lorentz 1
 Pataballa 1
...

107 rows selected.

--
| Id | Operation | Name | E-Rows |
--
0	SELECT STATEMENT		
* 1	CONNECT BY NO FILTERING WITH START-WITH		
2	TABLE ACCESS FULL	EMPLOYEES	107

Duplicating this in RSF is somewhat of a challenge. There are probably many methods that can be
used to accomplish this, with some limitations. This is one of those problems that may require a little
extra thought to solve, where “solve” means you get the output you desire, but you won’t necessarily
completely duplicate the functionality of CONNECT_BY_ISLEAF.

In this case, you want to identify the leaf nodes in the employee hierarchy. By definition, none of the
leaf nodes can be managers, so one way to accomplish this is to determine which rows are those of
managers. All rows that are not those of managers are then leaf nodes.

Listing 10-26 uses this approach to solve the problem. The cost of solving it is two more extra scans
of the HR.EMPLOYEES table and three index scans, but if RSF must be used, this is one way to get the
desired results. The LEAVES subquery is used find the leaf nodes. This is then left outer joined to the
EMPLOYEES table, and the value (or lack of a value) of LEAVES.EMPLOYEE_ID column indicates if the
current row is a leaf.

Listing 10-26. Finding Leaf Nodes in a Recursive Query

 1 with leaves as (
 2 select employee_id
 3 from hr.employees
 4 where employee_id not in (
 5 select manager_id
 6 from hr.employees

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 10 ■ SUBQUERY FACTORING

321

 7 where manager_id is not null
 8)
 9),
 10 emp(manager_id,employee_id,last_name,lvl,isleaf) as (
 11 select e.manager_id, e.employee_id, e.last_name, 1 as lvl, 0 as isleaf
 12 from hr.employees e
 13 where e.manager_id is null
 14 union all
 15 select e.manager_id,nvl(e.employee_id,null) employee_id,e.last_name,emp.lvl + 1 as lvl
 16 , decode(l.employee_id,null,0,1) isleaf
 17 from hr.employees e
 18 join emp on emp.employee_id = e.manager_id
 19 left outer join leaves l on l.employee_id = e.employee_id
 20)
 21 search depth first by last_name set order1
 22 select lpad(' ',2*(lvl-1)) || last_name last_name, isleaf
 23 from emp;

LAST_NAME ISLEAF
------------------------- ----------
King 0
 Cambrault 0
 Bates 1
 Bloom 1
 Fox 1
 Kumar 1
 Ozer 1
 Smith 1
 De Haan 0
 Hunold 0
 Austin 1
 Ernst 1
 Lorentz 1
 Pataballa 1
...
107 rows selected.

| Id | Operation | Name | E-Rows |

0	SELECT STATEMENT		
1	VIEW		7
2	UNION ALL (RECURSIVE WITH) DEPTH FIRST		
* 3	TABLE ACCESS FULL	EMPLOYEES	1
4	NESTED LOOPS OUTER		6
5	NESTED LOOPS		6
6	RECURSIVE WITH PUMP		

CHAPTER 10 ■ SUBQUERY FACTORING

322

7	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	6
* 8	INDEX RANGE SCAN	EMP_MANAGER_IX	6
9	VIEW PUSHED PREDICATE		1
10	NESTED LOOPS ANTI		1
* 11	INDEX UNIQUE SCAN	EMP_EMP_ID_PK	1
* 12	INDEX RANGE SCAN	EMP_MANAGER_IX	6

Another way to accomplish this is seen in Listing 10-27. Here the analytic function LEAD() uses the

value of the LVL column to determine if a row is a leaf node. While it does avoid two of the index scans
that were seen in Listing 10-26, correctly determining if a row is a leaf node is dependent on the order of
the output, as seen in line 16. The LEAD() function depends on the value of the LAST_NAME_ORDER
column that is set in the SEARCH clause.

Listing 10-27. Using LEAD() to Find Leaf Nodes

 1 with emp(manager_id,employee_id,last_name,lvl) as (
 2 select e.manager_id, e.employee_id, e.last_name, 1 as lvl
 3 from hr.employees e
 4 where e.manager_id is null
 5 union all
 6 select e.manager_id, nvl(e.employee_id,null) employee_id
 7 , e.last_name, emp.lvl + 1 as lvl
 8 from hr.employees e
 9 join emp on emp.employee_id = e.manager_id
 10)
 11 search depth first by last_name set last_name_order
 12 select lpad(' ',2*(lvl-1)) || last_name last_name,
 13 lvl,
 14 lead(lvl) over (order by last_name_order) leadlvlorder,
 15 case
 16 when (lvl - lead(lvl) over (order by last_name_order)) < 0
 17 then 0
 18 else 1
 19 end isleaf
 20 from emp;

LAST_NAME LVL LEADLVLORDER ISLEAF
------------------------- ---------- ------------ ----------
King 1 2 0
 Cambrault 2 3 0
 Bates 3 3 1
 Bloom 3 3 1
 Fox 3 3 1
 Kumar 3 3 1
 Ozer 3 3 1
 Smith 3 2 1

 De Haan 2 3 0

CHAPTER 10 ■ SUBQUERY FACTORING

323

 Hunold 3 4 0
 Austin 4 4 1
 Ernst 4 4 1
 Lorentz 4 4 1
 Pataballa 4 2 1
...
107 rows selected.

--
| Id | Operation | Name | E-Rows |
--
0	SELECT STATEMENT		
1	WINDOW BUFFER		7
2	VIEW		7
3	UNION ALL (RECURSIVE WITH) DEPTH FIRST		
* 4	TABLE ACCESS FULL	EMPLOYEES	1
5	NESTED LOOPS		
6	NESTED LOOPS		6
7	RECURSIVE WITH PUMP		
* 8	INDEX RANGE SCAN	EMP_MANAGER_IX	6
9	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	6
--

What might happen if the SEARCH clause is changed from DEPTH FIRST to BREADTH first? The results are
shown in Listing 10-28. The use of the LEAD() function appears at first an elegant solution, but it is
somewhat fragile in its dependency on the order of the data. The example in Listing 10-26 will work
regardless of the SEARCH clause parameters. It is readily apparent that the output in Listing 10-28 is
incorrect.

Listing 10-28. LEAD() with BREADTH FIRST

 1 with emp(manager_id,employee_id,last_name,lvl) as (
 2 select e.manager_id, e.employee_id, e.last_name, 1 as lvl
 3 from hr.employees e
 4 where e.manager_id is null
 5 union all
 6 select e.manager_id, nvl(e.employee_id,null) employee_id
 7 , e.last_name, emp.lvl + 1 as lvl
 8 from hr.employees e
 9 join emp on emp.employee_id = e.manager_id
 10)
 11 search breadth first by last_name set last_name_order
 12 select lpad(' ',2*(lvl-1)) || last_name last_name,
 13 lvl,
 14 lead(lvl) over (order by last_name_order) leadlvlorder,
 15 case
 16 when (lvl - lead(lvl) over (order by last_name_order)) < 0
 17 then 0

CHAPTER 10 ■ SUBQUERY FACTORING

324

 18 else 1
 19 end isleaf
 20 from emp;

LAST_NAME LVL LEADLVLORDER ISLEAF
------------------------- ---------- ------------ ----------
King 1 2 0
 Cambrault 2 2 1

 De Haan 2 2 1

 Errazuriz 2 2 1
 Fripp 2 2 1
 Hartstein 2 2 1
 Kaufling 2 2 1

Summary
While the functionality of CONNECT BY can be duplicated for most practical purposes in recursive
subfactored queries, the question is, should you do so? In many cases, the CONNECT BY syntax is simpler
to use, though the syntax does take some getting used to. Doing the same things in RSF requires quite a
bit more SQL in most cases. In addition, CONNECT BY may produce better execution plans than RSF,
especially for relatively simple queries. Keep in mind, however, that RSF is a new feature, and will likely
improve in later versions of Oracle.

Also, there may be good reasons to not use CONNECT BY. Perhaps you need to maintain ANSI
compatibility in your application. Or perhaps the ability to write hierarchical queries that will work in
other databases that support recursive common table expressions would simplify the code for an
application that runs on databases from different vendors. In that circumstance, RSF is quite useful.

Whatever the need for hierarchical queries, with a little ingenuity you can write suitable queries on
hierarchical data using recursive subfactored queries, and they will be capable of doing everything that
can currently be done with CONNECT BY.

C H A P T E R 1 1

■ ■ ■

325

Semi-joins and Anti-joins

Kerry Osborne

Semi-joins and anti-joins are two closely related join methods (options of join methods, actually) that
the Oracle optimizer can choose to apply when retrieving information. The SQL language is designed to
specify the set of data that the user wishes to retrieve, but to leave the decisions as to how to actually
navigate to the data up to the database itself. Therefore, there is no SQL syntax to specifically invoke a
particular join method. Of course, Oracle does provide the ability to give the optimizer directives via
hints. This chapter will cover these two join optimization options, the SQL syntax that can provoke
them, requirements for and restrictions on their use, and finally, some guidance on when and how they
should be used.

It is important to be aware that Oracle is constantly improving the optimizer code and that not all
details of its behavior are documented. All examples were created on an Oracle 11gR2 database
(11.2.0.1). My version of 11g currently has 2399 parameters, many of which affect the way the optimizer
behaves. Where appropriate, I will mention parameter settings that have a direct bearing on the topics at
hand. However, you should verify the behavior on your own system.

Semi-joins
A semi-join is a join between two sets of data (tables) where rows from the first set are returned, based
on the presence or absence of at least one matching row in the other set. We'll come back to the
"absence" of a matching row later—that is a special case of the semi-join called an anti-join. If you think
back to your days in grade school math, you should be able to visualize this operation with a typical set
theory picture such as the one shown in Figure 11-1.

Figure 11-1. Ilustration of a semi-join

Figure 11-1 provides a basic idea of what a semi-join is but it’s not detailed enough to describe the
nuances. Diagrams of this sort are called Venn diagrams; this particular Venn diagram is commonly used

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

326

to illustrate an inner join, which is essentially an intersection. Unfortunately, there is not a convenient
way to fully describe a semi-join with a Venn diagram. The main difference between a normal inner join
and a semi-join is that with a semi-join, each record in the first set (Query 1 in the diagram) is returned
only once, regardless of how many matches there are in the second set (Query 2 in the diagram). This
definition implies that the actual processing of the query can be optimized by stopping Query 2 as soon
as the first match is found. And at its heart, that’s what a semi-join is: the optimization that allows
processing to stop before the Query 2 part is complete. This join technique is a choice that’s available to
Oracle’s cost-based optimizer when the query contains a sub-query inside of an IN or EXISTS clause (or
inside the rarely used =ANY clause which is synonymous with IN). The syntax should look pretty
familiar. Listings 11-1 and 11-2 show examples of the two most common forms of semi-join queries
using IN and EXISTS.

Listing 11-1. Semi-join IN example

SQL>
SQL> select /* using in */ department_name
 2 from hr.departments dept
 3 where department_id IN (select department_id from hr.employees emp);

DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting

11 rows selected.

Listing 11-2. Semi-join EXISTS example

SQL> select /* using exists */ department_name
 2 from hr.departments dept
 3 where EXISTS (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);

DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

327

IT
Public Relations
Sales
Executive
Finance
Accounting

11 rows selected.

These two queries are functionally equivalent. That is to say that they will always return the same set

of data, given the same inputs. There are several other forms that are closely related. Listings 11-3
through 11-6 show several examples of closely related alternatives.

Listing 11-3. Alternatives to EXISTS and IN – Inner Join

SQL> select /* inner join */ department_name
 2 from hr.departments dept, hr.employees emp
 3 where dept.department_id = emp.department_id;

DEPARTMENT_NAME

Administration
Marketing
Marketing
Purchasing
Purchasing
Shipping
IT
IT
Public Relations
Sales
Sales
. . .
Executive
Finance
Finance
Accounting

106 rows selected.

Obviously the inner join is not functionally equivalent to the semi-join due to the number of rows

returned. You’ll also notice that there are many repeating values. Let’s try using a DISTINCT to eliminate
the duplicates. Look at Listing 11-4.

Listing 11-4. Alternatives to EXISTS and IN – Inner Join with Distinct

SQL> select /* inner join with distinct */ distinct department_name
 2 from hr.departments dept, hr.employees emp
 3 where dept.department_id = emp.department_id;

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

328

DEPARTMENT_NAME

Administration
Accounting
Purchasing
Human Resources
IT
Public Relations
Executive
Shipping
Sales
Finance
Marketing

11 rows selected.

The inner join with DISTINCT looks pretty good. In this case, it actually returns the same exact set of

records. As previously mentioned, the INTERSECT set operation is very close to a semi-join so let’s try
that next in Listing 11-5.

Listing 11-5. Alternatives to EXISTS and IN – Ugly Intersect

SQL> select /* ugly intersect */ department_name
 2 from hr.departments dept,
 3 (select department_id from hr.departments
 4 intersect
 5 select department_id from hr.employees) b
 6 where b.department_id = dept.department_id;

DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting

11 rows selected.

The intersect also looks pretty good but the syntax is convoluted. Finally, let’s try the somewhat

obscure =ANY key word with a subquery in Listing 11-6.

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

329

Listing 11-6. Alternatives to EXISTS and IN – =ANY Subquery

SQL> select /* ANY subquery */ department_name
 2 from hr.departments dept
 3 where department_id = ANY (select department_id from hr.employees emp);

DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting

11 rows selected.

There isn't much to say about the =ANY version since it is merely an alternate way of writing IN. So

to recap, the query in Listing 11-3 (inner join) doesn’t look promising as it obviously doesn’t return the
same set of data. Because it returns a row for each match, the total number of records returned is 106
instead of 11. Let’s skip over the second one using the DISTINCT operator for a moment. Note that the
query in Listing 11-5 (an ugly intersect), although it returns the correct set of records, doesn’t look
promising either because it uses convoluted syntax, even for the simple case I’m illustrating. Of course,
the query in Listing 11-6 (using the =ANY syntax) is exactly the same as the IN version, since IN and
=ANY are the same thing.

The query in Listing 11-4 (inner join with distinct) looks promising, but is it functionally equivalent
to the queries in Listings 11-1 and 11-2? The short answer is no, it’s not. In many situations the inner join
with distinct query will return the same data as a semi-join (using IN or EXISTS), as it does in this case.
But that’s due to a convenient fluke of the data model and it does not make the query in Listing 11-3
equivalent to the semi-join queries in Listing 11-1 and 11-2. Consider the example in Listing 11-7 which
shows a case where the two forms return different results.

Listing 11-7. Semi-join and DISTINCT Are Not The Same

SQL> select /* SEMI using IN */ department_id
 2 from hr.employees
 3 where department_id in (select department_id from hr.departments);

DEPARTMENT_ID

 10
 20
 20
 30
 30

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

330

 30
 30
 30
 30
 40
 50
 50
 50
 . . .
 80
 110
 110

106 rows selected.

SQL>
SQL> select /* inner join with distinct */ distinct emp.department_id
 2 from hr.departments dept, hr.employees emp
 3 where dept.department_id = emp.department_id;

DEPARTMENT_ID

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110

11 rows selected.

So it’s clear from this example that the two constructs are not equivalent. The IN/EXISTS form takes
each record in the first set and, if there is at least one match in the second set, returns the record. It does
not apply a DISTINCT operator at the end of the processing (i.e. it doesn’t sort and throw away
duplicates). Therefore, it is possible to get repeating values, assuming that there are duplicates in the
records returned by Query 1. The DISTINCT form, on the other hand, retrieves all the rows, sorts them,
and then throws away any duplicate values. As you can see from the example, these are clearly not the
same. And as you might expect from the description, the DISTINCT version can end up doing
significantly more work, as it has no chance to bail out of the subquery early. We’ll talk more about that
shortly.

There is another common mistake that is made with the EXISTS syntax that should probably be
mentioned. If you use EXISTS, you need to make sure you include a subquery that is correlated to the
outer query. If the subquery does not reference the outer query, it’s meaningless. Listing 11-8 shows an
example from a web page that is currently number one on Google for the search term “Oracle EXISTS”.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

331

Listing 11-8. Common Mistake with EXISTS – Non-Correlated Subquery

Select
 book_key
from
 book
 where
 exists (select book_key from sales) ;

Because the subquery in this example is not related to the outer query, the end result will be to

return every record in the BOOK table (as long as there is at least one record in the SALES table). This is
probably not what the author of this statement intended. Listing 11-9 shows a few examples
demonstrating the difference between using correlated and non-correlated subqueries: the first two
showing EXISTS with a proper correlated subquery, and the last two showing EXISTS with non-
correlated subqueries.

Listing 11-9. Common Mistake with EXISTS – Correlated vs. Non-Correlated Subquery

SQL> select /* correlated */ department_id
 2 from hr.departments dept
 3 where exists (select department_id from hr.employees emp
 4 where emp.department_id = dept.department_id);

DEPARTMENT_ID

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110

11 rows selected.

SQL>
SQL> select /* not correlated */ department_id
 2 from hr.departments dept
 3 where exists (select department_id from hr.employees emp);

DEPARTMENT_ID

 10
 20
 30

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

332

 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270

27 rows selected.

SQL>
SQL> select /* not correlated no nulls */ department_id
 2 from hr.departments dept
 3 where exists (select department_id from hr.employees emp where department_id
 is not null);

DEPARTMENT_ID

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

333

 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270

27 rows selected.

SQL>
SQL> select /* non-correlated totally unrelated */ department_id
 2 from hr.departments dept
 3 where exists (select null from dual);

DEPARTMENT_ID

 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

334

 230
 240
 250
 260
 270

27 rows selected.

SQL>
SQL> select /* non-correlated empty subquery */ department_id
 2 from hr.departments dept
 3 where exists (select 'anything' from dual where 1=2);

no rows selected

So the correlated queries get the records we expect (i.e. only the ones that have a match in the

second query). Obviously, the non-correlated subqueries do not work as expected. They return every
record from the first table, which is actually what you’ve asked for if you write a query that way. In fact,
as you can see in the next-to-last example (having the non-correlated query against the dual table), no
matter what you select in the subquery, all the records from the first table are returned. The last example
shows what happens when no records are returned from the subquery. In that case, no records are
returned at all. So, without a correlated subquery, you either get all the records in the outer query or
none of the records in the outer query, without regard to what the inner query is actually doing.

Semi-join Plans
I mentioned in the introduction that semi-joins are not really a join method on their own, but rather an
option of other join methods. The three most common join methods in Oracle are nested loops, hash
joins, and merge joins. Each of these methods can have the semi option applied to it. Remember also
that it is an optimization that allows processing to stop when the first match is found in the subquery.
Let’s use a little pseudo code to more fully describe the process. The outer query is Q1 and the inner
(subquery) is Q2. What you see in Listing 11-10 is the basic processing of a nested loop semi-join.

Listing 11-10. Pseudo Code for Nested Loop Semi-join

open Q1
while Q1 still has records
 fetch record from Q1
 result = false
 open Q2
 while Q2 still has records
 fetch record from Q2
 if (Q1.record matches Q2.record) then = semi-join optimization
 result = true
 exit loop
 end if
 end loop
 close Q2

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

335

 if (result = true) return Q1 record
end loop
close Q1

The optimization provided by the semi option is the IF statement that lets the code exit the inner

loop as soon as it finds a match. Obviously, with large data sets, this technique can result in significant
time savings when compared to a normal nested loops join that must loop through every record
returned by the inner query for every row in the outer query. At this point, you may be thinking that this
technique could save a lot of time with a nested loops join vs. the other two. And you’d be right because
the other two have to get all the records from the inner query before they start checking for matches. So
the nested loops joins generally have the most to gain from this technique. Keep in mind that the
optimizer still picks which join method to use based on its costing algorithms, which include the various
semi options.

Now let’s re-run the queries from Listings 11-1 and 11-2 and look at the plans the optimizer
generates (shown in Listing 11-11)..

Listing 11-11. Semi-join Execution Plans

SQL> -- semi_ex1.sql
SQL>
SQL> select /* in */ department_name
 2 from hr.departments dept
 3 where department_id in (select department_id from hr.employees emp);

DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting

11 rows selected.

Execution Plan
--
Plan hash value: 2605691773

|Id| Operation | Name |Rows|Bytes|Cost (%CPU)| Time |

| 0| SELECT STATEMENT | | 10| 190| 3 (0)| 00:00:01 |

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

336

1	NESTED LOOPS SEMI		10	190	3 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	3 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41	123	0 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("DEPARTMENT_ID"="DEPARTMENT_ID")

Statistics
--
 0 recursive calls
 0 db block gets
 11 consistent gets
 0 physical reads
 0 redo size
 622 bytes sent via SQL*Net to client
 420 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 11 rows processed

SQL>
SQL> select /* exists */ department_name
 2 from hr.departments dept
 3 where exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);

DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting

11 rows selected.

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

337

Execution Plan
--
Plan hash value: 2605691773

|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		10	190	3 (0)	00:00:01
1	NESTED LOOPS SEMI		10	190	3 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	3 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41	123	0 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID")

Statistics
--
 0 recursive calls
 0 db block gets
 11 consistent gets
 0 physical reads
 0 redo size
 622 bytes sent via SQL*Net to client
 420 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 11 rows processed

The autotrace statistics are included so that you can see that these statements are indeed processed

the same way. The plans are identical and the statistics are identical. I make this point to dispel the long
held belief that queries written with EXIST behave very differently than queries written with IN. This was
an issue in the past (version 8i), but it has not been an issue for many years. The truth is that the
optimizer can and does transform queries in both forms to the same statement.

Note that there is a way to get a better idea of the decision making process that the optimizer goes
through when parsing a statement. You can have the optimizer log its actions in a trace file by issuing
the following command:

alter session set events '10053 trace name context forever, level 1';

Setting this event will cause a trace file to be created in the USER_DUMP_DEST directory when a

hard parse is performed. I call it “Wolfganging” because Wolfgang Breitling was the first guy to really
analyze the content of these 10053 trace files and publish his findings. For further information, please
refer to Wolfgang’s paper called “A Look Under the Hood of CBO.” At any rate, a close look at 10053 trace
data for each statement will confirm that both statements are transformed into the same statement

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

338

before the optimizer determines a plan. Listing 11-12 and 11-13 show excerpts of 10053 trace files
generated for both the IN and the EXISTS versions.

Listing 11-12. Excerpts from 10053 trace for IN version

QUERY BLOCK TEXT

select /* using in */ department_name
 from hr.departments dept
 where department_id IN (select department_id from hr.employees emp)

Cost-Based Subquery Unnesting

SU: Unnesting query blocks in query block SEL$1 (#1) that are valid to unnest.
Subquery removal for query block SEL$2 (#2)
RSW: Not valid for subquery removal SEL$2 (#2)
Subquery unchanged.
Subquery Unnesting on query block SEL$1 (#1)SU: Performing unnesting that does not require
costing.
SU: Considering subquery unnest on query block SEL$1 (#1).
SU: Checking validity of unnesting subquery SEL$2 (#2)
SU: Passed validity checks.
SU: Transforming ANY subquery to a join.

Final query after transformations:******* UNPARSED QUERY IS *******
SELECT "DEPT"."DEPARTMENT_NAME" "DEPARTMENT_NAME" FROM "HR"."EMPLOYEES"
"EMP","HR"."DEPARTMENTS" "DEPT" WHERE "DEPT"."DEPARTMENT_ID"="EMP"."DEPARTMENT_ID"

Listing 11-13. Excerpts from 10053 trace for EXISTS version

QUERY BLOCK TEXT

select /* using exists */ department_name
 from hr.departments dept
 where EXISTS (select null from hr.employees emp
 where emp.department_id = dept.department_id)

Cost-Based Subquery Unnesting

SU: Unnesting query blocks in query block SEL$1 (#1) that are valid to unnest.
Subquery Unnesting on query block SEL$1 (#1)SU: Performing unnesting that does not
 require costing.
SU: Considering subquery unnest on query block SEL$1 (#1).
SU: Checking validity of unnesting subquery SEL$2 (#2)

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

339

SU: Passed validity checks.
SU: Transforming EXISTS subquery to a join.

Final query after transformations:******* UNPARSED QUERY IS *******
SELECT "DEPT"."DEPARTMENT_NAME" "DEPARTMENT_NAME" FROM "HR"."EMPLOYEES"
 "EMP","HR"."DEPARTMENTS" "DEPT" WHERE "EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID"

As you can see in the trace file excerpts, subquery unnesting has occurred on both queries and they

have both been transformed into the same statement (i.e. the “Final query after transformations” section
is exactly the same for both versions). Oracle Database 10gR2 behaves the same way, by the way.

Controlling Semi-join Plans
Now let’s look at some of the methods to control the execution plan, should the optimizer need a little
help. There are two mechanisms at your disposal. One mechanism is a set of hints that you can apply to
individual queries. The other is an instance-level parameter affecting all queries.

Controlling Semi-join Plans Using Hints
There are several hints that may be applied to encourage or discourage semi-joins. As of 11gR2, the
following hints are available:

SEMIJOIN – perform a semi-join (the optimizer gets to pick which kind)

NO_SEMIJOIN – obviously means don’t perform a semi-join

NL_SJ – perform a nested loops semi-join (deprecated as of 10g)

HASH_SJ – perform a hash semi-join (deprecated as of 10g)

MERGE_SJ – perform a merge semi-join (deprecated as of 10g)

The more specific hints (NL_SJ, HASH_SJ, MERGE_SJ) have been deprecated since 10g. Although
they continue to work as in the past, even with 11gR2, be aware that the documentation says they may
be going away at some point. All of the semi-join related hints need to be specified in the subquery as
opposed to in the outer query. Listing 11-14 shows an example using the NO_SEMIJOIN hint.

Listing 11-14. EXISTS with NO_SEMIJOIN Hint

SQL> set autotrace trace
SQL> -- semi_ex5a.sql - no_semijoin hint
SQL>
SQL> select /* exists no_semijoin */ department_name
 2 from hr.departments dept
 3 where exists (select /*+ no_semijoin */ null from hr.employees emp
 4 where emp.department_id = dept.department_id);

DEPARTMENT_NAME

Administration
Marketing

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

340

Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting

11 rows selected.

Execution Plan
--
Plan hash value: 440241596

| Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		1	16	17 (0)	00:00:01
* 1	FILTER					
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	3 (0)	00:00:01
* 3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	2	6	1 (0)	00:00:01

Predicate Information (identified by operation id):

 1 - filter(EXISTS (SELECT 0 FROM "HR"."EMPLOYEES" "EMP" WHERE
 "EMP"."DEPARTMENT_ID"=:B1))
 3 - access("EMP"."DEPARTMENT_ID"=:B1)

Statistics
--
 0 recursive calls
 0 db block gets
 35 consistent gets
 0 physical reads
 0 redo size
 622 bytes sent via SQL*Net to client
 419 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 11 rows processed

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

341

In this example we turned off the optimizer’s ability to use semi-joins via the NO_SEMIJOIN hint. As
expected, the query no longer does a semi-join, but instead uses a FILTER operation to combine the two
row sources. Note that the Predicate Information section of the explain plan output shows the FILTER
operation is to enforce the EXISTS clause. As a side note, this informative representation of the filter step
is unique to EXPLAIN PLAN, which autotrace does behind the scenes. In general, I am not a fan of the
EXPLAIN PLAN statement as it is a separate code path from the actual optimizer. The main reason I
don’t like it is that it occasionally comes up with a different plan than the optimizer. However, in this
case it provides some additional information that is not available to us if we use DBMS_XPLAN to show
the actual plan. Listing 11-15 shows the xplan output for the same statement.

Listing 11-15. EXISTS with NO_SEMIJOIN Hint

SQL> set echo on
SQL> -- semi_ex5b.sql
SQL>
SQL> select sql_id, sql_text from v$sqlarea
 2 where sql_text like 'select /* EXISTS NO_SEMIJOIN */ %';

SQL_ID SQL_TEXT
------------- --
b120fvtzr94an select /* EXISTS NO_SEMIJOIN */ department_name from
 hr.departments dept where exists (select /*+ no_semijoin
 */ null from hr.employees emp where
 emp.department_id = dept.department_id)

1 row selected.

SQL>
SQL> -- @dplan
SQL> set lines 150
SQL> select * from table(dbms_xplan.display_cursor('b120fvtzr94an',null,'typical'));

PLAN_TABLE_OUTPUT

SQL_ID b120fvtzr94an, child number 0

select /* EXISTS NO_SEMIJOIN */ department_name from hr.departments
dept where exists (select /*+ no_semijoin */ null from hr.employees
emp where emp.department_id = dept.department_id)

Plan hash value: 440241596

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

342

--
|Id |Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT				17 (100)	
* 1	FILTER					
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	3 (0)	00:00:01
* 3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	2	6	1 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - filter(IS NOT NULL)
 3 - access("EMP"."DEPARTMENT_ID"=:B1)

23 rows selected.

As you can see, the filter step in the predicate section is not nearly as informative as it is in the

EXPLAIN PLAN output.

Controlling Semi-join Plans at the Instance Level
There is also a hidden parameter that exerts control over the optimizer’s semi-join choices:
_always_semi_join was a normal parameter originally but was changed to a hidden parameter in 9i.
Listing 11-16 shows a list of the valid values for the parameter.

Listing 11-16. Valid Values for_always_semi_join

SYS@LAB112> select NAME_KSPVLD_VALUES name, VALUE_KSPVLD_VALUES value
 2 from X$KSPVLD_VALUES
 3 where NAME_KSPVLD_VALUES like nvl('&name',NAME_KSPVLD_VALUES);
Enter value for name: _always_semi_join

NAME VALUE
-------------------- --
_always_semi_join HASH
_always_semi_join MERGE
_always_semi_join NESTED_LOOPS
_always_semi_join CHOOSE
_always_semi_join OFF

The parameter has a somewhat misleading name as it does not force semi-joins at all. The default

value is CHOOSE, which allows the optimizer to evaluate all the SEMI join methods and choose the one
it thinks will be the most efficient. Setting the parameter to HASH, MERGE, or NESTED_LOOPS appears
to reduce the optimizer’s choices to the specified join method. Setting the parameter to OFF disables
semi-joins. The parameter can be set at the session level. Listing 11-17 contains an example showing

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

343

how the parameter can be used to change the optimizer’s choice from NESTED_LOOPS semi to MERGE
semi.

Listing 11-17. Using _always_semi_join to Change Plan to Merge Semi-join

SQL> @semi_ex1a
SQL> -- semi_ex1a.sql
SQL>
SQL> select /* using in */ department_name
 2 from hr.departments dept
 3 where department_id IN (select department_id from hr.employees emp);

DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting

11 rows selected.

Execution Plan
--
Plan hash value: 2605691773

|Id |Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		10	190	3 (0)	00:00:01
1	NESTED LOOPS SEMI		10	190	3 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	3 (0)	00:00:01
* 3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41	123	0 (0)	00:00:01
--

Predicate Information (identified by operation id):

 3 - access("DEPARTMENT_ID"="DEPARTMENT_ID")

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

344

Statistics
--
 0 recursive calls
 0 db block gets
 11 consistent gets
 0 physical reads
 0 redo size
 622 bytes sent via SQL*Net to client
 419 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 11 rows processed

SQL> alter session set "_always_semi_join"=MERGE;

Session altered.

SQL> @semi_ex1a
SQL> -- semi_ex1a.sql
SQL>
SQL> select /* using in */ department_name
 2 from hr.departments dept
 3 where department_id IN (select department_id from hr.employees emp);

DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting

11 rows selected.

Execution Plan
--
Plan hash value: 954076352

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

345

--
|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		10	190	4 (25)	00:00:01
1	MERGE JOIN SEMI		10	190	4 (25)	00:00:01
2	TABLE ACCESS BY	DEPARTMENTS	27	432	2 (0)	00:00:01
 INDEX ROWID
3	INDEX FULL SCAN	DEPT_ID_PK	27		1 (0)	00:00:01
*4	SORT UNIQUE		107	321	2 (50)	00:00:01
5	INDEX FULL SCAN	EMP_DEPARTMENT_IX	107	321	1 (0)	00:00:01

Predicate Information (identified by operation id):

 4 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID"="DEPARTMENT_ID")

Statistics
--
 0 recursive calls
 0 db block gets
 5 consistent gets
 0 physical reads
 0 redo size
 622 bytes sent via SQL*Net to client
 419 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 1 sorts (memory)
 0 sorts (disk)
 11 rows processed

Semi-join Restrictions
There is only one major documented restriction controlling when the optimizer can use a semi-join (in
11gR2). The optimizer will not choose a semi-join for any subqueries inside of an OR branch. In previous
versions of Oracle, the inclusion of the DISTINCT key word would also disable semi-joins, but that
restriction no longer exists. Listing 11-18 contains an example showing a semi-join being disabled inside
an OR branch.

Listing 11-18. Using _always_semi_join to Change Plan to Merge Semi-join

SQL> select /* exists with or */ department_name
 2 from hr.departments dept
 3 where 1=2 or exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

346

DEPARTMENT_NAME

Administration
Marketing
Purchasing
Human Resources
Shipping
IT
Public Relations
Sales
Executive
Finance
Accounting

11 rows selected.

Execution Plan
--
Plan hash value: 440241596

--
|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		27	432	4 (0)	00:00:01
*1	FILTER					
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	3 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	2	6	1 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - filter(EXISTS (SELECT 0 FROM "HR"."EMPLOYEES" "EMP" WHERE
 "EMP"."DEPARTMENT_ID"=:B1))
 3 - access("EMP"."DEPARTMENT_ID"=:B1)

Statistics
--
 1 recursive calls
 0 db block gets
 35 consistent gets
 0 physical reads
 0 redo size
 622 bytes sent via SQL*Net to client
 420 bytes received via SQL*Net from client

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

347

 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 11 rows processed

Semi-join Requirements
Semi-joins are an optimization that can dramatically improve performance of some queries. They are
not used that often, however. Here, briefly, are the requirements for Oracle’s cost based optimizer to
decide to use a semi-join:

• The statement must use either the keyword IN (= ANY) or the keyword EXISTS

• The statement must have a subquery in the IN or EXISTS clause

• If the statement uses the EXISTS syntax, it must use a correlated subquery (to get the expected
results)

• The IN or EXISTS clause may not be contained inside an OR branch

Many systems have queries with massive numbers of literals (thousands sometimes) inside IN
clauses. These are often generated statements that get populated by doing a query to find the list in the
first place. These statements can occasionally benefit from being rewritten to let the optimizer take
advantage of a semi-join. That is, taking the query that populated the literals in the IN clause and
combining it with the original, instead of running them as two separate queries.

One of the reasons that developers avoid this approach is fear of the unknown. The IN and EXISTS
syntax was at one time processed very differently, leading to situations where performance could vary
considerably depending on the method chosen. The good news is that the optimizer is smart enough
now to transform either form into a semi-join, or not, depending on the optimizer costing algorithms.
The question of whether to implement a correlated subquery with EXISTS or the more simple IN
construct is now pretty much a mute point from a performance standpoint. And with that being the
case, there seems to be little reason to use the more complicated EXISTS format. No piece of software is
perfect, though; occasionally, the optimizer makes incorrect choices. Fortunately, when the optimizer
does make a mistake, there are tools available to “encourage” it to do the right thing.

Anti-joins
Anti-joins are basically the same as semi-joins in that they are an optimization option that can be
applied to nested loop, hash, and merge joins. However, they are the opposite of semi-joins in terms of
the data they return. Those mathematician types familiar with relational algebra would say that anti-
joins can be defined as the complement of semi-joins.

Figure 11-2 shows a Venn diagram that is commonly used to illustrate a MINUS operation (all the
records from table A, MINUS the records from table B).

The diagram in Figure 11-2 is a reasonable representation of an anti-join as well. The Oracle
Database SQL Language Reference, 11g Release 2 describes the anti-join this way:

An anti-join returns rows from the left side of the predicate for which there are
no corresponding rows on the right side of the predicate. It returns rows that
fail to match (NOT IN) the subquery on the right side.

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

348

Figure 11-2. Illustration of an anti-join

The Oracle manual also provides this example of an anti-join:

SELECT * FROM employees
 WHERE department_id NOT IN
 (SELECT department_id FROM departments
 WHERE location_id = 1700)
 ORDER BY last_name;

As with semi-joins, there is no specific SQL syntax that invokes an ANTI join. They are one of several

choices that the optimizer may use when the SQL statement contains the key words NOT IN or NOT
EXISTS. By the way, NOT IN is much, much more common than NOT EXISTS, probably because it is
easier to understand.

So let’s take a look at our standard queries, now altered to anti form (i.e. using NOT IN and NOT
EXISTS instead of IN and EXISTS) in Listing 11-19.

Listing 11-19. Standard NOT IN and NOT EXISTS Examples

SQL> -- anti_ex1.sql
SQL>
SQL> select /* NOT IN */ department_name
 2 from hr.departments dept
 3 where department_id NOT IN
 4 (select department_id from hr.employees emp);

no rows selected

SQL>
SQL> select /* NOT EXISTS */ department_name
 2 from hr.departments dept
 3 where NOT EXISTS (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

349

Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

Clearly NOT IN and NOT EXISTS do not return the same data in this example, and are therefore not

functionally equivalent. The reason for this behavior has to do with how the queries deal with null values
being returned by the subquery. If a null value is returned to a NOT IN operator, then no records will be
returned by the overall query. This seems counter intuitive, but if you think about it for a minute it
should make a little more sense. In the first place, the NOT IN operator is just another way of saying
!=ANY. So you can think of it as a loop comparing values. If it finds a match, the record is discarded. If it
doesn’t, the record gets returned to the user. But what if is doesn’t know whether the records match or
not? Remember that a null is not equal to anything, even another null. In this case, Oracle has chosen to
return a value of false, even though the theoretical answer is unknown. C.J. Date would probably argue
that this is a shortcoming of Oracle’s implementation of relation theory, as it should provide for all three
potential answers. At any rate, this is the way it works in Oracle.

Assuming that your requirements are to return records even in the case of nulls being returned by
the subquery, you have the following options:

• Apply an NVL function to the column(s) returned by the subquery

• Add an IS NOT NULL predicate to the subquery

• Implement NOT NULL constraint(s)

• Don’t use NOT IN (use the NOT EXISTS form, which doesn’t care about nulls)

In many cases a NOT NULL constraint is the best option, but there are situations where there are
valid arguments against them. Listing 11-20 shows two examples of dealing with the null issue.

Listing 11-20. Avoiding Nulls with NOT IN

SQL> select /* IN with NVL */ department_name
 2 from hr.departments dept
 3 where department_id NOT IN
 4 (select nvl(department_id,-10) from hr.employees emp);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

350

Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SQL>
SQL> select /* IN with NOT NULL */ department_name
 2 from hr.departments dept
 3 where department_id NOT IN (select department_id from hr.employees emp
 4 where department_id is not null);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

So as you can see, while an unconstrained NOT IN statement is not the same as a NOT EXISTS,
applying an NVL function or adding an IS NOT NULL clause to the subquery predicate solves the issue.

While NOT IN and NOT EXISTS are the most commonly chosen syntax options for producing an
anti-join, there are at least two other options that can return the same data. The MINUS operator can

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

351

obviously be used for this purpose. A clever trick with an outer join can also be used. Listing 11-21 shows
examples of both techniques.

Listing 11-21. Alternative Syntax to NOT IN and NOT EXISTS

SQL> select /* MINUS */ department_name
 2 from hr.departments
 3 where department_id in
 4 (select department_id from hr.departments
 5 minus
 6 select department_id from hr.employees);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SQL> select /* LEFT OUTER */ department_name
 2 from hr.departments dept left outer join
 3 hr.employees emp on dept.department_id = emp.department_id
 4 where emp.department_id is null;

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

352

Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SQL> select /* LEFT OUTER OLD (+) */ department_name
 2 from hr.departments dept, hr.employees emp
 3 where dept.department_id = emp.department_id(+)
 4 and emp.department_id is null;

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

So the MINUS is slightly convoluted but it returns the right data and is functionally equivalent to the

NOT EXISTS form and the null constrained NOT IN form. The LEFT OUTER statement probably needs a
little discussion. It makes use of the fact that an outer join creates a dummy record on the right side for
each record on the left that doesn’t have an actual match. Since all the columns in the dummy record
will be null, we can get the records without matches by adding the EMP.DEPARTMENT_ID IS NULL
clause to the outer join. This statement is also functionally equivalent to the NOT EXISTS statement and
the null constrained NOT IN form. There is a myth that this form performs better than NOT EXISTS, and
maybe that was true at some point, but it is not the case now. Therefore, there appears to be little reason
to use it as it is considerably less clear in its intent.

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

353

Anti-join Plans
As with semi-joins, anti-joins are an optimization option that may be applied to NESTED LOOP JOINS,
HASH JOINS or MERGE JOINS. Also remember that it is an optimization that allows processing to stop
when the first match is found in the subquery. Listing 11-22 shows the pseudo code that should help to
more fully describe the process. Note that the outer query is Q1 and the inner (subquery) is Q2.

Listing 11-22. Pseudo Code for Nested Loop Anti-join

open Q1
while Q1 still has records
 fetch record from Q1
 result = true
 open Q2
 while Q2 still has records
 fetch record from Q2
 if (Q1.record matches Q2.record) then = anti-join optimization
 result = false = Difference from semi-join
 exit loop
 end if
 end loop
 close Q2
 if (result = true) return Q1 record
end loop
close Q1

This example is basically a nested loop anti-join. The optimization provided by the anti option is the

IF statement that lets the code bail out of the inner loop as soon as it finds a match. Obviously, with large
data sets, this technique can result in significant time saving when compared to a normal nested loops
join that must loop through every record returned by the inner query.

Now let’s re-run our first two anti-join examples (i.e. the standard NOT IN and NOT EXISTS queries)
in Listing 11-23 and look at the plans the optimizer generates:

Listing 11-23. Anti-join Execution Plans

SQL> select /* NOT IN */ department_name
 2 from hr.departments dept
 3 where department_id NOT IN (select department_id from hr.employees emp);

no rows selected

Execution Plan
--
Plan hash value: 4201340344

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

354

|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		17	323	6 (17)	00:00:01
1	MERGE JOIN ANTI NA		17	323	6 (17)	00:00:01
2	SORT JOIN		27	432	2 (0)	00:00:01
3	TABLE ACCESS BY	DEPARTMENTS	27	432	2 (0)	00:00:01
 INDEX ROWID
4	INDEX FULL SCAN	DEPT_ID_PK	27		1 (0)	00:00:01
*5	SORT UNIQUE		107	321	4 (25)	00:00:01
6	TABLE ACCESS FULL	EMPLOYEES	107	321	3 (0)	00:00:01

Predicate Information (identified by operation id):

 5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID"="DEPARTMENT_ID")

SQL>
SQL> select /* NOT EXISTS */ department_name
 2 from hr.departments dept
 3 where NOT EXISTS (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

355

Execution Plan
--
Plan hash value: 3082375452

--
|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		17	323	3 (0)	00:00:01
1	NESTED LOOPS ANTI		17	323	3 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	3 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41	123	0 (0)	00:00:01
--

Predicate Information (identified by operation id):

 3 - access("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID")

Notice that the NOT EXISTS statement generated a NESTED LOOPS ANTI plan while the NOT IN

statement generated a MERGE JOIN ANTI NA plan. The NESTED LOOPS ANTI is the standard anti-join
that has been available since version 7 or thereabouts. The ANTI NA that was applied to the MERGE JOIN,
however, is a new optimization that was introduced in 11g. (NA stands for Null Aware.) This new
optimization allows the optimizer to deal with NOT IN queries where the optimizer doesn’t know if nulls
can be returned by the subquery. Prior to 11g, anti-joins could not be performed on NOT IN queries unless
the optimizer was sure the nulls would not be returned. Note that this optimization technique has nothing
at all to do with the “unintuitive” behavior of NOT IN clauses with respect to nulls that was mentioned
previously. The query still returns no records if a null is returned by the subquery, but it does it a lot faster
with the ANTI NA option. Listing 11-24 provides another example showing how the various ways of
handling nulls in the subquery affect the optimizer’s choices (note: the fsp.sql script shows some execution
statistics from v$sql along with the operation and options from v$sql_plan if a semi- or anti-join is used).

Listing 11-24. Anti-join Execution Plans

SYS@LAB112> set echo on
SYS@LAB112> @flush_pool
SYS@LAB112> alter system flush shared_pool;

System altered.

SYS@LAB112> @anti_ex2
SYS@LAB112> set echo on
SYS@LAB112> -- anti_ex2.sql
SYS@LAB112>
SYS@LAB112> select /* IN */ department_name
 2 from hr.departments dept
 3 where department_id not in
 4 (select department_id from hr.employees emp);

no rows selected

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

356

SYS@LAB112>
SYS@LAB112> select /* IN with NVL */ department_name
 2 from hr.departments dept
 3 where department_id not in
 4 (select nvl(department_id,-10) from hr.employees emp);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SYS@LAB112>
SYS@LAB112> select /* IN with NOT NULL */ department_name
 2 from hr.departments dept
 3 where department_id not in (select department_id from hr.employees emp
 4 where department_id is not null);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

357

Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SYS@LAB112>
SYS@LAB112> select /* EXISTS */ department_name
 2 from hr.departments dept
 3 where not exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SYS@LAB112>
SYS@LAB112> set echo off
SYS@LAB112> set echo on
SYS@LAB112> @fsp
SYS@LAB112> select distinct s.sql_id,
 2 -- s.child_number,
 3 s.plan_hash_value plan_hash,
 4 sql_text,
 5 -- decode(options,'SEMI',operation||' '||options,null) join
 6 case when options like '%SEMI%' or options like '%ANTI%' then
 7 operation||' '||options end join
 8 from v$sql s, v$sql_plan p
 9 where s.sql_id = p.sql_id

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

358

 10 and s.child_number = p.child_number
 11 and upper(sql_text) like upper(nvl('&sql_text','%department%'))
 12 and sql_text not like '%from v$sql where sql_text like nvl(%'
 13 and s.sql_id like nvl('&sql_id',s.sql_id)
 14 order by 1, 2, 3
 15 /
Enter value for sql_text:
Enter value for sql_id:

SQL_ID PLAN_HASH SQL_TEXT JOIN
------------- ---------- --- ---------------------
0pcrmdk1tw0tf 4201340344 select /* IN */ department_name from hr.de MERGE
 JOIN ANTI NA
 partments dept where department_id not in
 (select department_id from hr.employees emp)

56d82nhza8ftu 3082375452 select /* IN with NOT NULL */ department_name NESTED
 LOOPS ANTI
 from hr.departments dept where departm
 ent_id not in (select department_id from hr.e
 mployees emp w
 here department_id is not null)

5c77dgzy60ubx 3082375452 select /* EXISTS */ department_name from h NESTED
 LOOPS ANTI
 r.departments dept where not exists (selec
 t null from hr.employees emp
 where emp.department_id = dept.department
 _id)

a71yzhpc0n2uj 3822487693 select /* IN with NVL */ department_name f MERGE
 JOIN ANTI
 rom hr.departments dept where department_i
 d not in (select nvl(department_id,-10) from
 hr.employees emp)

As you can see, the EXISTS, NOT IN with NOT NULL, and NOT IN with NVL all use the normal anti-

join, while the NOT IN that ignores the handling of nulls must use the new null aware anti-join (ANTI
NA). Now, let’s rerun our examples of LEFT OUTER and MINUS and see what plans they come up with.
Listing 11-25 shows the results that the optimizer comes up with for several alternative syntax variations.

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

359

Listing 11-25. Alternate Anti-join Syntax Execution Plans

SYS@LAB112> set echo on
SYS@LAB112> @flush_pool
SYS@LAB112> alter system flush shared_pool;

System altered.

SYS@LAB112> @anti_ex3
SYS@LAB112> set echo on
SYS@LAB112> -- anti_ex3.sql
SYS@LAB112>
SYS@LAB112> select /* NOT EXISTS */ department_name
 2 from hr.departments dept
 3 where not exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SYS@LAB112>
SYS@LAB112> select /* NOT IN NOT NULL */ department_name
 2 from hr.departments dept
 3 where department_id not in (select department_id from hr.employees emp
 4 where department_id is not null);

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

360

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SYS@LAB112>
SYS@LAB112> select /* LEFT OUTER */ department_name
 2 from hr.departments dept left outer join
 3 hr.employees emp on dept.department_id = emp.department_id
 4 where emp.department_id is null;

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

361

SYS@LAB112>
SYS@LAB112> select /* LEFT OUTER OLD (+) */ department_name
 2 from hr.departments dept, hr.employees emp
 3 where dept.department_id = emp.department_id(+)
 4 and emp.department_id is null;

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SYS@LAB112>
SYS@LAB112> select /* MINUS */ department_name
 2 from hr.departments
 3 where department_id in
 4 (select department_id from hr.departments
 5 minus
 6 select department_id from hr.employees);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

362

IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SYS@LAB112>
SYS@LAB112> set echo off
SYS@LAB112> @fsp
Enter value for sql_text:
Enter value for sql_id:

SQL_ID PLAN_HASH SQL_TEXT JOIN
------------- ---------- --- ---------------------
6tt0zwazv6my9 3082375452 select /* NOT EXISTS */ department_name fr NESTED LOOPS ANTI
 om hr.departments dept where not exists (s
 elect null from hr.employees emp
 where emp.department_id = dept.depart
 ment_id)

as34zpj5n5dfd 3082375452 select /* LEFT OUTER */ department_name fr NESTED LOOPS ANTI
 om hr.departments dept left outer join
 hr.employees emp on dept.department_id = em
 p.department_id where emp.department_id is
 null

czsqu5txh5tyn 3082375452 select /* NOT IN NOT NULL */ department_name NESTED LOOPS ANTI
 from hr.departments dept where departme
 nt_id not in (select department_id from hr.em
 ployees emp wh
 ere department_id is not null)

dcx0kqhwbuv6r 3082375452 select /* LEFT OUTER OLD (+) */ department_na NESTED LOOPS ANTI
 me from hr.departments dept, hr.employees
 emp where dept.department_id = emp.departm
 ent_id(+) and emp.department_id is null

gvdsm57xf24jv 2972564128 select /* MINUS */ department_name from hr
 .departments where department_id in (
 select department_id from hr.departments
 minus select department_id from hr.em
 ployees)

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

363

While all these statements return the same data, the MINUS does not use the anti-join optimization.
If you look closely, you’ll notice that all the other statements have the same plan hash value, meaning
they have exactly the same plan.

Controlling Anti-join Plans
Not surprisingly, the mechanisms for controlling anti-join plans are similar to those available for
controlling semi-joins. As before, you have both hints and parameters to work with.

Controlling Anti-join Plans Using Hints
There are several hints:

ANTIJOIN – perform an anti-join (the optimizer gets to pick which kind)

USE_ANTI – older version of ANTIJOIN hint

NL_AJ – perform a NESTED LOOPS anti-join (deprecated as of 10g)

HASH_AJ – perform a HASH anti-join (deprecated as of 10g)

MERGE_AJ – perform a MERGE anti-join (deprecated as of 10g)

As with the hints controlling semi-joins, several of the anti-join hints (NL_AJ, HASH_AJ, MERGE_AJ)
have been documented as being deprecated. Nevertheless, they continue to work in 11gR2. However, it
should be noted that these specific hints do not work in situations where the optimizer must use the new
null aware version of anti-join (more on that in a moment). All of the anti-join hints should be specified
in the subquery as opposed to in the outer query. Also note that there is not a NO_ANTIJOIN hint, which
is a bit unusual. Listing 11-26 shows an example of using the NL_AJ hint.

Listing 11-26. Controlling Anti-join Execution Plans with Hints

SQL> set autotrace traceonly exp
SQL> @anti_ex4
SQL> -- anti_ex4.sql
SQL>
SQL> select /* IN */ department_name
 2 from hr.departments dept
 3 where department_id not in (select /*+ nl_aj */ department_id
 4 from hr.employees emp);

Execution Plan
--
Plan hash value: 4201340344

|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		17	323	6 (17)	00:00:01
1	MERGE JOIN ANTI NA		17	323	6 (17)	00:00:01
2	SORT JOIN		27	432	2 (0)	00:00:01

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

364

| 3| TABLE ACCESS BY |DEPARTMENTS| 27| 432| 2 (0)|00:00:01|
 INDEX ROWID
4	INDEX FULL SCAN	DEPT_ID_PK	27		1 (0)	00:00:01
*5	SORT UNIQUE		107	321	4 (25)	00:00:01
6	TABLE ACCESS FULL	EMPLOYEES	107	321	3 (0)	00:00:01

Predicate Information (identified by operation id):

 5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID"="DEPARTMENT_ID")

SQL>
SQL> select /* EXISTS */ department_name
 2 from hr.departments dept
 3 where not exists (select /*+ nl_aj */ null from hr.employees emp
 4 where emp.department_id = dept.department_id);

Execution Plan
--
Plan hash value: 3082375452

|Id |Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		17	323	3 (0)	00:00:01
1	NESTED LOOPS ANTI		17	323	3 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	3 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41	123	0 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("EMP"."DEPARTMENT_ID"="DEPT"."DEPARTMENT_ID")

Controlling Anti-join Plans at the Instance Level
There are also a number of parameters (all hidden) that affect the optimizer’s behavior with respect to
anti-joins:

• _always_anti_

• _gs_anti_semi_join_allowed

• _optimizer_null_aware_antijoin

• _optimizer_outer_to_anti_enabled

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

365

The main parameter to be concerned about is _always_anti_join which is equivalent to
_always_semi_join in its behavior (it has the same valid values and the options do the same things). Note
that it’s been documented as being obsolete for some time. Nevertheless, as with _always_semi_join, it
appears to still work in 11gR2. Listing 11-27 shows an example of using a hint and turning off anti-joins
altogether with the _optimizer_null_aware_antijoin parameter.

Listing 11-27. Controlling Anti-join Execution Plans with Parameters

SQL> -- anti_ex5.sql
SQL>
SQL> select /* EXISTS */ department_name
 2 from hr.departments dept
 3 where not exists (select null from hr.employees emp
 4 where emp.department_id = dept.department_id);

DEPARTMENT_NAME

Treasury
Corporate Tax
Control And Credit
Shareholder Services
Benefits
Manufacturing
Construction
Contracting
Operations
IT Support
NOC
IT Helpdesk
Government Sales
Retail Sales
Recruiting
Payroll

16 rows selected.

SQL>
SQL> select /* EXISTS with hint */ department_name
 2 from hr.departments dept
 3 where not exists (select /*+ hash_aj */ null from hr.employees emp
 4 where emp.department_id = dept.department_id);

DEPARTMENT_NAME

NOC
Manufacturing
Government Sales
IT Support

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

366

Benefits
Shareholder Services
Retail Sales
Control And Credit
Recruiting
Operations
Treasury
Payroll
Corporate Tax
Construction
Contracting
IT Helpdesk

16 rows selected.

SQL>
SQL> select /* IN */ department_name
 2 from hr.departments dept
 3 where department_id not in
 4 (select department_id from hr.employees emp);

no rows selected

SQL>
SQL> alter session set "_optimizer_null_aware_antijoin"=false;

Session altered.

SQL>
SQL> select /* IN with AAJ=OFF*/ department_name
 2 from hr.departments dept
 3 where department_id not in
 4 (select department_id from hr.employees emp);

no rows selected

SQL>
SQL> alter session set "_optimizer_null_aware_antijoin"=true;

Session altered.

SQL>
SQL> set echo off
SQL> @fsp
Enter value for sql_text:
Enter value for sql_id:

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

367

SQL_ID PLAN_HASH SQL_TEXT JOIN
------------- ---------- --- --------------------
0kvb76bzacc7b 3587451639 select /* EXISTS with hint */ department_name HASH JOIN ANTI
 from hr.departments dept where not exi
 sts (select /*+ hash_aj */ null from hr.emplo
 yees emp where emp.depart
 ment_id = dept.department_id)

0pcrmdk1tw0tf 4201340344 select /* IN */ department_name from hr.de MERGE JOIN ANTI NA
 partments dept where department_id not in
 (select department_id from hr.employees emp)

5c77dgzy60ubx 3082375452 select /* EXISTS */ department_name from h NESTED LOOPS ANTI
 r.departments dept where not exists (selec
 t null from hr.employees emp
 where emp.department_id = dept.department
 _id)

67u11c3rv1aag 3416340233 select /* IN with AAJ=OFF*/ department_name
 from hr.departments dept where departmen
 t_id not in (select department_id from hr.emp
 loyees emp)

Anti-join Restrictions
As with semi-joins, anti-join transformations cannot be performed if the subquery is on an OR branch of
a WHERE clause. I trust you will take my word for this one, as the behavior has already been
demonstrated with semi-joins in the previous sections.

As of 11g, there are no major restrictions on the use of anti-joins. The major restriction in 10g was
that any subquery that could return a null was not a candidate for anti-join optimization. The new ANTI
NA (and ANTI SNA) provide the optimizer with the capability to apply the anti-join optimization even in
those cases where a null may be returned by a subquery. Note that this does not change the somewhat
confusing behavior causing no records to be returned from a subquery contained in a NOT IN clause if a
null value is returned by the subquery.

Because 10g is still in wide use, a brief discussion of the restriction which has been removed in 11g
by the Null Aware anti-join is warranted. When a NOT IN clause is specified in 10g, the optimizer checks
to see if the column(s) being returned are guaranteed to not contain nulls. This is done by checking for
NOT NULL constraints, IS NOT NULL predicates, or a function which translates null into a value
(typically NVL). If all three of these checks fail, the 10g optimizer will not choose an anti-join.
Furthermore, it will transform the statement by applying an internal function (LNNVL) that has the
possible side affect of disabling potential index access paths. Listing 11-28 shows an example from a
10.2.0.4 database.

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

368

Listing 11-28. 10g NOT NULL Anti-join Behavior

> !sql
sqlplus "/ as sysdba"

SQL*Plus: Release 10.2.0.4.0 - Production on Tue Jun 29 14:50:25 2010

Copyright (c) 1982, 2007, Oracle. All Rights Reserved.

Connected to:
Oracle Database 10g Enterprise Edition Release 10.2.0.4.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

SYS@LAB1024> @anti_ex6
SYS@LAB1024> -- anti_ex6.sql
SYS@LAB1024>
SYS@LAB1024> set autotrace trace exp
SYS@LAB1024>
SYS@LAB1024> select /* NOT IN */ department_name
 2 from hr.departments dept
 3 where department_id not in (select department_id from hr.employees emp);

Execution Plan
--
Plan hash value: 3416340233

--
|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		26	416	29 (0)	00:00:01
*1	FILTER					
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
*3	TABLE ACCESS FULL	EMPLOYEES	2	6	2 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - filter(NOT EXISTS (SELECT /*+ */ 0 FROM "HR"."EMPLOYEES" "EMP"
 WHERE LNNVL("DEPARTMENT_ID"<>:B1)))
 3 - filter(LNNVL("DEPARTMENT_ID"<>:B1))

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

369

SYS@LAB1024> select /* NOT NULL */ department_name
 2 from hr.departments dept
 3 where department_id not in (select department_id from hr.employees emp
 4 where department_id is not null);

Execution Plan
--
Plan hash value: 3082375452

|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		17	323	2 (0)	00:00:01
1	NESTED LOOPS ANTI		17	323	2 (0)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
*3	INDEX RANGE SCAN	EMP_DEPARTMENT_IX	41	123	0 (0)	00:00:01

Predicate Information (identified by operation id):

 3 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID" IS NOT NULL)

SYS@LAB1024>
SYS@LAB1024> select /* NVL */ department_name
 2 from hr.departments dept
 3 where department_id not in (select nvl(department_id,'-10')
 4 from hr.employees emp);

Execution Plan
--
Plan hash value: 2918349777

--
|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |
--
0	SELECT STATEMENT		17	323	5 (20)	00:00:01
*1	HASH JOIN ANTI		17	323	5 (20)	00:00:01
2	TABLE ACCESS FULL	DEPARTMENTS	27	432	2 (0)	00:00:01
3	TABLE ACCESS FULL	EMPLOYEES	107	321	2 (0)	00:00:01
--

Predicate Information (identified by operation id):

 1 - access("DEPARTMENT_ID"=NVL("DEPARTMENT_ID",(-10))

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

370

The first statement in this example is the same old NOT IN query that we’ve run several times
already in 11g. Note that in 10g, instead of doing an ANTI NA, it doesn’t apply the anti optimization at
all. This is due to the restriction regarding guaranteeing that nulls will not be returned from the subquery
in 10g. The second statement (NOT NULL) applies the NOT NULL predicate to the where clause in the
subquery which enables the optimizer to pick a standard anti-join. The third statement uses the NVL
function to ensure that no nulls will be returned by the subquery. Notice that it also is able to apply the
anti-join. Finally, notice the predicate section below the plan for the first statement (NOT IN). You will
see that the optimizer has transformed the statement by adding the LNNVL function. This can have the
unpleasant side affect of disabling index access paths. The other plans do not have this transformation
applied. Listing 11-29 shows the same NOT IN statement run in 11g.

Listing 11-29. 11g NOT NULL Anti-join Behavior

SQL> -- anti_ex6.sql
SQL>
SQL> set autotrace trace exp
SQL>
SQL> select /* NOT IN */ department_name
 2 from hr.departments dept
 3 where department_id not in (select department_id from hr.employees emp);

Execution Plan
--
Plan hash value: 4201340344

|Id|Operation |Name |Rows|Bytes|Cost (%CPU)|Time |

0	SELECT STATEMENT		17	323	6 (17)	00:00:01
1	MERGE JOIN ANTI NA		17	323	6 (17)	00:00:01
2	SORT JOIN		27	432	2 (0)	00:00:01
3	TABLE ACCESS BY	DEPARTMENTS	27	432	2 (0)	00:00:01
 INDEX ROWID
4	INDEX FULL SCAN	DEPT_ID_PK	27		1 (0)	00:00:01
*5	SORT UNIQUE		107	321	4 (25)	00:00:01
6	TABLE ACCESS FULL	EMPLOYEES	107	321	3 (0)	00:00:01

Predicate Information (identified by operation id):

 5 - access("DEPARTMENT_ID"="DEPARTMENT_ID")
 filter("DEPARTMENT_ID"="DEPARTMENT_ID")

Notice that in 11g the optimizer generates the new Null Aware ANTI join (ANTI NA). Also notice that
the internally applied LNNVL function which is used in 10g is no longer necessary.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 11 ■ SEMI-JOINS AND ANTI-JOINS

371

Anti-join Requirements
“Requirements” is such a strong word. Oracle’s optimizer is a very complex piece of software. Producing
an exhaustive list of every possible way to get a specified result is a difficult task at best. With respect to
anti-joins, Oracle has recently implemented some clever ways of making use of this join option that you
would not normally expect. So please take these “requirements” as a list of the most probable ways to
cause Oracle to produce an ANTI join, as opposed to an exhaustive list:

• The statement should use either the NOT IN (!= ALL) or NOT EXISTS phrases

• The statement should have a subquery in the NOT IN or NOT EXISTS clause

• The NOT IN or NOT EXISTS clause should not be contained inside an OR branch

• Subqueries in NOT EXISTS clauses should be correlated to the outer query

• Note: 10g requires NOT IN subqueries to be coded to not return nulls (11g doesn’t)

Anti-joins are a powerful optimization option that can be applied by the optimizer. They can
provide impressive performance improvements, particularly when large data volumes are involved.
While the NOT IN syntax is more intuitive, it also has some counter-intuitive behavior when it comes to
dealing with nulls. The NOT EXISTS syntax is better suited to handling subqueries that may return nulls,
but is generally a little harder to read—and probably for that reason—not used as often. The outer join
trick is even less intuitive than the NOT EXISTS syntax and generally provides no advantage over it. The
MINUS operator does not appear to offer any advantages over the other forms and does not currently
use the anti-join optimization. It is apparent that Oracle’s intent is to allow the optimizer to use the
anti-join option wherever possible because of the dramatic performance enhancement potential that it
provides.

Summary
Anti-joins and Semi-joins are options that the optimizer can apply to many of the common join
methods. The basic idea of these optimization options is to cut short the processing of the normal Hash,
Merge, or Nested Loop joins. In some cases, anti-joins and semi-joins can provide dramatic
performance improvements. There are multiple ways to construct SQL statements that will result in the
optimizer using these options. The most common are the IN and EXISTS key words. When these
optimizations were first released, the processing of the statements varied significantly depending on
whether you used IN or EXISTS. Over the years, the optimizer has been enhanced to allow many
statement transformations; the result is that in 11g there is little difference between using one form or
the other. In many cases, the statements get transformed into the same form anyway. In this chapter
you’ve seen how this optimization technique works, when it can be used, and how to verify whether it is
being used or not. You’ve also seen some mechanisms for controlling the optimizer’s use of this feature.

C H A P T E R 1 2

■ ■ ■

373

Indexes

Riyaj Shamsudeen

Indexes are critical structures needed for efficient retrieval of rows, for uniqueness enforcement, and for
the efficient implementation of referential constraints. Oracle Database provides many index types
suited for different needs of application access methods. Effective choice of index type and critical
choice of columns to index are of paramount importance for optimal performance. Inadequate or
incorrect indexing strategy can lead to performance issues. In this chapter, I will discuss basic
implementation of indexes, various index types, their use cases, and strategy to choose optimal index
type. Indexes available in Oracle Database as of version 11gR2 can be broadly classified in to one of three
categories based upon the algorithm they use: B-tree indexes, bitmap indexes, and index organized
tables.

Implementation of Bitmap indexes are suitable for columns with infrequent Update, Insert, and
Delete activity. They are better fit for static columns with lower distinct values, a typical case in the data
warehouse applications. Gender column in a table holding population data is a good example as there
are only few distinct values for this column. I will discuss this in more detail later in this chapter.

■NOTE All tables referred in this chapter refer to the objects in SH Schema supplied by Oracle Corporation
Example scripts.

B-tree indexes are commonly used in all applications. There are many index types such as
partitioned indexes, compressed indexes, and function-based indexes implemented as B-tree indexes.
Special index types such as index organized tables and secondary indexes on index organized tables also
are implemented as B-tree indexes.

THE IMPORTANCE OF CHOOSING CORRECTLY

I have a story to share about the importance of indexing choice. During an application upgrade, an
application designer chose bitmap indexes on few key tables which were modified heavily. After the
application upgrade, the application response time was not acceptable. As this application was a
warehouse management application, performance issues were affecting the shipping and order fulfillment
process of this U.S. retail giant.

CHAPTER 12 ■ INDEXES

374

We were called in to troubleshoot the issue. We reviewed the database performance metrics and quickly
realized that the poor choice of index type was the root cause of the performance issue. Database metrics
were showing that the application was suffering from locking contention, too. These bitmap indexes used
to grow from about 100MB in the morning to around 4-5GB in the mid-afternoon. The designer even
introduced a job to rebuild the index at regular intervals. We resolved the issue converting the bitmap
indexes to B-tree indexes. This story tells you the importance of choosing optimal indexing strategy.

Understanding Indexes
Is full table scan access path always bad? Not necessarily. Efficiency of an access path is very specific to
the construction of the SQL statement, application data, distribution of data, and the environment. No
one access path is suitable for all execution plans. In some cases, a full table scan access path is better
than index based access path. I will discuss choice of index usage, considerations for choosing columns
to index, and special consideration for null clause.

When to use Indexes
Generally, index based access paths will perform better if the predicates specified in the SQL statement
is selective, meaning that few rows are fetched applying the specified predicates. Typical index based
access path usually involves following three steps:

1. Traversing the index tree and collecting the rowids from the leaf block after applying the SQL
predicates on indexed columns.

2. Fetching the rows from the table blocks using the rowids.

3. Applying the remainder of the predicates on the rows fetched to derive final result set.

The second step of accessing the table block is costlier if numerous rowids are returned at step 1.
For every rowid from the index leaf blocks, table blocks need to be accessed, and this might result in
multiple physical I/Os leading to performance issues. Further, table blocks are accessed one block at a
time physically and can magnify the performance issues. For example, consider the SQL statement in
Listing 12-1 accessing the Sales table with just one predicate country=’Spain’ and the number of rows
returned from step 5 estimated to be 7985. So, 7985 rowids estimated to be retrieved from that execution
step and table blocks must be accessed at least 7985 times to retrieve the row pieces. Some of these table
block accesses might result in physical I/O if the block is not in the buffer cache already. So, the index
based access path might perform worse for this specific case.

 In Listing 12-1, in the first SELECT statement, you force an index based access path using a hint
index (s sales_fact_c2) and the optimizer estimates the cost of the index based access plan as 723. The
execution plan for the next SELECT statement without the hint shows that the optimizer estimates the
cost of the full table Scan access path as 316. Evidently, the full table scan access path is estimated to be
cheaper and more suited for this SQL statement.

CHAPTER 12 ■ INDEXES

375

Listing 12-1. Index Access Path

drop index sales_fact_c2;
create index sales_fact_c2 on sales_fact (country);
set head off

select /*+ index (s sales_fact_c2) */ count(distinct(region)) from sales_fact s where
country='Spain' ;
@x
--..----------
| Id | Operation | Name | Rows | |Cost(%CPU|

0	SELECT STATEMENT				723 (100)
1	SORT AGGREGATE		1		
2	VIEW	VW_DAG_0	7		723 (1)
3	HASH GROUP BY		7		723 (1)
4	TABLE ACCESS BY INDEX ROWID	SALES_FACT	6185		721 (0)
* 5	INDEX RANGE SCAN	SALES_FACT_C2	6185		21 (0)

select count(distinct(region)) from sales_fact s where country='Spain' ;
@x
--...-
| Id | Operation |Name | Rows |Bytes |Cost (%CPU)| |
--
0	SELECT STATEMENT				316 (100)	
1	SORT AGGREGATE		1	17		
2	VIEW	VW_DAG_0	7	119	316 (1)	
3	HASH GROUP BY		7	175	316 (1)	
* 4	TABLE ACCESS FULL	SALES_FACT	6185	151K	315 (1)	
--

■NOTE In Listing 12-1, a Script x.sql is used to fetch the execution plan of the SQL statement executed
recently in this session. This script uses dbms_xplan package to fetch the execution plan using the SQL statement:

 select * from table (dbms_xplan.display_cursor('','','ALL'));

Let’s consider another SELECT statement. In Listing 12-2, all three columns are specified in the
predicate of the SQL statement. As the predicates are more selective, the optimizer estimates that 9 rows
will be retrieved from this SELECT statement and the cost of the execution plan as 3. You force the full
table scan execution plan in the subsequent SELECT statement execution and the cost of this execution
plan is 315. Index based access is more optimal for this SQL statement.

e

CHAPTER 12 ■ INDEXES

376

Listing 12-2. Index Access Path 2

alter session set statistics_level=all;
select product, year, week from sales_fact where
product='Xtend Memory' and year=1998 and week=1;
@x

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | | | 3 (100)|
|* 1 | INDEX RANGE SCAN| SALES_FACT_C1 | 9 | 306 | 3 (0)|

select /*+ full(sales_fact) */ product, year, week from sales_fact where product='Xtend
Memory'and year=1998 and week=1;
@x

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | | | 315 (100)|
|* 1 | TABLE ACCESS FULL| SALES_FACT | 9 | 306 | 315 (1)|

Evidently, no single execution plan is better for all SQL statements. Even for the same statement,
depending upon the data distribution and the underlying hardware, execution plans can behave
differently. If the data distribution changes, the execution plans can have different costs. This is precisely
why you need to collect statistics reflecting the distribution of data so that the optimizer can choose
optimal plan.

Furthermore, full table scans and fast full scans perform multi block read calls, whereas index range
scans or index unique scans do single block reads. Multi block reads are much more efficient then single
block reads on a block-by-block basis. Optimizer calculations factor this difference and can choose
index based access path or full table access path as appropriate. Generally speaking, an OLTP
application will use index based access paths predominantly and the data warehouse application will
use full table access paths predominantly.

A final consideration is parallelism. Queries can be tuned to execute faster using parallelism when
the predicates are not selective enough. The cost of an execution plan using a parallel full table scan can
be cheaper than the cost of serial index range scan, leading to an optimizer choice of a parallel execution
plan.

Choice of Columns
Choosing optimal columns for indexing is essential to improve SQL access performance. The choice of
columns to index should match the predicates used by the SQL statements. The following are
considerations for choosing an optimal indexing column:

CHAPTER 12 ■ INDEXES

377

• If the application code uses the equality or range predicates on a column while accessing a
table, it’s a good strategy to consider indexing that column. For multi-column indexes, the
leading column should be the column used in most predicates. For example, if you have a
choice to index the columns c1 and c2, then the leading column should be the column used in
most predicates.

• It is also important to consider the cardinality of the predicates and the selectivity of the
columns. For example, if a column has just two distinct values with a uniform distribution, then
that column is probably not a good candidate for the B-tree indexes as fifty percent of the rows
will be fetched by equality predicates on the column value. On the other hand, if the column
has two distinct values with non-uniform distribution, i.e. one value occurs in few rows and the
application accesses that table with the infrequently occurring column value, it is preferable to
index that column.

• An example is a processed column in a work-in-progress table with three distinct values (P, N,
and E). The application accesses that table with Processed=‘N’ predicate. Only few unprocessed
rows are left with a status of ‘N’ in the processed_column, so access through the index will be
optimal. But queries with the predicate Processed=‘Y’ should not use the index as nearly all
rows will be fetched by this predicate. Histograms can be utilized so that optimizer can choose
the optimal execution plan depending upon the literal or bind variables.

■NOTE Cardinality is defined as the number of rows expected to be fetched by a predicate or execution step.
Consider a simple equality predicate on the column assuming uniform distribution in the column values. Cardinality
is calculated as the number of rows in the table divided by the number of distinct values in the column. For
example, inr the Sales table, there are 918K rows in the table and the Prod_id column has 72 distinct values, so
the cardinality of the equality predicate on Prod_id column is 918K/72 =12,750. So, in other words, the predicate
Prod_id=:b1 expects to fetch 12,750 rows. Columns with lower cardinality are better candidate for indexing as the
index selectivity will be better. For unique columns, cardinality of equality predicate is 1. Selectivity is a measure
ranging between 0 and 1, simplistically defined as 1/NDV where NDV stands for Number of Distinct Values. So,
the cardinality of a predicate can be defined as the selectivity times the number of rows in the table.

• Think about column ordering, and arrange the column order in the index to suite the
application access patterns. For example, in the Sales table@SH schema, the selectivity of the
Prod_id column is 1/72 and the selectivity of the Cust_id column is 1/7059. It might appear that
column Cust_id is a better candidate for indexes as the selectivity of that column is lower.
However, if the application specifies equality predicates on Prod_id column and does not
specify Cust_id column in the predicate, then Cust_id column need not be indexed even though
Cust_id column has better selectivity. If the application uses the predicates on both Prod_id
and Cust_id columns, then it is preferable to index both columns with Cust_id column as the
leading column. Consideration should be given to the column usage in the predicates instead of
relying upon the selectivity of the columns.

• You should also consider the cost of an index. Inserts, deletes, and updates (updating the
indexed columns) will maintain the indexes, meaning, if a row is inserted in to the Sales table,
then a new value pair will be added to the index matching with the new value. This index
maintenance is costlier if the columns are updated heavily, as the indexed column update
results in a delete and insert at the index level internally. This could introduce additional
contention points, too.

CHAPTER 12 ■ INDEXES

378

• Consider the length of the column. If the indexed column is longer, then the index will be
bigger. The cost of that index may be higher than the overall gain from the index. A bigger index
also will increase undo and redo size.

• In a multi-column index, if the leading column has few distinct values, consider creating that
index as a compressed index. The size of these indexes will be smaller as repeating values are
not stored in a compressed index. Compressed indexes are discussed later in this chapter.

• If the predicates use functions on indexed columns, the index on that column may not be
chosen. For example, the predicate to_char(prod_id) =:B1 is applying a to_char function on
the Prod_id column. A conventional index on Prod_id column might not be chosen for this
predicate and a function based index needs to be created on to_char(prod_id) column.

• Do not create bitmap indexes on columns modified aggressively. Internal implementation of a
bitmap index is more suitable for read-only columns with few distinct values. The size of the
bitmap index will grow rapidly if the indexed columns are updated. Excessive modification to a
bitmap index can lead to enormous locking contention, too. Bitmap indexes are more prevalent
in data warehouse applications.

The Null Issue
It is common practice for a SQL statement to specify IS NULL predicate. Null values are not stored in the
single column indexes, so the predicate IS NULL clause will not use a single column index. But null
values are stored in a multi column index. By creating a multi column index with a dummy second
column, you can enable the use of index for the IS NULL clause

In Listing 12-3, a single column index T1_N1 was created on column n1. The optimizer does not
choose the index access path for the SELECT statement with the predicate n1 is null. Another index
t1_n10 was created on the expression (n1, 0) and the optimizer chose the access path utilizing the
index, as the null values are stored in this multi column index. The size of the index is kept smaller by
adding a dummy value of zero to the index.

Listing 12-3. NULL Handling

drop table t1;
create table t1 (n1 number, n2 varchar2(100));
insert into t1 select object_id, object_name from dba_objects where rownum<101;
commit;
create index t1_n1 on t1(n1);
select * from t1 where n1 is null;
@x
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | | | 3 (100)|
|* 1 | TABLE ACCESS FULL| T1 | 1 | 11 | 3 (0)|
--

create index t1_n10 on t1(n1,0);
select * from t1 where n1 is null;
@x

CHAPTER 12 ■ INDEXES

379

| Id | Operation | Name | Rows | Bytes |

0	SELECT STATEMENT			
1	TABLE ACCESS BY INDEX ROWID	T1	1	11
* 2	INDEX RANGE SCAN	T1_N10	1	

Index Structural Types
Oracle database provides various types of indexes to suite application access paths. These index types
can be loosely classified in to three broad categories based upon the structure of an index.

B-tree indexes
B-tree indexes implement a structure similar to an inverted tree with a root node, branch nodes, and leaf
nodes and they use tree traversal algorithms to search for a column value. The leaf node holds the (value,
rowid) pair for that index key column and the rowids refers to the physical location of a row in the table
block. The branch block holds the directory of leaf blocks and the value ranges stored in those leaf
blocks. The root block holds the directory of branch blocks and the value ranges addressed in those
branch blocks.

Figure 12-1 shows the B-tree index structure for a column of number data type. This figure is a
generalization of the index structure to improve the understanding; the actual index structures are far
more complex. The root block of the index holds branch block addresses and the range of values
addressed in the branch blocks. The branch blocks hold the leaf block addresses and the range of values
stored in the leaf blocks.

A search for a column value using an index usually results in an index range scan or an index unique
scan. Such a search starts at the root block of the index tree, traverses to the branch block, and then
traverses to the leaf block. Rowids are fetched from the leaf blocks from the (column value, rowid) pairs,
and each row piece is fetched from the table block using the rowid. Without the indexes, searching for a
key would inevitably result in a full table scan of the table.

In Figure 12-1, if the SQL statement is searching for a column value of 12000 with a predicate
n1=12000, the index range scan will start at the root block, traverse to the second branch block as the
second branch block holds the range of values between 11001 to 22000, and then traverse to the fourth
leaf block as that leaf block holds the column value range between 11001 and 16000. As the index stores
the sorted column values, the range scan quickly accesses the column value matching with n1=12000
from the leaf block entries, reads the rowids associated with that column value, and accesses the rows
from the table using those rowid. Rowids are pointers to the physical location of a row in the table block.

B-tree indexes are suitable for columns with lower selectivity. If the columns are not selective
enough, the index range scan will be slower. Further, less selective columns will retrieve numerous
rowids from the leaf blocks leading to excessive single block access to the table.

CHAPTER 12 ■ INDEXES

380

Figure 12-1. B-tree Index Structure

Bitmap Indexes
Bitmap indexes are organized and implemented differently than B-tree indexes, bitmaps are employed
to indicate the rowids with the column value. Bitmap indexes are not suitable for columns with higher
number of updates or tables with heavy DML activity. Bitmap indexes are suitable for data warehouse
tables with mostly read only operations on columns with lower distinct values. If the tables are loaded
regularly, as in the case of a typical data warehouse table, it is important to drop the bitmap index before
the load, then load data and recreate the bitmap index.

Bitmap indexes can be created on partitioned tables, too, but they must be created as local indexes.
As of Oracle Database release 11gR2, bitmap indexes cannot be created as global indexes. Bitmap
indexes cannot be created as unique indexes either.

In Listing 12-4, two new bitmap indexes are added on columns Country and Region. The SELECT
statement specifies predicates on columns Country and Region. The execution plan shows three major
operations: bitmaps from the bitmap index sales_fact_part_bm1 were fetched applying the predicate
country=’Spain’; the bitmaps from the bitmap index sales_fact_part_bm2 were fetched applying the
predicate region=’Western Europe’; and then those two bitmaps were ANDed to calculate the final

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12 ■ INDEXES

381

bitmap using the BITMAP AND operation. This resultant bitmap was converted to rowids and the table
rows were accessed using those rowids.

Listing 12-4. Bitmap Indexes

drop index sales_fact_part_bm1;
drop index sales_fact_part_bm2;

create bitmap index sales_fact_part_bm1 on sales_fact_part (country) Local;
create bitmap index sales_fact_part_bm2 on sales_fact_part (region) Local ;

set termout off
select * from sales_fact_part where country='Spain' and region='Western Europe' ;
set termout on
@x
--...---------------
| Id | Operation | Name | | Pstart| Pstop
--
| 0 | SELECT STATEMENT | | | |
| 1 | PARTITION HASH ALL | | | 1 | 32
| 2 | TABLE ACCESS BY LOCAL INDEX ROWID| SALES_FACT_PART | | 1 | 32
| 3 | BITMAP CONVERSION TO ROWIDS | | | |
| 4 | BITMAP AND | | | |
|* 5 | BITMAP INDEX SINGLE VALUE | SALES_FACT_PART_BM1 | | 1 | 32
|* 6 | BITMAP INDEX SINGLE VALUE | SALES_FACT_PART_BM2 | | 1 | 32
--

Bitmap indexes can introduce severe locking issues if the index was created on column modified

heavily by DML activity. Updates to a column with bitmap index must update a bitmap, and the bitmaps
usually cover a set of rows. So, an update to one row can lock a set of rows in that bitmap. Bitmap
indexes are used predominantly in data warehouse applications and it is of limited use in OLTP
applications.

Index Organized Tables
Conventional tables are organized as heap tables as the table rows can be stored in any table block.
Fetching a row from a conventional table using a primary key would involve primary key index traversal,
followed by a table block access using the rowid. In index organized tables (IOTs), the table itself is
organized as an index, all columns are stored in the index tree itself, and the access to a row using a
primary key would involve index access only. This access using IOT is better since all columns can be
fetched accessing the index structure, thereby avoiding the table access. This is an efficient access
pattern as the number of accesses is minimized.

With conventional tables, every row has a rowid. Once the row is created in a conventional table,
they do not move (row chaining and row migration possible, but the head piece of the row will not
move). However, IOT rows are stored in the index structure itself. So, rows can be migrated to different
leaf blocks due to DML operations, resulting in index leaf block splitting and merging. In a nutshell, rows
in the IOTs do not have physical rowids, whereas rows in the heap tables always will have a fixed rowid.

CHAPTER 12 ■ INDEXES

382

IOTs are appropriate for tables with the following properties:

• Tables with shorter row length: Tables with fewer short columns are appropriate for IOTs. If
the row length is longer, the size of index structure can be unduly large, leading to more
resource usage then the heap tables.

• Tables accessed mostly through primary key columns: While secondary indexes can be
created on IOTs, secondary indexes can be resource intensive if the primary key is longer.
Secondary indexes will be covered later in this section.

In Listing 12-5, an IOT Sales_iot is created by specifying the keywords organization index. Notice
the SELECT statement specifies few columns in the primary key and the execution plan shows that
columns are retrieved by an index range scan, thereby avoiding a table access. Had this been a
conventional heap table, you would see INDEX UNIQUE SCAN access path followed by a rowid based table
access.

Listing 12-5. Index Organized Tables

drop table sales_iot;
create table sales_iot
 (prod_id number not null,
 cust_id number not null,
 time_id date not null,
 channel_id number not null,
 promo_id number not null,
 quantity_sold number (10,2) not null,
 amount_sold number(10,2) not null,
 primary key (prod_id, cust_id, time_id, channel_id, promo_id)
)
organization index ;
insert into sales_iot select * from sales;
commit;

@analyze_table

select quantity_sold, amount_sold from sales_iot where
prod_id=13 and cust_id=2 and channel_id=3 and promo_id=999;
@x

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | | | 2 (100)|
|* 1 | INDEX RANGE SCAN| SYS_IOT_PK | 1 | 78 | 2 (0)|

A secondary index can be created on an IOT, too. Conventional indexes store the (column value,

rowid) pair. But, in IOT, rows do not have physical rowid, instead a (column value, logical rowid) pair is
stored in the secondary index. This logical rowid is essentially a primary key column with the values of
the row stored efficiently. Access through the secondary index fetches the logical rowid using the
secondary index, then uses the logical rowid to access the row piece using the primary key IOT structure.

CHAPTER 12 ■ INDEXES

383

In the Listing 12-6, a secondary index Sales_iot_sec is created on an IOT Sales_iot. The SELECT
statement specifies the predicates on secondary index columns. The execution plan shows an all index
access, where logical rowids are fetched from the secondary index Sales_iot_sec with an INDEX RANGE
SCAN access method, and then rows are fetched from the IOT primary key using the logical rowids
fetched with an INDEX UNIQUE SCAN access method. Also, note that size of the secondary index is nearly
one-half of the size of the primary index and the secondary indexes can be resource intensive if the
primary key is longer.

Listing 12-6. Secondary Indexes on IOT

drop index sales_iot_sec ;
create index sales_iot_sec on
 sales_iot (channel_id, time_id, promo_id, cust_id) ;

select quantity_sold, amount_sold from sales_iot where
channel_id=3 and promo_id=999 and cust_id=12345 and time_id='30-JAN-00';
@x
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT				7 (100)
* 1	INDEX UNIQUE SCAN	SALES_IOT_PK	4	112	7 (0)
* 2	INDEX RANGE SCAN	SALES_IOT_SEC	4		3 (0)
--

col segment_name format A30
select segment_name, sum(bytes/1024/1024) sz from dba_segments
where segment_name in ('SALES_IOT_PK','SALES_IOT_SEC')
group by segment_name
/
SEGMENT_NAME SZ
------------------------------ ----------
SALES_IOT_SEC 36
SALES_IOT_PK 72

Index organized tables are special structures that are useful to eliminate additional indexes on
tables with short rows that undergo heavy DML and SELECT activity. But adding secondary indexes on
IOT can cause increase in index size, redo size, and undo size if the primary key is longer.

Partitioned Indexes
Indexes can be partitioned similar to table partitioning scheme. There are varieties of ways to partition
the indexes. Indexes can be created on partitioned tables as local or global indexes, too. Further, there
are various partitioning schemes available such as range partitioning, hash partitioning, list partitioning,
and composite partitioning schemes. From Oracle Database version 10g onwards, partitioned indexes
also can be created on non-partitioned tables.

CHAPTER 12 ■ INDEXES

384

Local Indexes
Locally partitioned indexes are created with the LOCAL keyword and have the same partition boundaries
as the table. In a nutshell, there is an index partition associated with each table partition. Availability of
the table is better since the maintenance operations can be performed at individual partition level.
Maintenance operations on the index partitions lock only the corresponding table partitions, not the
whole table.

If the local index includes the partitioning key columns and if the SQL statement specifies
predicates on the partitioning key columns, the execution plan needs to access just one or few index
partitions. This concept is known as partition elimination. Performance improves if the execution plan
searches in minimal number of partitions. In the Listing 12-6, a partitioned table Sales_fact_part is
created with a partitioning key on Year column. A local index Sales_fact_part_n1 is created on Product
and Year column. First, the SELECT statement specifies the predicates on just the Product column
without specifying any predicate on the partitioning key column. In this case, all five index partitions
must be accessed using the predicates product = 'Xtend Memory'. Columns PStart and PStop in the
execution plan indicate that all partitions are accessed to execute this SQL statement.

Next, the SELECT statement in Listing 12-7 specifies the predicates on columns Product and Year.
Using the predicate Year=1998, the optimizer determines that only the second partition is to be
accessed, eliminating access to all other partitions, as only the second partition stores the Year column
1998 as indicated by the PStart and PStop columns in the execution plan. Also, the keywords in the
execution plan TABLE ACCESS BY LOCAL INDEX ROWID indicate that row is accessed using a local index.

Listing 12-7. Local Indexes

drop table sales_fact_part;
CREATE table sales_fact_part
partition by range (year)
(partition p_1997 values less than (1998) ,
 partition p_1998 values less than (1999),
 partition p_1999 values less than (2000),
 partition p_2000 values less than (2001),
 partition p_max values less than (maxvalue)
)
AS SELECT * from sales_fact;

create index sales_fact_part_n1 on sales_fact_part(product, year) local;

set lines 120 pages 100
set serveroutput off

select * from (
 select * from sales_fact_part where product = 'Xtend Memory'
) where rownum <21 ;

@x

CHAPTER 12 ■ INDEXES

385

--...--------------
| Id | Operation | Name | |Pstart|Pstop

| 0 | SELECT STATEMENT | | | |
|* 1 | COUNT STOPKEY | | | |
| 2 | PARTITION RANGE ALL | | | 1 | 5
| 3 | TABLE ACCESS BY LOCAL INDEX ROWID| SALES_FACT_PART | | 1 | 5
|* 4 | INDEX RANGE SCAN | SALES_FACT_PART_N1 | | 1 | 5
--...--------------

select * from (
 select * from sales_fact_part where product = 'Xtend Memory' and year=1998
) where rownum <21 ;
@x
--...--------------
| Id | Operation | Name | |Pstart|Pstop

| 0 | SELECT STATEMENT | | | |
|* 1 | COUNT STOPKEY | | | |
| 2 | PARTITION RANGE SINGLE | | | 2 | 2
| 3 | TABLE ACCESS BY LOCAL INDEX ROWID| SALES_FACT_PART | | 2 | 2
|* 4 | INDEX RANGE SCAN | SALES_FACT_PART_N1 | | 2 | 2
--...--------------

While the application availability is important, you should consider another point: if the predicate

does not specify partitioning key column, then all index partitions must be accessed to identify the
candidate rows in the case of LOCAL indexes. This could lead to a performance issue if the partition
count is very high, in the order of 1000s. Even then, you want to measure the impact of creating the
index as a LOCAL instead of a GLOBAL index.

Creating local indexes will improve the concurrency, too. I will discuss this concept while discussing
hash partitioning schemes.

Global Indexes
Global indexes are created with the keyword GLOBAL. In global indexes, partition boundaries of the index
and the table do not need to match, and the partition keys can be different between the table and the
index.

In Listing 12-8, a global index Sales_fact_part_n1 is created on Year column. The partition
boundaries are different between the table and the index, even though the partitioning column is the
same. The subsequent SELECT statement specifies the predicate year=1998 to access the table and the
execution plan shows that partition 1 of the index and partition 2 of the table is accessed. Partition
pruning was performed both at table and index level.

Any maintenance on the global index will lead to acquiring a higher level lock on the table, thereby
reducing application availability. In contrast, maintenance can be done at the partition level in the local
indexes affecting only the corresponding table partition. In this example, rebuilding the index
Sales_fact_part_n1 will acquire a table level lock in exclusive mode, leading to application down time.

CHAPTER 12 ■ INDEXES

386

Listing 12-8. Global Indexes

create index sales_fact_part_n1 on sales_fact_part (year)
global partition by range (year)
 (partition p_1998 values less than (1999),
 partition p_2000 values less than (2001),
 partition p_max values less than (maxvalue)
);

select * from (
 select * from sales_fact_part where product = 'Xtend Memory' and year=1998
) where rownum <21 ;
@x
--
|Id| Operation | Name |..Pstart| Pstop |
--
0	SELECT STATEMENT			
*1	COUNT STOPKEY			
2	PARTITION RANGE SINGLE		1	1
*3	TABLE ACCESS BY GLOBAL INDEX ROWID	SALES_FACT_PART	2	2
*4	INDEX RANGE SCAN	SALES_FACT_PART_N1	1	1
--

Unique indexes can be created as global indexes without including partitioning columns. But the

partitioning key of the table should be included in the case of LOCAL indexes to create a unique LOCAL
index.

The partitioning scheme discussed so far is known as a range partitioning scheme. In this scheme,
each partition stores rows with a range of partitioning column values. For example, clause partition
p_2000 values less than (2001) specifies the upper boundary of the partition, so the partition p_2000
will store rows with Year column values less than 2001. The lower boundary of this partition is
determined by the prior partition specification partition p_1998 values less than (1999). So,
partition p_2000 will store the Year column value range between 1999 and 2000.

Hash Partitioning vs. Range Partitioning
In the hash partitioning scheme, the partitioning key column values are hashed using a hashing
algorithm to identify the partition to store the row. This type of partitioning scheme is appropriate for
partitioning columns populated with artificial keys such as rows populated with sequence generated
values. If the distribution of column value is uniform, then all partitions will store nearly equal number
of rows.

There are few added advantages with the hash partitioning scheme. There is an administration
overhead with range partitioning scheme since new partitions need to be added regularly to
accommodate future rows. For example, if the partitioning key is order date_column, then the new
partitions must be added (or the partition with maxvalue specified must be split) to accommodate rows
with future date values. With the hash partitioning scheme, that overhead is avoided as the rows are
distributed equally among the partitions using a hashing algorithm. All partitions will have nearly equal
number of rows if the distribution of column value is uniform and there is no reason to add more
partitions regularly.

CHAPTER 12 ■ INDEXES

387

■NOTE Due to the nature of hashing algorithms, it is better to use a partition count of binary powers, i.e. 2, 4, 8,
etc. If you are splitting the partitions, it’s better to double the number of partitions to keep near equal sized
partitions.

Hash partitioned tables and indexes are effective in combating concurrency related performance
associated with unique and primary key indexes. It is typical of primary key columns to be populated
using a sequence of generated values. Since the indexes store the column values in a sorted order, the
column values for new rows will go into the right most leaf block of the index. After that leaf block is full,
subsequently inserted rows will go in to the new right most leaf block, the contention point moving from
one leaf block to another leaf block. As the concurrency of the insert into the table increases, sessions
will be modifying the right most leaf block of the index aggressively. Essentially, the current right most
leaf block of that index will be a major contention point. Sessions will be seen waiting for block
contention wait events such as buffer busy waits. In RAC, this problem is magnified due to global cache
communication overhead and the event gc buffer busy will be the top wait event. This type of index
growing rapidly on the right hand is called right hand growth indexes.

Concurrency issues associated with the right hand growth indexes can be eliminated by hash
partitioning the index with many partitions. For example, if the index is partitioned by a hash with 32
partitions, then inserts will be effectively spread among the 32 right most leaf blocks as there are 32
index trees (an index tree for an index partition). Partitioning the table using a hash partitioning scheme
and then creating local index on that partitioned table also will have the same effect.

In Listing 12-9, a hash partitioned table Sales_fact_part is created and the primary key id column is
populated from the sequence Sfseq. There are 32 partitions in this table with 32 matching index
partitions for the Sales_fact_part_n1 index, as the index is defined as a local index. The subsequent
SELECT statement is accessing the table with the predicate id=1000. Pstart and Pstop columns in the
execution plan show that partition pruning took place and only partition 25 was being accessed. The
optimizer identified partition 25 by applying a hash function on the column value 1000.

Listing 12-9. Hash Partitioning Scheme

drop sequence sfseq;
create sequence sfseq cache 200;

drop table sales_fact_part;
CREATE table sales_fact_part
partition by hash (id)
partitions 32
AS SELECT sfseq.nextval id , f.* from sales_fact f;

create unique index sales_fact_part_n1 on sales_fact_part(id) local;

set lines 120 pages 100
set serveroutput off

select * from sales_fact_part where id =1000;
@x

CHAPTER 12 ■ INDEXES

388

| Id | Operation | Name |...| Pstart| Pstop

| 0 | SELECT STATEMENT | | | |
| 1 | PARTITION HASH SINGLE | | | 25 | 25
| 2 | TABLE ACCESS BY LOCAL INDEX ROWID| SALES_FACT_PART | | 25 | 25
|* 3 | INDEX UNIQUE SCAN | SALES_FACT_PART_N1 | | 25 | 25

If the data distribution is uniform in the partitioning key, as in the case of values generated from a

sequence, then the rows will be distributed uniformly to all partitions. You can use dbms_rowid package
to measure the data distribution in a hash partitioned table. In Listing 12-10, you use
dbms_rowid.rowid_object call to derive the object_id of the partition. As every partition has its own
object_id, you can aggregate the rows by object_id to measure the distribution of rows among the
partitions. The output shows that all partitions have nearly equal number of rows.

Listing 12-10. Hash Partitioning Distribution

select dbms_rowid.rowid_object(rowid) obj_id, count(*) from sales_fact_part
group by dbms_rowid.rowid_object(rowid);

 OBJ_ID COUNT(*)
---------- ----------
 75427 3575
 75437 3478
 75441 3512
...
 75435 3453
 75445 3420
 75447 3470

32 rows selected.

Rows are uniformly distributed between partitions using the hashing algorithm. In few cases, you
might need to pre-calculate the partition where a row will be stored. This knowledge is useful to improve
massive loading of data into a hash partitioned table. As of Oracle Database version 11gR2, the ora_hash
function can be used to derive the partition id if supplied with a partition key value. For example, for a
table with 32 partitions, ora_hash(column_name, 31, 0) will return the partition id. The second
argument to the ora_hash function is the partition count minus 1. In Listing 12-11, you use both
ora_hash and dbms_rowid.rowid_object to show the mapping between the object_id and hashing
algorithm output. A word of caution, though: in future releases of Oracle Database, you need to test this
before relying upon this strategy as the internal implementation of hash partitioned tables may change.

Listing 12-11. Hash Partitioning Algorithm

select dbms_rowid.rowid_object(rowid) obj_id, ora_hash (id, 31, 0) part_id ,count(*) from
sales_fact_part
group by dbms_rowid.rowid_object(rowid), ora_hash(id,31,0)
order by 1;

CHAPTER 12 ■ INDEXES

389

 OBJ_ID PART_ID COUNT(*)
---------- ---------- ----------
 75418 0 3505
 75419 1 3492
...
 75446 28 3424
 75447 29 3470
 75448 30 3555
 75449 31 3527
...

In essence, concurrency can be increased by partitioning the table and creating the right hand
growth indexes as local indexes. If the table cannot be partitioned, then that index alone can be
partitioned to hash partitioning schema to resolve the performance issue.

Solutions to Match Application Characteristics
Oracle Database also provides indexing facilities to match the application characteristics. For example,
some application might be using function calls heavily and SQL statements from those applications can
be tuned using function based indexes. I will discuss a few special indexing options available in Oracle
Database.

Compressed Indexes
Compressed indexes are variation of the conventional B-tree indexes. This type of index is more suitable
for columns with repeating values in the leading columns. Compression is achieved by storing the
repeating values in the leading columns once in the index leaf block. Pointers from the row area points
to these prefix rows, avoiding explicit storage of these repeating values in the row area. Compressed
indexes can be smaller compared to conventional indexes if the column has many repeating values.
There is a minor increase in CPU usage in the processing of compressed indexes; this can be ignored
safely.

The simplified syntax for the compressed index specification clause is:

Create index <index name> on <schema.table_name>
 (col1 [,col2... coln])
Compress N Storage-parameter-clause
;

The number of leading columns to compress can be specified while creating a compressed index using

the syntax compress N. For example, to compress two leading columns in a three column index, the clause
compress 2 can be specified. Repeating values in the first two columns are stored in the prefix area just
once. You can only compress the leading columns; for example, you can’t compress columns 1 and 3.

In Listing 12-12, a compressed index Sales_fact_c1 is created on columns Product, Year, and Week
with a compression clause compress 2 specified to compress the two leading columns. In this example,
the repeating values of Product and Year columns are stored once in the leaf blocks as the compress 2
clause is specified. As there is higher amount of repetition in these two column values, the index size is
reduced from 6MB (conventional index) to 2MB (compressed index) by compressing these two leading
columns.

CHAPTER 12 ■ INDEXES

390

Listing 12-12. Compressed Indexes

 select * from (
 select product, year,week, sale from sales_fact
 order by product, year,week
) where rownum <21;

PRODUCT YEAR WEEK SALE
------------------------------ ---------- ----- ----------
1.44MB External 3.5" Diskette 1998 1 9.71
1.44MB External 3.5" Diskette 1998 1 38.84
1.44MB External 3.5" Diskette 1998 1 9.71
...
create index sales_fact_c1 on sales_fact (product, year, week);

select 'Compressed index size (MB) :' ||trunc(bytes/1024/1024, 2)
from user_segments where segment_name='SALES_FACT_C1';

Compressed index size (MB) :6
...
create index sales_fact_c1 on sales_fact (product, year, week) compress 2;

select 'Compressed index size (MB) :' ||trunc(bytes/1024/1024,2)
from user_segments where segment_name='SALES_FACT_C1';

Compressed index size (MB) :2

In Figure 12-2, a high level overview of a compressed index leaf block is shown. This compressed
index is a two column index on Continent and Country columns. Repeating values of Continent columns
are stored once in the prefix area of the index leaf blocks as the index is created with the clause compress
1. Pointers are used from the row area pointing to the prefix rows. For example, the Continent column
value ASIA occurs in three rows [(Asia, HongKong), (Asia, India), and (Asia, Indonesia)] but is stored once
in the prefix area, and these three rows are reusing the continent column value, avoiding explicit storage
of the value three times. This reuse of column values reduces the size of index.

It is evident that data properties play critical role in the compression ratio. If the repetition count of
the column values is higher, then the compressed indexes will provide greater benefit. If there is no
repetition, then the compressed index might be bigger than the conventional index. So, compressed
indexes are suitable for indexes with fewer distinct values in the leading columns. Columns
Compression and Prefix_length in the dba_indexes/user_indexes view shows the compression attributes
of the indexes.

The number of columns to choose for compression depends upon the column value distribution. To
identify the optimal number of columns to compress, the analyze index/validate structure statement
can be used. In Listing 12-5, an uncompressed index SALES_FACT_C1 is analyzed with validate
structure clause. This analyze statement populates the Index_stats view. The column
Index_stats.opt_cmpr_count displays the optimal compression count; for this index, it’s 2. The column
Index_stats.Cmpr_pctsave displays the index size savings compressing with Opt_cmpr_count columns.
In this example, there will be a saving of 67% in the index space usage; so, the size of the compressed
index with compress 2 clause will be of 33% of the conventional uncompressed index size. This size
estimate computes to 1.98MB and is close enough to actual index size.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12 ■ INDEXES

391

Figure 12-2. Compressed index

Beware that analyze index validate structure statement will acquire a share level lock on the
table and might induce application downtime.

Listing 12-13. Optimal Compression Count

analyze index sales_fact_c1 validate structure;
Index analyzed.

select opt_cmpr_count, opt_cmpr_pctsave from index_stats
where name ='SALES_FACT_C1';

OPT_CMPR_COUNT OPT_CMPR_PCTSAVE
-------------- ----------------

2 67
3

There are few restrictions on compressed indexes, though. For example, all columns can be

compressed in the case of non-unique indexes; and all but the last column can be compressed in the
case of unique indexes.

Function Based Indexes
If a predicate applies a function on an indexed column, then the index on that column might not be
chosen by the optimizer. For example, the index on id column may not be chosen for the predicate
to_char(id)=’1000’ since to_char function is applied on the indexed column. This restriction can be
overcome by creating a function based index on the expression to_char(id). Function based indexes
pre-store the results of functions. Expression specified in the predicate must match with the expression
specified in the function based index, though.

CHAPTER 12 ■ INDEXES

392

A function based index can be created on user defined functions, but that function must be defined
as a deterministic function, meaning the function must always return a consistent value for every
execution of the function. User defined functions that do not adhere to this rule can’t be used to create
the function based indexes.

In the Listing 12-14, a SELECT statement accesses the Sales_fact_part table using the clause
to_char(id)=’1000’. Without a function based index, the optimizer chose a full table scan access plan. A
function based index fact_part_fbi1 with the expression to_char(id) was added, and the optimizer
chooses an index based access path for the SELECT statement.

Listing 12-14. Function Based Index

drop index sales_fact_part_fbi1;
select * from sales_fact_part where to_char(id)='1000';
@x
--...-----------------
| Id | Operation | Name | | Pstart| Pstop |
--
0	SELECT STATEMENT				
1	PARTITION HASH ALL			1	32
* 2	TABLE ACCESS FULL	SALES_FACT_PART		1	32
--

create index sales_fact_part_fbi1 on sales_fact_part(to_char(id)) ;
@analyze_table_sfp
select * from sales_fact_part where to_char(id)='1000';
@x

--...-
| Id | Operation | Name | |
--
0	SELECT STATEMENT		
1	TABLE ACCESS BY GLOBAL INDEX ROWID	SALES_FACT_PART	
* 2	INDEX RANGE SCAN	SALES_FACT_PART_FBI1	
--

Predicate Information (identified by operation id):

2 - access("SALES_FACT_PART"."SYS_NC00009$"='1000')

Note the access predicates printed at the end of the Listing 12-14 "SYS_NC00009$" = '1000'. A few
implementation details of the function based indexes are listed in the Listing 12-5. Function based
indexes add a virtual column with the specified expression as default value and then indexes that virtual
column. This virtual column is visible in the dba_tab_cols view, and the dba_tab_cols.data_default
column shows that expression used to populate the virtual column. Further View dba_ind_columns
show that the virtual column is indexed.

CHAPTER 12 ■ INDEXES

393

Listing 12-15. Virtual Columns and Function Based Index

select data_default, hidden_column, virtual_column from dba_tab_cols
where table_name='SALES_FACT_PART' and virtual_column='YES'
;
DATA_DEFAULT HID VIR
------------------------------ --- ---
TO_CHAR("ID") YES YES

select index_name,column_name from dba_ind_columns
where index_name='SALES_FACT_PART_FBI1'
;
INDEX_NAME COLUMN_NAME
------------------------------ -------------
SALES_FACT_PART_FBI1 SYS_NC00009$

It is important to collect statistics on the table after adding a function based index. If not, that new
virtual column will not have statistics, which might lead to performance anomalies. Script
analyze_table_sfp.sql is used to collect statistics on the table with cascade=>true and the Listing 12-16
shows the contents of the script analyze_table_sfp.sql.

Listing 12-16. Analyze_table_sfp.sql

begin
 dbms_stats.gather_table_stats (
 ownname =>user,
 tabname=>'SALES_FACT_PART',
 estimate_percent=>30,
 cascade=>true);
end;
/

Function based indexes can be implemented using virtual columns explicitly, too. An index can be
added over that virtual column optionally. The added advantage with this method is that you can also
employ partitioning scheme with a virtual column as the partitioning key. In Listing 12-17, a new virtual
column id_char is added to the table using the virtual keyword. Then a globally partitioned index on
id_char virtual column is created. The execution plan of the SELECT statement shows that table is
accessed using the new index and the predicate to_char(id)=’1000’ is rewritten to use the virtual
column with the predicate id_char=’1000’.

Listing 12-17. Virtual Columns and Function Based Index

alter table sales_fact_part add
 (id_char varchar2(40) generated always as (to_char(id)) virtual)
/
create index sales_fact_part_c1 on sales_fact_part (id_char)
global partition by hash (id_char)
partitions 32
/

CHAPTER 12 ■ INDEXES

394

@analyze_table_sfp
select * from sales_fact_part where to_char(id)='1000'
/
@x

| Id | Operation | Name |

0	SELECT STATEMENT	
1	PARTITION HASH SINGLE	
2	TABLE ACCESS BY GLOBAL INDEX ROWID	SALES_FACT_PART
* 3	INDEX RANGE SCAN	SALES_FACT_PART_C1
--

Predicate Information (identified by operation id):

 3 - access("SALES_FACT_PART"."ID_CHAR"='1000')

Reverse Key Indexes
Reverse key indexes were introduced as another option to combat performance issues associated with
right-hand growth indexes discussed in the section titled “Hash Partitioning vs. Range Partitioning.” In
the reverse key indexes, column values are stored in the reverse order, character by character. For
example, column value 12345 is stored as 54321 in the index. As the column values are stored in reverse
order, consecutive column values will be stored in different leaf blocks of the index, thereby avoiding the
contention issues with right hand growth indexes. In the table blocks, these column values are stored as
12345, though.

There are two issues with reverse key indexes:

• The range scan on reverse key indexes is not possible for range operators such as between, <, >,
etc. This is understandable as the underlying assumption of an index range scan is that column
values are stored in ascending or descending logical key order. Reverse key indexes break that
assumption as the column values are stored in the reverse order, no logical key order is
maintained, and so index range scans are not possible with reverse key indexes.

• Reverse key indexes can artificially increase physical reads as the column values are stored in
numerous leaf blocks and those leaf blocks might need to be read in to buffer cache to modify
the block. But, cost of this increase in I/O should be measured against the concurrency issues
associated with right hand growth indexes.

In the Listing 12-18, a reverse key index Sales_fact_part_n1 is created with a reverse keyword. First,

the SELECT statement with the predicate id=1000 is using the reverse key index, as equality predicates
can use the reverse key indexes. But, the next SELECT statement with the predicate id between 1000 and
1001 is using the Full Table Scan access path, as the Index Range Scan access path is not possible with
reverse key indexes.

CHAPTER 12 ■ INDEXES

395

Listing 12-18. Reverse Key Indexes

drop index sales_fact_part_n1;
create unique index sales_fact_part_n1 on sales_fact_part (id) global reverse ;
select * from sales_fact_part where id=1000;
@x
---...-------------
| Id | Operation | Name | |Pstart|Pstop
--
| 0 | SELECT STATEMENT | | | |
| 1 | TABLE ACCESS BY GLOBAL INDEX ROWID| SALES_FACT_PART | | 25 | 25
|* 2 | INDEX UNIQUE SCAN | SALES_FACT_PART_N1 | | |
---...-------------
set termout off

select * from sales_fact_part where id between 1000 and 1001;
set termout on
@x
--...-----------------
| Id | Operation | Name | | Pstart| Pstop |
--
0	SELECT STATEMENT				
1	PARTITION HASH ALL			1	32
* 2	TABLE ACCESS FULL	SALES_FACT_PART		1	32
--

Especially in RAC, right-hand growth indexes can cause intolerable performance issues. Reverse key

indexes were introduced to combat that performance problem. But you should probably consider hash
partitioned indexes instead of reverse key indexes.

Descending Indexes
Indexes store column values in ascending order by default; this can be switched to descending order
using descending indexes. If your application fetches the data in a specific order, then the rows need to
be sorted before the rows are sent to the application. These sorts can be avoided using the descending
indexes. These indexes are useful if the application is fetching the data millions of times in a specific
order, for example, customer data fetched from the customer transaction table in the reverse
chronological order.

In the Listing 12-19, an index Sales_fact_c1 added with the column list as product desc, year desc,
week desc specifying a descending order for these three columns. The SELECT statement accesses the
table specifying an order by clause with the sort order product desc, year desc, week desc matching
with index sort order. The execution plan shows that there is no sort step even though there is an order
by clause in the SELECT statement.

Descending indexes are implemented as a function based index as of Oracle Database release
11gR2.

CHAPTER 12 ■ INDEXES

396

Listing 12-19. Descending Indexes

drop index sales_fact_c1;
create index sales_fact_c1 on sales_fact (product desc, year desc, week desc) ;
@analyze_sf.sql
set termout off
select year, week from sales_fact s where year in (1998,1999,2000) and week<5
and product='Xtend Memory'
order by product desc,year desc, week desc ;
set termout on
@x
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|...|
--
| 0 | SELECT STATEMENT | | | | 13 (100)| |
|* 1 | INDEX RANGE SCAN| SALES_FACT_C1 | 105 | 3570 | 13 (0)| |
--

select index_name, index_type from dba_indexes
where index_name='SALES_FACT_C1';
Index
Name INDEX_TYPE
------------------------------ ---------------------------
SALES_FACT_C1 FUNCTION-BASED NORMAL

Solutions to Management Problems
Indexes can be used to resolve operational problems faced in the real world. For example, to see the
effects of a new index on a production application, you can employ invisible indexes. You can also use
invisible indexes to safely drop the indexes.

Invisible Indexes
In certain scenarios, you might want to add an index to tune the performance of a SQL statement, but
you are not sure about the negative impact of the index. Invisible indexes are useful to measure the
impact of a new index with less risk. An index can be added to the database marked as invisible and the
optimizer will not choose that index. It can be marked as invisible after confirming that there is no
negative impact or no negative execution plan regression due to that index.

After adding the index to the database, you could set a parameter optimizer_use_invisible_indexes
to true in your session without affecting the application performance and then review the execution plan
of the SQL statement. In Listing 12-20, first SELECT statement uses the index sales_fact_c1 in the
execution plan. The next SQL statement is marking the Sales_fact_c1 index as invisible and the second
execution plan of the same SELECT statement shows that the index is ignored by the optimizer.

mailto:@analyze_sf.sql

CHAPTER 12 ■ INDEXES

397

Listing 12-20. Invisible Indexes

select * from (
 select * from sales_fact where product = 'Xtend Memory' and year=1998 and week=1
) where rownum <21
;
@x

| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT			
* 1	COUNT STOPKEY			
2	TABLE ACCESS BY INDEX ROWID	SALES_FACT	7	490
* 3	INDEX RANGE SCAN	SALES_FACT_C1	7	

alter index sales_fact_c1 invisible;
select * from (
 select * from sales_fact where product = 'Xtend Memory' and year=1998 and week=1
) where rownum <21
;
@x
--
| Id | Operation | Name | Rows | Bytes |

0	SELECT STATEMENT			
* 1	COUNT STOPKEY			
* 2	TABLE ACCESS FULL	SALES_FACT	7	490
--

In Listing 12-21, the execution plan shows that the optimizer chose the Sales_fact_c1 index after

setting the parameter to true at session level.
There is another use case for the invisible indexes. These indexes are useful to reduce the risk while

dropping unused indexes. It is not a pleasant experience to drop unused indexes from a production
database, only to realize later that the dropped index is used in that important report. Even after
performing extensive analysis, it is possible that the dropped index might be needed for a business
process and recreating indexes might lead to application downtime. From Oracle Database version 11g
onwards, you can mark the index as invisible, wait for few weeks, and then drop the index if no process is
affected with less risk. If the index is needed after marking them as invisible, then that index can be
reverted back to visible state with just a SQL statement quickly.

Listing 12-21. Optimizer_use_invisible_indexes

alter session set optimizer_use_invisible_indexes =true;
select * from (
 select * from sales_fact where product = 'Xtend Memory' and year=1998 and week=1
) where rownum <21
;
@x

CHAPTER 12 ■ INDEXES

398

--
| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT			
* 1	COUNT STOPKEY			
2	TABLE ACCESS BY INDEX ROWID	SALES_FACT	7	490
* 3	INDEX RANGE SCAN	SALES_FACT_C1	7	
--

Invisible indexes are maintained during DML activity similar to any other indexes. This operational

feature is useful in reducing the risk associated with dropping indexes.

Virtual Indexes
Have you ever added an index only to realize later that the index is not chosen by the optimizer due to
data distribution or some statistics issue? Virtual indexes are useful to review the effectiveness of an
index. Virtual indexes do not have storage allocated and so can be created quickly. Virtual indexes are
different from invisible indexes in that the invisible indexes have storage associated with them, just the
optimizer cannot choose them and the virtual indexes do not have storage segment associated with
them. For that reason, virtual indexes are also termed as nosegment indexes.

A session modifiable underscore parameter _use_nosegment_indexes controls whether the optimizer
can consider a virtual index or not. This parameter is false by default and the application will not choose
virtual indexes. You can test the virtual index without affecting other application functionality with this
method: create index, enable the parameter to true in your session, and verify the execution plan of the
SQL statement. In Listing 12-22, a virtual index Sales_virt was created with nosegment clause. After
modifying the parameter to true in the current session, the execution plan of the SELECT statement is
checked. The execution plan shows that this index will be chosen by the optimizer for this SQL
statement. After reviewing the plan, this index can be dropped and recreated as conventional index.

Listing 12-22. Virtual Indexes

create index sales_virt on sales (cust_id, promo_id) nosegment;
alter session set "_use_nosegment_indexes"=true;

explain plan for select * from sales where cust_id=:b1 and promo_id=:b2;

select * from table(dbms_xplan.display(null,'','all'))’
---...--------------
| Id | Operation | Name | | Cost (%CPU)|
--
0	SELECT STATEMENT			9 (0)
1	TABLE ACCESS BY GLOBAL INDEX ROWID	SALES		9 (0)
* 2	INDEX RANGE SCAN	SALES_VIRT		1 (0)
--

Virtual indexes do not have storage associated with them and so these indexes are not maintained.

But you could collect statistics on these indexes as if they are conventional indexes. Virtual indexes can
be used to improve the cardinality estimates of predicates without incurring the storage overhead
associated with the conventional indexes.

CHAPTER 12 ■ INDEXES

399

Bitmap Join Indexes
Bitmap join indexes are useful in data warehouse applications to materialize the joins between fact and
dimension tables. In data warehouse tables, fact tables are typically much larger than the dimension
tables, and the dimension and fact tables are joined using primary key—with a foreign key relationship
between them. These joins are costlier due to the size of the fact tables, and the performance can be
improved for these queries if the join results can be pre-stored. Materialized views are one option to pre-
calculate the join results and the bitmap join indexes are another option.

In Listing 12-23, a typical data warehouse query and its execution plan is shown. Table Sales is a fact
table and other tables are dimension tables in this query. The Sales table is joined to other dimension
tables by primary key columns on the dimension tables. The execution plan shows Sales table is the
leading table in this join processing and other dimension tables are joined to derive the final result set.
These are the four join operations in this execution plan. This execution plan can be very costly if the
fact table is huge.

Listing 12-23. A Typical DW Query

select sum(s.quantity_sold), sum(s.amount_sold)
 from sales s, products p, customers c, channels ch
where s.prod_id = p.prod_id and
 s.cust_id = c.cust_id and
 s.channel_id = ch.channel_id and
 p.prod_name='Y box' and
 c.cust_first_name='Abigail' and
 ch.channel_desc = 'Direct_sales'
/

| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT			
1	SORT AGGREGATE		1	75
* 2	HASH JOIN		20	1500
* 3	TABLE ACCESS FULL	CUSTOMERS	43	516
4	NESTED LOOPS			
5	NESTED LOOPS		3235	199K
6	MERGE JOIN CARTESIAN		1	43
* 7	TABLE ACCESS FULL	CHANNELS	1	13
8	BUFFER SORT		1	30
* 9	TABLE ACCESS FULL	PRODUCTS	1	30
10	PARTITION RANGE ALL			
11	BITMAP CONVERSION TO ROWIDS			
12	BITMAP AND			
* 13	BITMAP INDEX SINGLE VALUE	SALES_PROD_BIX		
* 14	BITMAP INDEX SINGLE VALUE	SALES_CHANNEL_BIX		
15	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	3190	63800

In the Listing 12-24, a bitmap join index Sales_bji1 is created to pre-calculate the join results. Notice
the index creation statement is joining Sales and the dimension tables similar to the join predicates
specified in the query. The SELECT statement is re-executed after creating the index, and the execution

CHAPTER 12 ■ INDEXES

400

plan of the SELECT statement shows access to the bitmap join index, followed by access to the Sales
table without any join processing. Internally, three new virtual columns are added to this table and an
index is created on these three virtual columns. In a nutshell, the bitmap join index materializes the
result set with the indexes on the virtual columns, thereby avoiding costly join processing.

There are few restrictions on bitmap join index, all dimensions need to have validated primary or
unique constraints defined, the index must be local, etc. The first three statements in Listing 12-24 is
modifying the constraint state to validated to enable creation of bitmap join index.

Listing 12-24. Bitmap Join Index

alter table products modify primary key validate;
alter table customers modify primary key validate;
alter table channels modify primary key validate;

create bitmap index sales_bji1 on sales (p.prod_name, c.cust_first_name, ch.channel_desc)
from sales s, products p, customers c, channels ch
where s.prod_id = p.prod_id and
 s.cust_id = c.cust_id and
 s.channel_id = ch.channel_id
LOCAL
/

select sum(s.quantity_sold), sum(s.amount_sold)
 from sales s, products p, customers c, channels ch
where s.prod_id = p.prod_id and
 s.cust_id = c.cust_id and
 s.channel_id = ch.channel_id and
 p.prod_name='Y box' and
 c.cust_first_name='Abigail' and
 ch.channel_desc = 'Direct_sales'
/
@x
--
| Id | Operation | Name | Rows | Bytes |
--
0	SELECT STATEMENT		1	20
1	SORT AGGREGATE		1	20
2	PARTITION RANGE ALL		19	380
3	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	19	380
4	BITMAP CONVERSION TO ROWIDS			
* 5	BITMAP INDEX SINGLE VALUE	SALES_BJI1		
--

Bitmap join indexes are useful in data warehouse environments, adhering to a good data model.
These indexes are not useful in OLTP applications, though.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 12 ■ INDEXES

401

Summary
A good choice of index type and an optimal choice of indexed columns are essential to maintaining
application performance. Armed with knowledge about various index types, you should focus on
matching index types to application access paths. As Oracle Database provides rich index functionality,
it is best to employ optimal index types to suit your application access patterns. It’s also vitally
important to add indexes only when necessary. Unnecessary indexes not only waste space, they also
waste valuable CPU cycles and memory. Further, excessive indexes will increase redo size and undo size.

C H A P T E R 1 3

■ ■ ■

403

Beyond the SELECT

Kerry Osborne

This chapter is a collection of topics involving SQL statements that are not straight SELECTs. These
statements are often referred to as Data Manipulation Language (or DML) statements. My intention is to
provide some information on some of the less well known options to the standard DML commands,
namely INSERT, UPDATE, DELETE, and MERGE. The chapter will also focus on alternate approaches
with an eye towards improving performance.

INSERT
INSERT is the primary command used in the SQL language to load data. If you are reading this book, you
probably already have a pretty good handle on the INSERT command. In this section, I’ll talk about
some of the less often used options, some of which I rarely, if ever, see in the wild. I believe this is due to
lack of familiarity more than lack of functionality.

There are two basic methods that Oracle uses for inserts. For simplicity, let’s call them the slow way
and the fast way. The slow way is usually called conventional. With this mechanism, the data goes
through the buffer cache, empty space in existing blocks is reused, undo is generated for all data and
metadata changes, and redo is generated for all changes by default. This is a lot of work. That’s why I call
it the slow way. The fast way is also called direct path. This method does not look for space in existing
blocks, it just starts inserting data above the high water mark. It protects the data dictionary with undo
and redo for metadata changes but it generates no undo for data changes. It can also avoid redo
generation for data changes in some cases (i.e. nologging operations). Keep in mind that by default
indexes on tables loaded with direct path inserts will still generate both undo and redo.

Direct Path Inserts
Direct path inserts can be invoked by using the APPEND hint (parallel inserts do this by default, by the
way). In Oracle Database 11g Release 2, there is a new APPEND_VALUES hint that can be used for
inserts that specify a values clause as opposed to using a SELECT to provide the values for inserting.
Listing 13-1 shows a simple example of both forms.

Listing 13-1. Simple Insert APPEND and APPEND_VALUES

insert /*+ append */ into kso.big_emp select * from hr.employees nologging;

insert /*+ append_values */ into dual (dummy) values ('Y');

CHAPTER 13 ■ BEYOND THE SELECT

404

There are a few issues with the fast approach, however.

• Only one direct path write can be occurring on a table at any given time.

• Data will be inserted above the high water mark, so any available space in the blocks below the
high water mark will not be used by the direct path inserts.

• The session that performs the insert append can’t do anything with the table (even select from
it) after the insert until a commit or rollback is issued.

• Some of the less frequently used data structures (object types, indexed organized tables, etc.)
are not supported.

• Referential constraints are not supported (i.e. they cause the insert to be executed using the
conventional method)

The first item in the list is the biggest issue. In an OLTP type system with many small inserts

occurring frequently, the direct path mechanism will just not work. The second bulleted item is also a
big issue. It makes no sense for small inserts to be applied in empty blocks above the high water mark.
This would result in a huge waste of space. In fact, in Oracle Database 11g, the behavior of the APPEND
hint was modified to allow it to be used in insert statements using the Values clause (prior to 11g, it
would be ignored unless the insert statement had a Select clause). This behavior change resulted in a
bug being logged because it was using so much space for small inserts. The eventual resolution was to
return the APPEND hint to its original behavior and introduce the APPEND_VALUES hint in Oracle
Database 11gR2. At any rate, you should note that the direct path inserts are designed for large “bulk”
inserts only.

Note also that, as with most hints, the APPEND hint will be silently ignored if for any reason it is not
possible for Oracle to obey the hint. When this occurs with the APPEND hint, the insert will be done
using the conventional mechanism. Listing 13-2 shows an example of the APPEND hint being ignored
due to a foreign key constraint.

Listing 13-2. Disabled APPEND Hint

KSO@LAB112> @constraints
Enter value for owner: KSO
Enter value for table_name: BIG_EMP
Enter value for constraint_type:

TABLE_NAME CONSTRAINT_NAME C SEARCH_CONDITION STATUS
----------- -------------------- - ---------------------------------- --------
BIG_EMP BIG_EMP_MANAGER_FK R ENABLED
BIG_EMP SYS_C0026608 C "JOB_ID" IS NOT NULL ENABLED
BIG_EMP SYS_C0026607 C "HIRE_DATE" IS NOT NULL ENABLED
BIG_EMP SYS_C0026606 C "EMAIL" IS NOT NULL ENABLED
BIG_EMP SYS_C0026605 C "LAST_NAME" IS NOT NULL ENABLED

SYS@LAB112> @mystats
Enter value for name: write direct

NAME VALUE
--- -------
physical writes direct 0

CHAPTER 13 ■ BEYOND THE SELECT

405

SYS@LAB112>
SYS@LAB112>
SYS@LAB112> insert /*+ append */ into kso.big_emp select * from hr.employees;

107 rows created.

SYS@LAB112> @mystats
Enter value for name: direct

NAME VALUE
--- -------
physical writes direct 0

SYS@LAB112> select count(*) from kso.big_emp;

COUNT(*)

 107

The APPEND hint definitely did not do what it was intended to do in this case. The inserts were not

done with direct path writes, as shown by the physical direct writes statistic and the fact that you could
select from the table after the insert. (If the insert had been done with direct path writes, you would have
had to issue a commit or rollback before you could select from the table). Listing 13-3 shows the
expected behavior if you disable the foreign key constraint that was responsible for disabling the
APPEND hint.

Listing 13-3. Disabling Constraint Enables APPEND Hint

SYS@LAB112> alter table kso.big_emp disable constraint BIG_EMP_MANAGER_FK;

Table altered.

SYS@LAB112> insert /*+ append */ into kso.big_emp select * from hr.employees;

107 rows created.

SYS@LAB112> @mystats
Enter value for name: direct

NAME VALUE
-- ---------------
physical writes direct 2

SYS@LAB112> select count(*) from kso.big_emp;
select count(*) from kso.big_emp
 *
ERROR at line 1:
ORA-12838: cannot read/modify an object after modifying it in parallel

CHAPTER 13 ■ BEYOND THE SELECT

406

The direct path method was clearly used in this example as can be seen from the statistics and the
fact that you could not select from the table without issuing a commit first. By the way, the error message
is a bit of a red herring. It says that the object was modified in parallel, which in this case is not true. This
is a hangover from an earlier version where a parallel insert was the only way to do an insert above the
high water mark. Now I’ll discuss a couple of unusual variants on the insert statement.

Multi-Table Inserts
The multi-table insert is rarely used even though it has been around since at least version 9i. This
construct can be useful for ETL type processing when data is staged and then rearranged as it is loaded
into permanent structures. In these cases, it is fairly common to stage data in a non-normalized format
that is later split into multiple tables or some other more normalized structure. The multi-table insert is
a convenient way to accomplish this type of work without having to write a bunch of procedural code.
The syntax is very straight forward: just use INSERT ALL and then supply multiple INTO clauses.

These clauses can specify the same or different tables. Only one set of input values can be used
(either via a Values clause or a subquery), but the individual values can be reused or not used at all.
Listing 13-4 shows an example of the syntax inserting into a single table. (Note that the scripts are
provided in the online code suite to create the PEOPLE and DENORMALIZED_PEOPLE tables).

Listing 13-4. Basic Multi-Table Insert into a Single Table

INSERT ALL
 INTO people (person_id, first_name, last_name) -- the parent
 VALUES (person_id, first_name, last_name)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child1, last_name, person_id)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child2, last_name, person_id)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child3, last_name, person_id)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child4, last_name, person_id)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child5, last_name, person_id)
 INTO people (first_name, last_name, parent_id) -- the child
 VALUES (child6, last_name, person_id)
 SELECT person_id, first_name, last_name,
 child1, child2, child3, child4, child5, child6
FROM denormalized_people;

The previous example shows that multiple INTO clauses can be used, although in this case all the
INTO clauses referenced the same table. You could just as easily insert into multiple tables (hence the
term multi-table insert), as shown in Listing 13-5.

Listing 13-5. Basic Multi-Table Insert

INSERT ALL
 INTO parents (person_id, first_name, last_name)
 VALUES (person_id, first_name, last_name)

CHAPTER 13 ■ BEYOND THE SELECT

407

 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
 INTO children (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
SELECT person_id, first_name, last_name,
 child1, child2, child3, child4, child5, child6
FROM denormalized_people;

Conditional Insert
The INSERT command also has the ability to do conditional processing. It’s like having a CASE
statement embedded in the INSERT statement.

In the previous example, you inserted a record for every child, but most likely some of the child
columns would be null in that kind of a repeating column layout. So it would be nice if you could avoid
creating those records without having to write procedural code. That’s exactly the situation this feature
was built for. By the way, this type of data layout is often seen when loading files from external systems.
Creating external tables on files is an excellent way to load them, and it allows these less common insert
options to be applied directly to the data loading process, rather than after they have been staged in an
Oracle table. Listing 13.6 shows an example of the conditional insert where the parent fields are always
loaded, but the child fields are only loaded if they have data in them.

Listing 13-6. Conditional Insert

INSERT ALL
WHEN 1=1 THEN -- always insert the parent
 INTO people (person_id, first_name, last_name)
 VALUES (person_id, first_name, last_name)
WHEN child1 is not null THEN -- only insert non-null children
 INTO people (first_name, last_name, parent_id)
 VALUES (child1, last_name, person_id)
WHEN child2 is not null THEN
 INTO people (first_name, last_name, parent_id)
 VALUES (child2, last_name, person_id)
WHEN child3 is not null THEN
 INTO people (first_name, last_name, parent_id)
 VALUES (child3, last_name, person_id)

CHAPTER 13 ■ BEYOND THE SELECT

408

WHEN child4 is not null THEN
 INTO people (first_name, last_name, parent_id)
 VALUES (child4, last_name, person_id)
WHEN child5 is not null THEN
 INTO people (first_name, last_name, parent_id)
 VALUES (child5, last_name, person_id)
WHEN child6 is not null THEN
 INTO people (first_name, last_name, parent_id)
 VALUES (child6, last_name, person_id)
SELECT person_id, first_name, last_name,
 child1, child2, child3, child4, child5, child6
FROM denormalized_people;

DML Error Logging
And now for something really cool: DML error logging. This feature provides a mechanism for
preventing your one million row insert from failing because a few rows had problems. This feature was
introduced in 10gR2 and it’s similar to the SQL*Loader error logging feature. It basically diverts any
records that would otherwise cause the statement to fail, placing them instead in an Errors table. This is
an extremely useful feature that is rarely used, which is a little surprising because it’s very easy to
implement. It also provides excellent performance and saves a lot of coding. Without this feature you
would have to create a bad records table, write procedural code to handle any exceptions raised by any
single record, insert the problem records into the bad records table, and preserve the integrity of the
transaction by handling the errors records in an autonomous transaction. That’s a lot of work. By the
way, the LOG ERRORS clause works with the other DML statements as well (UPDATE, DELETE and
MERGE).

1. Create the Error Log table using DBMS_ERRLOG.CREATE_ERROR_LOG

2. Specify the LOG ERRORS clause on the INSERT

That’s it. Listing 13-7 shows how the CREATE_ERROR_LOG procedure works.

Listing 13-7. CREATE_ERROR_LOG

SQL> EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('big_emp', 'big_emp_bad');

PL/SQL procedure successfully completed.

SQL> desc big_emp
 Name Null? Type
 --- -------- ----------------
 EMPLOYEE_ID NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)

CHAPTER 13 ■ BEYOND THE SELECT

409

 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

SQL> desc big_emp_bad
 Name Null? Type
 --- -------- -----------------
 ORA_ERR_NUMBER$ NUMBER
 ORA_ERR_MESG$ VARCHAR2(2000)
 ORA_ERR_ROWID$ ROWID
 ORA_ERR_OPTYP$ VARCHAR2(2)
 ORA_ERR_TAG$ VARCHAR2(2000)
 EMPLOYEE_ID VARCHAR2(4000)
 FIRST_NAME VARCHAR2(4000)
 LAST_NAME VARCHAR2(4000)
 EMAIL VARCHAR2(4000)
 PHONE_NUMBER VARCHAR2(4000)
 HIRE_DATE VARCHAR2(4000)
 JOB_ID VARCHAR2(4000)
 SALARY VARCHAR2(4000)
 COMMISSION_PCT VARCHAR2(4000)
 MANAGER_ID VARCHAR2(4000)
 DEPARTMENT_ID VARCHAR2(4000)

As you can see, all the columns in the Errors table were created as VARCHAR2(4000). This allows

columns of most datatypes to be inserted into the Errors table, even if records are failing due to data being
too large to fit into a column or because of inconsistent datatype issues, such as number columns that
contain non-numeric data. There are also a few extra columns for the error number, the error message, and
the row_id. Finally, there is a column called ORA_ERR_TAG$ that allows user defined data to be placed in
the row for debugging purposes (i.e. what step the ETL process was on, or something of that nature).

The syntax is very straightforward. You simply add the keywords LOG ERRORS INTO and specify the
name of your errors table. Optionally, you can tell Oracle how many errors to allow before giving up and
canceling the statement. This is done with the Reject Limit clause. You should note that by default, the
Reject Limit is set to 0, so if you hit one error, the statement will abort and rollback (just the statement,
not the transaction). The single error will be preserved in the Errors table, though. In most cases, you will
probably want to set Reject Limit to UNLIMITED, which allows the insert statement to complete
regardless of how many records were diverted to the Errors table. It is somewhat surprising that
UNLIMITED is not the default as this is the most common usage. Listing 13-8 shows a simple example.

Listing 13-8. Insert Error Logging

SQL>
SQL> insert into big_emp
 2 (employee_id, first_name, last_name,
 3 hire_date, email, department_id)
 4 values (300,'Bob', 'Loblaw',
 5 '01-jan-10', 'bob@yourfavoritelawyer.com', 12345)

mailto:bob@yourfavoritelawyer.com

CHAPTER 13 ■ BEYOND THE SELECT

410

 6 log errors into big_emp_bad;
 '01-jan-10', 'bob@yourfavoritelawyer.com', 12345)
 *
ERROR at line 5:
ORA-12899: value too large for column "KSO"."BIG_EMP"."EMAIL" (actual: 26, maximum: 25)

SQL> insert into big_emp
 2 (employee_id, first_name, last_name,
 3 hire_date, email, department_id)
 4 values (301,'Bob', 'Loblaw',
 5 '01-jan-10', 'bob@yflawyer.com', 12345)
 6 log errors into big_emp_bad;
 '01-jan-10', 'bob@yflawyer.com', 12345)
 *
ERROR at line 5:
ORA-01400: cannot insert NULL into ("KSO"."BIG_EMP"."JOB_ID")

SQL> insert into big_emp
 2 (employee_id, first_name, last_name,
 3 hire_date, email, department_id,job_id)
 4 values (302,'Bob', 'Loblaw',
 5 '01-jan-10', 'bob@yflawyer.com', 12345, 1)
 6 log errors into big_emp_bad;
 '01-jan-10', 'bob@yflawyer.com', 12345, 1)
 *
ERROR at line 5:
ORA-01438: value larger than specified precision allowed for this column

SQL> insert into big_emp
 2 (employee_id, first_name, last_name,
 3 hire_date, email, department_id,job_id)
 4 values (303,'Bob', 'Loblaw',
 5 '01-jan-10', 'bob@yflawyer.com', '2A45', 1)
 6 log errors into big_emp_bad;
 '01-jan-10', 'bob@yflawyer.com', '2A45', 1)
 *
ERROR at line 5:
ORA-01722: invalid number

SQL>
SQL> SELECT ORA_ERR_MESG$, ORA_ERR_TAG$, employee_id FROM big_emp_bad;

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

mailto:bob@yourfavoritelawyer.com
mailto:bob@yflawyer.com
mailto:bob@yflawyer.com
mailto:bob@yflawyer.com
mailto:bob@yflawyer.com
mailto:bob@yflawyer.com
mailto:bob@yflawyer.com

CHAPTER 13 ■ BEYOND THE SELECT

411

ORA_ERR_MESG$

ORA_ERR_TAG$

EMPLOYEE_ID

ORA-01438: value larger than specified precision allowed for this column

302

ORA-01722: invalid number

303

ORA-12899: value too large for column "KSO"."BIG_EMP"."EMAIL" (actual: 26, maximum: 25)

300

ORA-01400: cannot insert NULL into ("KSO"."BIG_EMP"."JOB_ID")

301

The example in Figure 13-8 shows several insert statements, all of which failed. The records that
failed to be inserted into the table, regardless of the error that caused the failure, were automatically
inserted into the Errors table. Since I didn’t specify a value for Reject Limit, each of the statements was
rolled back when it encountered the first error. Therefore, no records were actually inserted into the
BIG_EMP table. All the Error records were preserved, though. This was done to demonstrate that a single
Errors table can be reused for multiple loads, preserving the records across multiple insert statements.
Note that Error logging would rarely be used in this manner in real life. In real life, the Reject Limit
would generally be set to UNLIMITED. Listings 13-9 and 13-10 show better examples of using a multi-
row insert statement. Listing 13-9 shows what happens to an insert when a record fails without the Error
Logging clause and Listing 13-10 shows how it works with the Error Logging clause.

Listing 13-9. Better Insert Error Logging

SQL> set echo on
SQL> create table test_big_insert as select * from dba_objects where 1=2;

Table created.

SQL>
SQL> desc test_big_insert
 Name Null? Type
 --- -------- ----------------------
 OWNER VARCHAR2(30)
 OBJECT_NAME VARCHAR2(128)
 SUBOBJECT_NAME VARCHAR2(30)
 OBJECT_ID NUMBER
 DATA_OBJECT_ID NUMBER

CHAPTER 13 ■ BEYOND THE SELECT

412

 OBJECT_TYPE VARCHAR2(19)
 CREATED DATE
 LAST_DDL_TIME DATE
 TIMESTAMP VARCHAR2(19)
 STATUS VARCHAR2(7)
 TEMPORARY VARCHAR2(1)
 GENERATED VARCHAR2(1)
 SECONDARY VARCHAR2(1)
 NAMESPACE NUMBER
 EDITION_NAME VARCHAR2(30)

SQL>
SQL> alter table test_big_insert modify object_id number(2);

Table altered.

SQL>
SQL> insert into test_big_insert
 2 select * from dba_objects
 3 where object_id is not null;
 select * from dba_objects
 *
ERROR at line 2:
ORA-01438: value larger than specified precision allowed for this column

Since I’ve set up the situation, I have a pretty good idea which column is causing the problem. It’s
the object_id column that was modified in the listing. But in real life, the troublesome column will not
usually be so obvious. In fact, without the Error Logging clause, it can be quite difficult to determine
which row caused the problem.

The error message doesn’t give me any information about which column or which record caused the
failure. I could determine which column was causing the problem by manually specifying the column
names in the select. However, there is no way to know which rows are causing the problem. The Error
Logging clause in Listing 13-10 solves both problems. Remember that all the column’s values will be saved
in the Errors table along with the error messages, making it easy to determine where the problem lies.

Listing 13-10. Better Insert Error Logging (con’t)

SQL>
SQL> EXECUTE DBMS_ERRLOG.CREATE_ERROR_LOG('test_big_insert', 'tbi_errors');

PL/SQL procedure successfully completed.

SQL>
SQL> insert into test_big_insert
 2 select * from dba_objects
 3 where object_id is not null
 4 log errors into tbi_errors
 5 reject limit unlimited;

CHAPTER 13 ■ BEYOND THE SELECT

413

98 rows created.

SQL>
SQL> select count(*) from dba_objects
 2 where object_id is not null
 3 and length(object_id) < 3;

 COUNT(*)

 98

SQL> select count(*) from test_big_insert;

 COUNT(*)

 98

SQL>
SQL> select count(*) from dba_objects
 2 where object_id is not null
 3 and length(object_id) > 2;

 COUNT(*)

 73276

SQL> select count(*) from tbi_errors;

 COUNT(*)

 73276

SQL> rollback;

Rollback complete.

SQL> select count(*) from test_big_insert;

 COUNT(*)

 0

SQL> select count(*) from tbi_errors;

 COUNT(*)

 73282

CHAPTER 13 ■ BEYOND THE SELECT

414

This example showed the Error Logging clause with the Reject Limit at UNLIMITED, which allows

the statement to complete despite the fact that most of the records failed to be inserted. In addition, you
can see that while a rollback removed the records from the base table, the error records remained.

While DML error logging is extremely robust, you should be aware of the following caveats:

• The LOG ERRORS clause does not cause implicit commits. The insert of error records is
handled as an autonomous transaction, meaning that you can commit or rollback the entire set
of records inserted into the base table (along with other pending changes), even if errors are
returned and bad records are inserted into the Errors table. The records loaded into the Errors
table will be preserved, even if the transaction is rolled back.

• The LOG ERRORS clause does not disable the APPEND hint. Inserts into the base table will be
done using the direct path write mechanism if the APPEND hint is used. However, any inserts
into the Errors table will not use direct path writes. This is generally not a problem since you
rarely expect to load a lot of data into an Errors table.

• Direct path insert operations that violate a unique constraint or index will cause the statement
to fail and rollback.

• Any update operation that violates a unique constraint or index will cause the statement to fail
and rollback.

• Any operation that violates a deferred constraint will cause the statement to fail and rollback.

• The LOG ERRORS clause does not track the values of LOBs, LONGs, or object type columns. It
can be used with tables that contain these unsupported types of columns, but the unsupported
columns will not be added to the Errors table. In order to create the Errors table for a table that
contains unsupported column types, you must use the SKIP_UNSUPPORTED parameter of the
CREATE_ERROR_LOG procedure. The default for this parameter is FALSE, which causes the
procedure to fail when attempting to create an Errors table for a table with unsupported
column types. Listing 13.11 shows the proper syntax for creating an Errors table when there are
unsupported column types in the base table.

Listing 13-11. DBMS_ERRLOG.CREATE_ERROR_LOG Parameters

exec DBMS_ERRLOG.CREATE_ERROR_LOG(err_log_table_owner => '&owner', -
 dml_table_name => '&table_name', -
 err_log_table_name => '&err_log_table_name', -
 err_log_table_space => NULL, -
 skip_unsupported => TRUE);

As you’ve seen, the INSERT statement has several options that are rarely used. The most useful of

these features, in my opinion, is the DML error logging (which can also be used with the other DML
commands). It allows very difficult problems such as corruption issues to be identified fairly easily, and
it provides excellent performance compared to the row-by-row processing that would be required
without it. Note also the fairly extreme performance improvement provided by direct path inserts vs.
conventional inserts; there are drawbacks with regards to recoverability and serialization, but for bulk
loading of data, the positives generally far outweigh the negatives.

CHAPTER 13 ■ BEYOND THE SELECT

415

UPDATE
Massive updates are almost always a bad idea. I recently reviewed a system that updates a billion+ rows
in a single table every night—a full year forecast and every single value is recalculated every night. Aside
from the observation that forecasting that far in the future is not necessary for items that have a 90-day
turnaround time, it’s much faster to load a billion records from scratch than to update a billion records.

The traditional method when doing this type of processing is to do a truncate and then a reload. But
what if the truncate and reload method just won’t work? One alternative is using Create Table As Select
(CTAS) to create a new table and then just replacing the original table with the newly created one. It
sounds easy if you say it fast. Of course, there are many details that must be addressed. Listing 13-12
shows a quick demonstration of the potential difference in performance between these two approaches.

Listing 13-12. Performance Delta Between UPDATE and CTAS

SYS@LAB112> set autotrace on
SYS@LAB112> set timing on
SYS@LAB112> update skew2 set col1 = col1*1;

32000004 rows updated.

Elapsed: 00:27:56.41

Execution Plan
--
Plan hash value: 1837483169

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	UPDATE STATEMENT		32M	793M	28370 (1)	00:05:41
1	UPDATE	SKEW2				
2	TABLE ACCESS FULL	SKEW2	32M	793M	28370 (1)	00:05:41
--

Statistics
--
 1908 recursive calls
 32743098 db block gets
 163363 consistent gets
 317366 physical reads
 8187521328 redo size
 1373 bytes sent via SQL*Net to client
 1097 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 1 sorts (memory)
 0 sorts (disk)
 32000004 rows processed

CHAPTER 13 ■ BEYOND THE SELECT

416

SYS@LAB112> create table skew_temp as
 2 select pk_col, col1*1 col1, col2, col3, col4 from kso.skew2;

Table created.

Elapsed: 00:00:44.30

SYS@LAB112> set timing off
SYS@LAB112>
SYS@LAB112> select count(*) from skew_temp;

 COUNT(*)

 32000004

SYS@LAB112> @find_sql_stats
Enter value for sql_text: %skew2%
Enter value for sql_id:

SQL_ID ROWS_PROCESSED AVG_ETIME AVG_PIO AVG_LIO SQL_TEXT
------------- -------------- ---------- -------- ------------ --------------
2aqsvr3h3qrrg 32000004 1,676.78 928,124 65,409,243 update skew2
 set col1 = col
4y4dquf0mkhup 32000004 44.30 162,296 492,575 create table
 skew_temp as s

As you can see, the update took almost 30 minutes (1,676.78 seconds) while the CTAS table took less
than a minute (44.30 seconds). So it’s clear that there are significant performance benefits to be had by
recreating the table vs. updating all the records. And as you might already expect from the previous
example, recreating a table can also be more efficient than updating a relatively small portion of the
rows. Listing 13-13 shows a comparison of the two methods when updating approximately 10% of the
rows.

Listing 13-13. Performance Delta Between Update and CTAS – 10%

SYS@LAB112> select count(*) from skew2 where col1 = 1;

 COUNT(*)

 3199971

Elapsed: 00:00:10.90
SYS@LAB112> select 3199971/32000004 from dual;

3199971/32000004

 .099999081

CHAPTER 13 ■ BEYOND THE SELECT

417

Elapsed: 00:00:00.01
SYS@LAB112> -- about 10% of the rows col1=1
SYS@LAB112>
SYS@LAB112> update skew2 set col1=col1*1 where col1 = 1;

3199971 rows updated.

Elapsed: 00:03:11.63
SYS@LAB112> drop table skew_temp;

Table dropped.

Elapsed: 00:00:00.56
SYS@LAB112> create table skew_temp as
 2 select pk_col, case when col1 = 1 then col1*1 end col1,
 3 col2, col3, col4 from skew2;

Table created.

Elapsed: 00:01:23.62

KSO@LAB112> alter table skew2 rename to skew_old;

Table altered.

Elapsed: 00:00:00.06
KSO@LAB112> alter table skew_temp rename to skew2;

Table altered.

Elapsed: 00:00:00.05

In this example, I recreated a table using CTAS in less than half the time it took to update about 10%
of the records. Obviously, there are many details that are ignored in the previous two examples. These
examples had no constraints or indexes or grants to deal with, making them considerably less
complicated than most real life situations. Each of these complications can be dealt with in an
automated fashion, however.

Listing 13-14 shows a more realistic example of using this technique to replace an UPDATE
statement. For this example, I’ll use a script from the online code suite called recreate_table.sql. It uses
the DBMS_METADATA package to generate a script with the necessary DDL to recreate a table and its
dependent objects. It then uses an INSERT APPEND in place of the UPDATE to move the data. The last
step is to use ALTER TABLE RENAME to swap the new table for the original one. Once the script is
generated, it should be edited to customize how the steps are performed. For example, you may want to
comment out the swap of the tables via the RENAME at the end until you’re sure everything worked as
expected. Note that the particulars of the INSERT APPEND will also have to be built when editing the
script. Note also that the script renames all existing indexes due to the fact that you cannot have
duplicate index names, even if they are on different tables.

CHAPTER 13 ■ BEYOND THE SELECT

418

Listing 13-14. INSERT APPEND Instead of Mass Update

SYS@LAB112>
SYS@LAB112> @recreate_table
Enter value for owner: KSO
Enter value for table_name: SKEW2

… Output supressed for readability

SYS@LAB112> @recreate_SKEW2.sql
SYS@LAB112> set timing on
SYS@LAB112>
SYS@LAB112> ALTER INDEX KSO.SYS_C0029558 RENAME TO SYS_C0029558_OLD;

Index altered.

Elapsed: 00:00:00.02
SYS@LAB112> ALTER INDEX KSO.SKEW2_COL1 RENAME TO SKEW2_COL1_OLD;

Index altered.

Elapsed: 00:00:00.02
SYS@LAB112> ALTER INDEX KSO.SKEW2_COL4 RENAME TO SKEW2_COL4_OLD;

Index altered.

Elapsed: 00:00:00.02
SYS@LAB112>
SYS@LAB112>
SYS@LAB112> CREATE TABLE "KSO"."SKEW2_TEMP"
 2 ("PK_COL" NUMBER,
 3 "COL1" NUMBER,
 4 "COL2" VARCHAR2(30),
 5 "COL3" DATE,
 6 "COL4" VARCHAR2(1)
 7) SEGMENT CREATION IMMEDIATE
 8 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 9 STORAGE(INITIAL 1483735040 NEXT 1048576
 MINEXTENTS 1 MAXEXTENTS 2147483645
 10 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL
 11 DEFAULT FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 12 TABLESPACE "USERS" ;

Table created.

Elapsed: 00:00:00.10

mailto:@recreate_SKEW2.sql

CHAPTER 13 ■ BEYOND THE SELECT

419

SYS@LAB112>
SYS@LAB112>
SYS@LAB112> INSERT /*+APPEND*/ INTO KSO.SKEW2_TEMP SELECT /*+PARALLEL(a 4)*/
 2 PK_COL,
 3 COL1,
 4 case when COL1 = 2 then 'ABC' else COL2 end,
 5 COL3,
 6 COL4
 7 FROM KSO.SKEW2 a;

32000004 rows created.

Elapsed: 00:00:52.87
SYS@LAB112>
SYS@LAB112> CREATE INDEX "KSO"."SKEW2_COL1" ON "KSO"."SKEW2_TEMP" ("COL1")
 2 PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING COMPUTE STATISTICS
 3 STORAGE(INITIAL 595591168 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 4 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 5 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 6 TABLESPACE "USERS"
 7 PARALLEL 8 ;

Index created.

Elapsed: 00:01:40.16
SYS@LAB112>
SYS@LAB112>
SYS@LAB112>
SYS@LAB112> CREATE INDEX "KSO"."SKEW2_COL4" ON "KSO"."SKEW2_TEMP" ("COL4")
 2 PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPUTE STATISTICS
 3 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 4 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 5 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 6 TABLESPACE "USERS"
 7 PARALLEL 8 ;

Index created.

Elapsed: 00:01:11.05
SYS@LAB112>
SYS@LAB112>
SYS@LAB112>
SYS@LAB112> CREATE UNIQUE INDEX "KSO"."SYS_C0029558"
 2 ON "KSO"."SKEW2_TEMP" ("PK_COL")
 3 PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING COMPUTE STATISTICS
 4 STORAGE(INITIAL 865075200 NEXT 1048576
 5 MINEXTENTS 1 MAXEXTENTS 2147483645

CHAPTER 13 ■ BEYOND THE SELECT

420

 6 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 7 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 8 TABLESPACE "USERS"
 9 PARALLEL 8 ;

Index created.

Elapsed: 00:01:34.26
SYS@LAB112>
SYS@LAB112>
SYS@LAB112> -- Note: No Grants found!
SYS@LAB112> -- Note: No Triggers found!
SYS@LAB112>
SYS@LAB112>
SYS@LAB112> ALTER TABLE "KSO"."SKEW2_TEMP" ADD PRIMARY KEY ("PK_COL")
 2 USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING
 3 COMPUTE STATISTICS
 4 STORAGE(INITIAL 865075200 NEXT 1048576
 5 MINEXTENTS 1 MAXEXTENTS 2147483645
 6 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 7 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 8 TABLESPACE "USERS" ENABLE;

Table altered.

Elapsed: 00:00:15.16
SYS@LAB112>
SYS@LAB112>
SYS@LAB112>
SYS@LAB112> ALTER TABLE KSO.SKEW2 RENAME TO SKEW2_ORIG;

Table altered.

Elapsed: 00:00:00.04
SYS@LAB112>
SYS@LAB112> ALTER TABLE KSO.SKEW2_TEMP RENAME TO SKEW2;

Table altered.

Elapsed: 00:00:00.03

The order of the steps is very important: it is generally much faster to defer the creation of indexes
and the enabling of constraints until after loading the data. You should also be aware that you will need
to manually drop the old table (maybe after a day or two when everyone is quite sure that the operation
worked correctly). By the way, I think it’s a really bad idea to drop objects in a script. As a matter of fact, I
would recommend commenting out the last two statements that do the RENAME. It’s safer to run them

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13 ■ BEYOND THE SELECT

421

interactively after you make sure everything worked as planned. For comparison, Listing 13-15 shows
the timing of the same change made by using a standard UPDATE statement.

Listing 13-15. Mass Update Timings for Comparison

SYS@LAB112> select my_rows, total_rows,
 2 100*my_rows/total_rows row_percent from
 3 (select sum(decode(col1,1,1,0)) my_rows, count(*) total_rows
 4* from kso.skew2)

 MY_ROWS TOTAL_ROWS ROW_PERCENT
---------- ---------- -----------
 8605185 32000004 26.9

1 row selected.

Elapsed: 00:00:01.29
SYS@LAB112> update /*+ parallel 4 */ kso.skew2 set col2 = 'ABC' where col1 = 2;

8605185 rows updated.

Elapsed: 00:12:37.53

To sum up this example, when modifying roughly 27% of the rows in the table, the straight UPDATE

took about 12.5 minutes and the rebuild with INSERT APPEND took about 5.5 minutes. Keep in mind
that there are many variables that I have not covered in detail. Every situation will have differences in the
number of dependent objects and the percentage of rows affected by the update. These factors will have
a large affect on the outcome, so test thoroughly in your environment with your specific data.

In this section, you learned that it can be considerably faster to rebuild tables than to update a large
percentage of the rows. Obviously, making use of the direct path write via the APPEND hint is an
important part of that. The biggest negative to this approach is that the table must be offline for the
entire time that the rebuild is taking place—or at least protected in some manner from concurrent
modifications. This does not usually present a major obstacle because these types of mass updates are
rarely done while users are accessing the table. In cases where concurrent access is required,
partitioning or materialized views can provide the necessary isolation.

DELETE
Just like massive updates, massive deletes are almost always a bad idea. It is generally faster (if
somewhat more complicated) to recreate a table or partition (without the rows you wish to eliminate)
than it is to delete a large percentage of the rows. The biggest downside to the approach of recreating is
that the object must be protected from other changes while it is being rebuilt. It’s basically the same
approach as I used in the previous section with the UPDATE command, but DELETEs can be even more
time consuming.

CHAPTER 13 ■ BEYOND THE SELECT

422

The basic idea is pretty much the same as with the mass updates.

1. Create a temporary table.

2. Insert the records that are not to be deleted into the temporary table.

3. Recreate the dependent objects (indexes, constraints, grants, triggers).

4. Rename the tables.

I’ll use the recreate_table.sql script again to create a script that I can edit. Then I’ll modify the
INSERT statement to give me the records that would be left behind after my DELETE. Listing 13-16
shows an example of how a DELETE statement compares to a rebuild using a reciprocal INSERT
statement.

Listing 13-16. Mass DELETE

SYS@LAB112> delete from kso.skew2 where col1=1;

3199972 rows deleted.

Elapsed: 00:04:12.64

SYS@LAB112> rollback;

Rollback complete.

Elapsed: 00:01:48.59

KSO@LAB112> @recreate_SKEW3.sql
KSO@LAB112> set timing on
KSO@LAB112>
KSO@LAB112> ALTER INDEX KSO.SYS_C0029558 RENAME TO SYS_C0029558_OLD;

Index altered.

Elapsed: 00:00:00.03
KSO@LAB112> ALTER INDEX KSO.SKEW2_COL1 RENAME TO SKEW2_COL1_OLD;

Index altered.

Elapsed: 00:00:00.04
KSO@LAB112> ALTER INDEX KSO.SKEW2_COL4 RENAME TO SKEW2_COL4_OLD;

Index altered.

Elapsed: 00:00:00.02
KSO@LAB112>
KSO@LAB112>
KSO@LAB112> CREATE TABLE "KSO"."SKEW2_TEMP"
 2 ("PK_COL" NUMBER,

mailto:@recreate_SKEW3.sql

CHAPTER 13 ■ BEYOND THE SELECT

423

 3 "COL1" NUMBER,
 4 "COL2" VARCHAR2(30),
 5 "COL3" DATE,
 6 "COL4" VARCHAR2(1)
 7) SEGMENT CREATION IMMEDIATE
 8 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 9 STORAGE(INITIAL 1483735040 NEXT 1048576
 10 MINEXTENTS 1 MAXEXTENTS 2147483645
 11 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 12 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 13 TABLESPACE "USERS" ;

Table created.

Elapsed: 00:00:00.11
KSO@LAB112>
KSO@LAB112>
KSO@LAB112> INSERT /*+APPEND*/ INTO KSO.SKEW2_TEMP SELECT /*+PARALLEL(a 4)*/
 2 PK_COL,
 3 COL1,
 4 COL2,
 5 COL3,
 6 COL4
 7 FROM KSO.SKEW2 a where col1 != 1;

28800032 rows created.

Elapsed: 00:00:42.30
KSO@LAB112>
KSO@LAB112> CREATE INDEX "KSO"."SKEW2_COL1" ON "KSO"."SKEW2_TEMP" ("COL1")
 2 PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING COMPUTE STATISTICS
 3 STORAGE(INITIAL 595591168 NEXT 1048576
 4 MINEXTENTS 1 MAXEXTENTS 2147483645
 5 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 6 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 7 TABLESPACE "USERS"
 8 PARALLEL 8 ;

Index created.

Elapsed: 00:01:36.50
KSO@LAB112>
KSO@LAB112>
KSO@LAB112>
KSO@LAB112> CREATE INDEX "KSO"."SKEW2_COL4" ON "KSO"."SKEW2_TEMP" ("COL4")
 2 PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPUTE STATISTICS
 3 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645

CHAPTER 13 ■ BEYOND THE SELECT

424

 4 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 5 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 6 TABLESPACE "USERS"
 7 PARALLEL 8 ;

Index created.

Elapsed: 00:01:09.43
KSO@LAB112>
KSO@LAB112>
KSO@LAB112>
KSO@LAB112> CREATE UNIQUE INDEX "KSO"."SYS_C0029558"
 2 ON "KSO"."SKEW2_TEMP" ("PK_COL")
 3 PCTFREE 10 INITRANS 2 MAXTRANS 255 NOLOGGING COMPUTE STATISTICS
 4 STORAGE(INITIAL 865075200 NEXT 1048576
 5 MINEXTENTS 1 MAXEXTENTS 2147483645
 6 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 7 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 8 TABLESPACE "USERS"
 9 PARALLEL 8 ;

Index created.

Elapsed: 00:01:26.30
KSO@LAB112>
KSO@LAB112>
KSO@LAB112> -- Note: No Grants found!
KSO@LAB112> -- Note: No Triggers found!
KSO@LAB112>
KSO@LAB112>
KSO@LAB112> ALTER TABLE "KSO"."SKEW2_TEMP" ADD PRIMARY KEY ("PK_COL")
 2 USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255
 3 NOLOGGING COMPUTE STATISTICS
 4 STORAGE(INITIAL 865075200 NEXT 1048576
 5 MINEXTENTS 1 MAXEXTENTS 2147483645
 6 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
 7 FLASH_CACHE DEFAULT CELL_FLASH_CACHE DEFAULT)
 8 TABLESPACE "USERS" ENABLE;

Table altered.

Elapsed: 00:00:20.42

As with the comparison to the UPDATE statement, the rebuild provides a viable alternative. In this
example, I deleted roughly 10% or the records. The DELETE took about 4.25 minutes and the rebuild
took about 5.25 minutes. In this case, the straight DELETE was actually faster. But as the number of
records goes up, the time to rebuild will remain basically flat while the time to run the DELETE will go
up. Eventually, there will be a point where the rebuild becomes much cheaper than the delete.

CHAPTER 13 ■ BEYOND THE SELECT

425

Truncate

I am sure you are aware of the truncate command, but I should mention it here anyway. If you need to
delete all the rows from a table or a partition, the TRUNCATE command is the way to do it. Truncating a
table moves the high water mark rather than actually changing all the blocks that hold records. It is
blazingly fast compared to using the DELETE command. There are only a few very minor negatives.

In addition to completing extremely quickly, the TRUNCATE command can make a big difference for future
queries on the table. Since full table scans read every block to the highwater mark, and the DELETE command
has no affect on the highwater mark, you may be giving up performance gains for future statements.

MERGE
The MERGE statement was introduced in Oracle Database 9i. It provides the classic UPSERT
functionality. MERGE will update the record if one already exists or insert a new record if one doesn’t
already exist. (Oracle Database 10g enhanced the MERGE command to allow it to delete records as well.)
The idea is to eliminate the extra code necessary to do error checking and the additional round trips to
the database when it’s necessary to issue additional SQL statements (i.e. write a piece of code that
attempts an update, check the status of the update, and if the update fails then issue the insert). The
MERGE statement does all this at the database level without all the additional code. Obviously, it will
perform better than the procedural code version.

Syntax and Usage
The syntax of the typical MERGE statement is relatively easy to follow. The following is the basic syntax
of a MERGE statement:

MERGE INTO table_name
USING (subquery) ON (subquery.column = table.column)
WHEN MATCHED THEN UPDATE …
WHEN NOT MATCHED THEN INSERT …

The first part of the MERGE statement looks just like an INSERT, specifying the table (or view) that

will be the target of the inserted, updated, or deleted data. The USING keyword specifies a data source
(usually a subquery, although it could be a staging table as well) and a join condition that tells Oracle
how to determine if a record already exists in the target table. In addition, you must add an Update
clause or an Insert clause or both. In most cases, you see both since there is little value in using the

• It is a DDL command so it issues an implicit commit (once a table is truncated, there
is no going back).

• You cannot flash back to the state of the table prior to the truncate.

• It is the whole table or nothing.

CHAPTER 13 ■ BEYOND THE SELECT

426

MERGE statement without both clauses. Now let’s move on to the Update and Insert clauses (they
probably should have called these the When Matched and When Not Matched clauses instead).

The Update clause tells Oracle what to do when a matching record is found. In most cases, finding a
matching record results in an update to that record. There is also an optional Where clause that can be
used to limit which records are updated, even if there is a match. Alternatively, you can delete matching
records using yet another Where clause. Note that the records to be deleted must pass the criteria in the
main Where clause AND the criteria in the Delete Where clause. The Delete clause is not actually used
that often. It can be handy, though, for a job that needs to do more than just load data. For example,
some ETL processes also perform cleanup tasks. For the Delete portion of the Update clause to kick in, a
matching record must be found that passes the Where clause in the Update clause as well as the Where
clause associated with the Delete. Listing 13-17 shows the MERGE command with an Update clause that
contains a Delete.

Listing 13-17. MERGE with Update Clause

MERGE INTO kso.big_emp t
USING (select * from hr.employees) s
ON (t.employee_id = s.employee_id)
WHEN MATCHED THEN UPDATE SET
-- t.employee_id = s.employee_id, -- ON clause columns not allowed
 t.first_name = t.first_name,
 t.last_name = s.last_name ,
 t.email = s.email ,
 t.phone_number = s.phone_number ,
 t.hire_date = s.hire_date ,
 t.job_id = s.job_id ,
 t.salary = s.salary ,
 t.commission_pct = s.commission_pct ,
 t.manager_id = s.manager_id ,
 t.department_id = s.department_id
 WHERE (S.salary <= 3000)
DELETE WHERE (S.job_id = 'FIRED');

The Insert clause tells Oracle what to do when a matching record is not found. Generally, this means

“do an insert.” However, the Insert clause can be left off altogether. There is also an optional Where
clause that can be applied so it is not always the case that an insert will be done if a match is not found.
Listing 13-18 shows two versions of a MERGE statement with an Insert clause.

Listing 13-18. MERGE with Insert Clause

MERGE INTO big_emp t
USING (select * from hr.employees) s
ON (t.employee_id = s.employee_id)
WHEN NOT MATCHED THEN INSERT
(t.employee_id ,
 t.first_name ,
 t.last_name ,
 t.email ,
 t.phone_number ,
 t.hire_date ,

CHAPTER 13 ■ BEYOND THE SELECT

427

 t.job_id ,
 t.salary ,
 t.commission_pct ,
 t.manager_id ,
 t.department_id)
VALUES
(s.employee_id ,
 s.first_name ,
 s.last_name ,
 s.email ,
 s.phone_number ,
 s.hire_date ,
 s.job_id ,
 s.salary ,
 s.commission_pct ,
 s.manager_id ,
 s.department_id)
 WHERE (S.job_id != 'FIRED');

MERGE INTO big_emp t
USING (select * from hr.employees where job_id != 'FIRED') s
ON (t.employee_id = s.employee_id)
WHEN NOT MATCHED THEN INSERT
(t.employee_id ,
 t.first_name ,
 t.last_name ,
 t.email ,
 t.phone_number ,
 t.hire_date ,
 t.job_id ,
 t.salary ,
 t.commission_pct ,
 t.manager_id ,
 t.department_id)
VALUES
(s.employee_id ,
 s.first_name ,
 s.last_name ,
 s.email ,
 s.phone_number ,
 s.hire_date ,
 s.job_id ,
 s.salary ,
 s.commission_pct ,
 s.manager_id ,
 s.department_id);

CHAPTER 13 ■ BEYOND THE SELECT

428

The statements accomplish the same thing but are using a slightly different mechanism. One
qualifies the set of records to be merged in the subquery in the USING clause, while the other qualifies
the statements to be merged in the Where clause inside of the Insert clause. Be aware that these two
forms can have different performance characteristics and may even result in different plans. Listing 13-
19 shows a more realistic example with both the Insert clause and the Update clause. Note that the
Update clause also contains a Delete Where clause that cleans up records of employees that have been
fired.

Listing 13-19. Full MERGE

KSO@LAB112>
KSO@LAB112> -- delete from big_emp where employee_id > 190;
KSO@LAB112> -- insert into hr.jobs select 'FIRED', 'Fired', 0, 0 from dual;
KSO@LAB112> -- update hr.employees set job_id = 'FIRED' where employee_id=197;
KSO@LAB112> MERGE /*+ APPEND */ INTO kso.big_emp t
 2 USING (select * from hr.employees) s
 3 ON (t.employee_id = s.employee_id)
 4 WHEN MATCHED THEN UPDATE SET
 5 -- t.employee_id = s.employee_id,
 6 t.first_name = t.first_name,
 7 t.last_name = s.last_name ,
 8 t.email = s.email ,
 9 t.phone_number = s.phone_number ,
 10 t.hire_date = s.hire_date ,
 11 t.job_id = s.job_id ,
 12 t.salary = s.salary ,
 13 t.commission_pct = s.commission_pct ,
 14 t.manager_id = s.manager_id ,
 15 t.department_id = s.department_id
 16 WHERE (S.salary <= 3000)
 17 DELETE WHERE (S.job_id = 'FIRED')
 18 WHEN NOT MATCHED THEN INSERT
 19 (t.employee_id ,
 20 t.first_name ,
 21 t.last_name ,
 22 t.email ,
 23 t.phone_number ,
 24 t.hire_date ,
 25 t.job_id ,
 26 t.salary ,
 27 t.commission_pct ,
 28 t.manager_id ,
 29 t.department_id)
 30 VALUES
 31 (s.employee_id ,
 32 s.first_name ,
 33 s.last_name ,
 34 s.email ,

CHAPTER 13 ■ BEYOND THE SELECT

429

 35 s.phone_number ,
 36 s.hire_date ,
 37 s.job_id ,
 38 s.salary ,
 39 s.commission_pct ,
 40 s.manager_id ,
 41 s.department_id)
 42 WHERE (S.job_id != 'FIRED');

88140 rows merged.

Elapsed: 00:00:06.51

Performance Comparison
So how does the MERGE statement compare to a straight INSERT or CTAS operation? Obviously, there is
some inherent overhead in the MERGE statement that makes such a comparison an unfair test. But
MERGE is no slouch. Keep in mind that just like with the INSERT command, the fastest way to load a lot
of data is to make sure it uses the direct path mechanism by using the APPEND hint. Listing 13-20
compares the performance of INSERT, MERGE, and CTAS. It also demonstrates that all are capable of
doing direct path writes.

Listing 13-20. INSERT, MERGE, CTAS Performance Comparison

KSO@LAB112> @compare_insert_merge_ctas.sql

Table dropped.

Elapsed: 00:00:00.69
KSO@LAB112> @flush_pool
KSO@LAB112> alter system flush shared_pool;

System altered.

Elapsed: 00:00:00.46
KSO@LAB112> select name, value from v$mystat s, v$statname n
 2 where n.statistic# = s.statistic# and name = 'physical writes direct';

NAME VALUE
-- ----------
physical writes direct 0

Elapsed: 00:00:00.03
KSO@LAB112> create /* compare_insert_merge_ctas.sql */ table skew3
 2 as select * from skew;

Table created.

mailto:@compare_insert_merge_ctas.sql

CHAPTER 13 ■ BEYOND THE SELECT

430

Elapsed: 00:00:32.92
KSO@LAB112> select name, value from v$mystat s, v$statname n
 2 where n.statistic# = s.statistic# and name = 'physical writes direct';

NAME VALUE
-- ----------
physical writes direct 163031

Elapsed: 00:00:00.03
KSO@LAB112>
KSO@LAB112> truncate table skew3 drop storage;

Table truncated.

Elapsed: 00:00:01.01
KSO@LAB112> INSERT /*+ APPEND */ /* compare_insert_merge_ctas.sql */
 2 INTO skew3 select * from skew;

32000004 rows created.

Elapsed: 00:00:31.23
KSO@LAB112> select name, value from v$mystat s, v$statname n
 2 where n.statistic# = s.statistic# and name = 'physical writes direct';

NAME VALUE
-- ----------
physical writes direct 326062

Elapsed: 00:00:00.03
KSO@LAB112>
KSO@LAB112> truncate table skew3 drop storage;

Table truncated.

Elapsed: 00:00:00.84
KSO@LAB112> MERGE /*+ APPEND */ /* compare_insert_merge_ctas.sql */
 2 INTO skew3 t
 3 USING (select * from skew) s
 4 ON (t.pk_col = s.pk_col)
 5 WHEN NOT MATCHED THEN INSERT
 6 (t.pk_col, t.col1, t.col2, t.col3, t.col4)
 7 VALUES (s.pk_col, s.col1, s.col2, s.col3, s.col4);

32000004 rows merged.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 13 ■ BEYOND THE SELECT

431

Elapsed: 00:00:49.07
KSO@LAB112> select name, value from v$mystat s, v$statname n
 2 where n.statistic# = s.statistic# and name = 'physical writes direct';

NAME VALUE
-- ----------
physical writes direct 489093

Elapsed: 00:00:00.01

KSO@LAB112> @fss2
Enter value for sql_text: %compare_insert%
Enter value for sql_id:

SQL_ID AVG_ETIME AVG_CPU AVG_PIO AVG_LIO SQL_TEXT
------------- --------- ------- -------- -------- --------------------
6y6ms28kzzb5z 49.07 48.48 162,294 490,664 MERGE /*+ APPEND */
g1pf9b564j7yn 31.22 30.93 162,296 489,239 INSERT /*+ APPEND */
g909cagdbs1t5 32.91 31.25 162,294 494,480 create /* compare_in

In this very simple test, you can see that all three approaches were able to use the direct path writes

and that CTAS and INSERT were very similar in performance. The MERGE statement was considerably
slower, as you would expect due to its additional capabilities and the necessary overhead associated with
those capabilities. But the MERGE statement provides the most flexibility, so don’t overlook the fact that
this single statement can perform multiple types of DML with a single execution.

Summary
There are four SQL commands for modifying data: INSERT, UPDATE, DELETE, and MERGE (and the
latter is actually capable of performing all three functions). This chapter briefly discussed these
commands and focused on one key performance concept: direct path inserts are much, much faster
than conventional inserts. There is a good reason for this difference in performance—it’s because direct
path inserts do a lot less work. There are a number of drawbacks with using the technique, however. The
biggest drawback is that it is a serial operation; only one process can be engaging in a direct path insert
on a table at any given time and any other process that wishes to do the same will simply have to wait.
Another big drawback is that available space that’s already allocated to the table will not be used by
direct path inserts. For these reasons, it’s only applicable for large batch type loading operations.
Nevertheless, it is the fastest way to insert data into a table, and as such, should be considered whenever
performance is among the most important decision-making criteria. Techniques have been developed
for using direct path inserts in the place of updates and deletes. You have explored a couple of these
techniques in this chapter as well. Finally, you learned about several of the lesser known options of the
DML commands, including the extremely powerful Error Logging clause that can be applied to all four of
them.

C H A P T E R 1 4

■ ■ ■

433

Transaction Processing

Robyn Sands

After you have been using the Oracle database for a while, you might have certain expectations of how
the database will behave. When you enter a query, you expect a consistent results set to be returned. If
you enter a SQL statement to update several hundred records and the update of one of those rows fails,
you expect the entire update to fail, and all rows to be returned to their prior state. If your update
succeeds and you commit your work to the database, you expect your changes to become visible to
other users and remain in the database, at least until the data is updated again by someone else. You
expect that when you are reading data, you will never block a session from writing, and you also expect
that the reverse to be true. These are fundamental truths about how the Oracle database operates and
once you’ve become comfortable working with Oracle, you tend to take them for granted.

However, when you begin to write code for applications, you need to be keenly aware of how Oracle
provides the consistency and concurrency you’ve learned to rely on. Relational databases are intended
to process transactions, and in this author's opinion, the Oracle database is exceptional at keeping
transaction data consistent, accurate and available. However, you must design and implement
transactions correctly if the protections you receive automatically at the statement level are to be
extended to your transactions. How you design and code a transaction impacts the integrity and
consistency of the application data, and if you do not clearly define the transaction boundaries, your
application may behave in some unexpected ways. Transaction design also influences how well the
system performs when multiple users are retrieving and altering the information within it. Scalability
can be severely limited when transactions are poorly designed.

Although there are only few transaction control statements, understanding how a transaction will
be processed requires an understanding of some of the more complex concepts and architectural
components in the Oracle database. In the next few sections, I’ll briefly cover a few transaction basics,
the ACID properties, ISO/ANSI SQL transaction isolation levels and multi-version read consistency. For
a more thorough treatment of these topics, please read the Oracle Concepts Manual and then follow up
with Tom Kyte's Expert Oracle Database Architecture Oracle Database 9i, 10g and 11g Programming
Techniques and Solutions, Chapters 6, 7, and 8. The goal for this chapter is to provide a basic
understanding of how to design a sound transaction, and how to ensure that Oracle processes your
transactions exactly as you intend for them to be processed.

What is a Transaction?
Let's start by making sure we’re all on the same page when it comes to the word transaction. The
definition of a transaction is a single, logical unit of work: it is comprised of a specific set of SQL
statements that must succeed or fail as a whole. Every transaction has a distinct beginning with the first
executable SQL statement and a distinct ending, when the work of the transaction is either committed or
rolled back. Transactions that have started but not yet committed or rolled back their work are active

CHAPTER 14 ■ TRANSACTION PROCESSING

434

transactions, and all changes within an active transaction are considered pending until they are
committed. If the transaction fails or is rolled back, then those pending changes never existed in the
database at all.

The most common example of a transaction is a banking transfer. For example, a customer would
like to transfer $500 from a checking account to a savings account. This requires a two step process: a
$500 debit from checking and a $500 credit to savings. Both updates must complete successfully in order
to guarantee the accuracy of the data. If both updates cannot be completed, then both updates must roll
back. Transactions are an all-or-nothing proposition, as a partial transaction may corrupt the data's
integrity. Consider the bank transfer: if the funds are removed from the checking account but the credit
to the savings account fails, the data is no longer consistent and the bank's financial reporting is
inaccurate. The bank would also have a very unhappy customer on their hands since the customer’s
$500 has mysteriously disappeared.

It is also necessary to ensure that both updates are committed to the database as a single unit.
Committing after each statement increases the possibility of one statement succeeding and the other
statement failing, it also results in a point in time when the data is inconsistent. From the moment the
first commit succeeds until the second commit completes, the bank records would not represent reality.
If the bank manager happened to execute a report summarizing all account balances during that space
of time in between the two commits, the total in the deposited accounts would be short by $500. In this
case, the customer would be fine since the $500 does eventually end up in their savings account. Instead,
there would be a very frustrated accountant working late into the night to balance the books. By
allowing the statements to process independently, the integrity of the data provided to the users
becomes questionable.

A transaction should not include any extraneous work. Using the banking example again, it would
be wrong to add the customer's order for new checks in the transfer transaction. Adding unrelated work
violates the definition of a transaction: there is no logical reason why a check order should depend on
the success of a transfer. Nor should the transfer depend on the check order. Maybe if a customer was
opening a new account, it could be appropriate to include the check order with the transaction. The
bank wouldn't want to issue checks on a non-existent account. But then again, is the customer required
to get checks for the account? Probably not. The most important element of coding a sound transaction
is accurately setting the transaction boundaries around a logical unit of work and ensuring that all
operations within that transaction are processed as a whole. In order to know where those boundaries
should be, you need to understand the application requirements and the business process.

A transaction can be comprised of multiple data manipulation language (DML) statements, but it
can only contain one data definition language (DDL) statement. This is because every DDL statement
creates an implicit commit, which will also commit any previously uncommitted work. Be very cautious
when including DDL statements in a transaction. Since a transaction must encompass a complete
logical unit of work, you want to be certain that a DDL statement either is issued prior to the DML
statements as a separate transaction, or after all DML statements have processed successfully. If a DDL
statement occurs in the middle of a transaction, then your “logical unit of work” will end up divided into
two not-so-logical partial updates.

ACID Properties of a Transaction
Transaction processing is a defining characteristic of a data management system; it's what makes a
database different from a file system. There are four required properties for all database transactions:
Atomicity, Consistency, Isolation and Durability. These four properties are known as ACID properties.
The ACID properties have been used to define the key characteristics of database transactions across all
brands of database systems since Jim Gray first wrote about them in 1976, and clearly he defined those
characteristics very well, as no one has done it better in the 35 years since that time. Every transactional
database must comply with ACID but how they choose to implement their compliance has created some
of the more interesting differences in database software products.

CHAPTER 14 ■ TRANSACTION PROCESSING

435

All Oracle transactions comply with the ACID properties, which are described in the Oracle
Concepts Manual as follows:

 Atomicity: All tasks of a transaction are performed or none of them are. There are no partial

transactions.

 Consistency: The transaction takes the database from one consistent state to another consistent

state.

 Isolation: The effect of a transaction is not visible to other transactions until the transaction

is committed.

 Durability: Changes made by committed transactions are permanent.

Think for a moment about the fundamental behaviors of the individual SQL statements you issue to

the Oracle database and compare them to the ACID properties listed above. These properties represent
the behaviors you expect at the statement level, as Oracle provides atomicity, consistency, isolation and
durability for SQL statements automatically without you having to expend any additional effort.
Essentially, when you design a transaction to be processed by the database, your goal is to communicate
the entire set of changes as a single operation. As long as you use transaction control statements to
correctly convey the contents of an individual transaction and set your transactions to the appropriate
isolation level when the default behavior is not what you need, the Oracle database will provide the
atomicity, consistency, isolation and durability required to protect your data.

Transaction Isolation Levels
And now for a little more depth on one particular ACID property: isolation. The definition of isolation in
the Oracle Concepts Manual referenced above states that the effects of your transaction cannot be
visible until you have committed your changes. This also means that your changes should not influence
the behavior of other active transactions in the database.

In the banking transaction, I discussed the importance of protecting (isolating) the financial report
from your changes until the entire transaction was complete. If you committed the credit to checking
before you committed the debit to savings, the total bank funds would be overstated (briefly) by $500.
This would violate the isolation property as any users or transactions could see that the checking
account balance had been reduced before the funds were added to the savings account.

However there are two sides to the requirement for transaction isolation. In addition to isolating
other transactions from your updates, you need to be aware of how isolated your transaction needs to be
from updates made by other transactions. To some extent, the answer to this question depends on
those business requirements, but it also depends on how sensitive your transaction is to changes made
by other users and how likely the data is to change while your transaction is processing. To appreciate
the need for isolation, you need to understand how isolation, or the lack thereof, impacts transactions
on a multi-user database.

The ANSI/ISO SQL standard defines four distinct levels of transaction isolation: read uncommitted,
read committed, repeatable read, and serializable. Within these four levels, the standard defines three
phenomena that are either permitted or not permitted at a specific isolation level: dirty reads, non-
repeatable reads, and phantom reads. Each of the three phenomena is a specific type of inconsistency
that can occur in data that is read by one transaction while another transaction is processing updates. As
the isolation level increases, there is a greater degree of separation between transactions, which results
in increasingly consistent data.

The ANSI/ISO SQL standard does not tell you how a database should achieve these isolation levels,
nor does it define which kinds of reads should or should not be permitted. The standard simply defines

CHAPTER 14 ■ TRANSACTION PROCESSING

436

the impact one transaction may have on another at a given level of isolation. Table 14-1 lists the four
isolation levels and notes whether a given phenomena is permitted or not permitted.

Table 14-1. ANSI Isolation Levels

Isolation Level Dirty Read Non-repeatable Read Phantom Read

Read
Uncommitted

Permitted Permitted Permitted

Read Committed X Permitted Permitted

Repeatable Read X X Permitted

Serializable X X X

The definitions of each phenomenon are:

• Dirty Read Reading an uncommitted transaction is called a dirty read, and it’s a very
appropriate name. Dirty reads have not been committed, which means that data has not yet
been verified against any constraints set in the database. Uncommitted data may never be
committed, and if this happens, the data was never really part of the database at all. Result sets
built from dirty reads should be considered highly suspect as they can represent a view of the
information that never actually existed.

• Non-Repeatable Read A non-repeatable read occurs when a transaction executes a query a
second time and receives a different result due to committed updates by another transaction.
In this case, the updates by the other transaction have been verified and made durable, so the
data is valid; it's just been altered since the last time your transaction read it.

• Phantom Read If a query is executed a second time within a transaction, and additional records
matching the filter criteria are returned, it is considered a phantom read. Phantom reads result
when another transaction has inserted more data and committed its work.

By default, transactions in Oracle are permitted to read the committed work of other users

immediately after the commit. This means that it is possible to get non-repeatable and phantom reads
unless you specifically set the isolation level for your transaction to either read-only or serializable. The
important question is “Will either phenomenon prevent my transaction from applying its changes
correctly and taking the database from one consistent state to the next?” If your transaction will not
issue the same query more than once in a single transaction or it does not need the underlying data to
remain consistent for the duration of your transaction, then the answer is “No” and the transaction can
be processed safely at the default read committed isolation level.

Only a serializable transaction completely removes the possibility of all three phenomena while still
allowing for updates, thus providing the most consistent view of the data even as it is changing.
However, serializable transactions can reduce the level of concurrency in the database, as there is a
greater risk of transactions failing due to conflicts with other updates. If you require repeatable reads
AND you need to update data in the transaction, setting your transaction to execute in serializable mode
is your only option. If your transaction requires repeatable reads but it will not update data, then you
can set your transaction to read only mode, which will guarantee repeatable reads until your transaction
completes or until the system exceeds its undo retention period. I’ll talk about how to accomplish
serializable and repeatable read transactions shortly.

CHAPTER 14 ■ TRANSACTION PROCESSING

437

Oracle does not support the read uncommitted isolation level, nor is it possible to alter the database
to do so. Reading uncommitted data is permitted in other databases to prevent writers from blocking
readers and readers from blocking writers. Oracle prevents such blocks from occurring with multi-
version read consistency, which provides each transaction with its own read consistent view of the data.
Thanks to multi-version read consistency, dirty reads are something Oracle users and developers never
need to worry about.

Multi-Version Read Consistency
As mentioned earlier, the ACID properties do not determine how the database should provide data
consistency for transactions. Nor do the ANSI/ISO SQL transaction isolation levels define how to
achieve transaction isolation, or even specify the levels of isolation a database product must provide.
Each individual vendor determines how to comply with ACID and the levels of isolation they will
support. If you develop applications that operate on multiple database platforms, it is crucial for you to
understand the different implementations provided by each vendor and how those differences can
impact the results of a given transaction.

Fortunately, you only have to worry about one approach in this chapter. Oracle provides data
consistency and concurrency with the multi-version read consistency model. This can be a fairly complex
concept to grasp, although it's transparent to users. Oracle is able to simultaneously display multiple
versions of the data, based on the specific point in time a transaction requested the information and the
transaction’s isolation level. The database accomplishes this amazing feat by retaining the before and after
condition of altered data blocks, so that the database can recreate a consistent view of the data for multiple
sessions at a single point in time. If a transaction is running in the default read committed mode, then a
“consistent view of the data” means the results are based on the committed data as of when a query or
update was initiated. When a transaction is executing in serializable mode, the read consistent view is
based on the committed data as of when the transaction began. There is a limit to how far Oracle can reach
into the past to create this consistent view of the data, and that limit depends on the allocation of undo
space configured for the database. If Oracle cannot reach back far enough into the past to support a given
statement, that statement will fail with a “snapshot too old” error.

Undo blocks retain the before condition of the data, while the redo information is stored in the
online redo logs in the system global area (SGA). The redo logs contain both the change to the data
block and the change to the undo block. The same structures that provide the means to roll back your
changes also provide read consistent views of the data to multiple users and multiple transactions.
Because a transaction should always encompass a complete logical unit of work, the undo storage and
retention level should be configured to support transactions at the required level of concurrency. If you
are considering dividing your logical unit of work to prevent “snapshot too old” errors, you need to
revisit your code or talk with your DBA. Maybe do both.

The database buffers of the SGA are updated with changes for a committed transaction, but the
changes are not necessarily written immediately to the data files. Oracle uses the system change number
(SCN) to keep a sequential record of changes occurring throughout the instance and to connect changes
to a particular point in time. Should the database fail, all pending transactions are rolled back so that
when the database is restarted, the data will be at a consistent state once again, reflecting only the
committed work as of the time of failure. You would get the exact same result if the database
administrator issued a command to flash the database back to a specific SCN. The database returns to
the point in time marked by the SCN, and any transactions committed after that will no longer exist in
the database. This is necessary to prevent partial transactions from being stored in the database.

So how does multi-version read consistency impact individual transactions? If Transaction B requests
data that has been altered by Transaction A, but Transaction A has not committed its changes, Oracle will
read the before condition of the data, and return that view to Transaction B. If Transaction C begins after
Transaction A commits its changes, the results returned to Transaction C will include the changes
committed by Transaction A. This means that Transaction C receives a different result than Transaction B,
but the results are consistent with the point in time when each session requested the information.

CHAPTER 14 ■ TRANSACTION PROCESSING

438

Transaction Control Statements
There are only five transaction control statements: commit, savepoint, rollback, set transaction, and set
constraints. There are relatively few variants of these statements, so learning the syntax and the options
for controlling your transactions is not too difficult. The challenge of coding a transaction is
understanding how and where to use the appropriate combination of statements to ensure your
transaction complies with ACID and that it will be processed by the database exactly as you expected.

Commit
Commit, or the SQL standard compliant version commit work, ends your transaction by making your
changes durable and visible to other users. With the commit write extensions now available, you have
the option to change the default behavior of a commit. Changes can be committed asynchronously with
the write nowait extension, and you can also choose to allow Oracle to write commits in batches. The
default behavior processes a commit as commit write wait immediate, which is how commits were
processed in earlier versions of Oracle. This will still be the correct behavior for the majority of
applications.

So when might you choose to not wait for Oracle to confirm your work has been written? By
choosing an asynchronous commit, you are allowing the database to confirm that your changes have
been received before those changes are made durable. If the database fails before the commit is written,
your transaction will be gone yet your application and your users will expect it to be there. While this
behavior may be acceptable for applications that process highly transitive data, for most of us, ensuring
the data has indeed been committed is essential. A nowait commit should be carefully considered
before being implemented. You need to be certain that your application can function when committed
transactions seem to disappear.

Savepoint
Savepoints allow you to mark specific points within your transaction and roll your transaction back to
the specified savepoint. You then have the option to continue your transaction rather than starting a
brand new one. Savepoints are sequential so if you have five savepoints and you rollback to the second
savepoint, all changes made for savepoints three through five are rolled back.

Rollback
Rollback is the other option for ending a transaction. If you choose to rollback, your changes will be
reversed and the data returns to its previously consistent state. As noted above, you have the option to
rollback to a specific savepoint but rolling back to a savepoint does not end a transaction. Instead, the
transaction remains active until either a complete rollback or commit is issued.

Set Transaction
The set transaction command provides multiple options to alter default transaction behavior. Set
transaction read only will provide repeatable reads but you cannot alter data. You also use the set
transaction command to specify serializable isolation. Set transaction can be used to choose a specific
rollback segment for a transaction, but this is no longer recommended by Oracle; in fact, if you are using
automatic undo management, this command will be ignored. You can also use set transaction to name

CHAPTER 14 ■ TRANSACTION PROCESSING

439

your transaction, but the DBMS.Application_Info package is a better option for labeling your
transactions as it provides additional functionality.

Set Constraints
Constraints can be deferred during a transaction with the set constraint(s) command. The default
behavior is to check the constraints after each statement, but in some transactions, it may be that the
constraints will not be met until all the updates within the transaction are complete. In these cases, you
can defer constraint verification, as long as the constraints were created as deferrable. This command
can defer a single constraint, or it can defer all constraints.

As far as the SQL language goes, transaction control statements may be some of the simplest and

clearest language options you have. Commit, rollback, and rollback to savepoint will be the transaction
control commands you use most often. You may need to set the isolation level with set transaction
occasionally, while deferring constraints is likely to be a rare occurrence. If you want more information
about the transaction control statements, referring to the SQL statement documentation is likely to give
you enough information to execute the commands, but before you use one of the less common
commands, be sure to research and test extensively so you know absolutely what the effect non-default
behavior will have on your data.

Grouping Operations into Transactions
By now, you should be well aware that understanding the business requirements is central to designing
a good transaction. However, what is considered a logical unit of work in one company may be very
different at another company. For example, when an order is placed, is the customer's credit card
charged immediately or is the card charged when the order ships? If payment is required to place the
order, then the procuring the funds should be part of the order transaction. If payments are processed
when product is shipped, then payment may be authorized with the order, but processed just before
shipment. Neither option is more correct than the other, it just depends on how the business has
decided to manage their orders. If a company is selling a very limited product, then expecting payment
at the time of order is perfectly reasonable as the company is making that rare item unavailable to other
customers. If the product is common, then customers generally don't expect to pay until the product
has shipped and choosing to process payments earlier may cost the company some business.

In addition to understanding the business requirements, there are some general rules for designing
a sound transaction:

• Process each logical unit of work as an independent transaction. Do not include extraneous
work.

• Ensure the data is consistent when your transaction begins and that it will remain consistent
when the transaction is complete.

• Get the resources you need to process your transaction and then release the resources for other
transactions. Hold shared resources for as long as you need them, but no longer. By the same
token, do not commit during your transaction to just to release locks that you still need. Adding
commits breaks up the logical unit of work and does not benefit the database.

• Consider other transactions likely to be processing at the same time. Do they need to be
isolated from your transaction? Does your transaction need to be isolated from other updates?

• Use savepoints to mark specific SQL statements that may be appropriate for mid-transaction
rollbacks.

CHAPTER 14 ■ TRANSACTION PROCESSING

440

• Transactions should always be explicitly committed or rolled back. Do not rely on the default
behavior of the database or a development tool to commit or rollback. Default behavior can
change.

• Once you've designed a solid transaction, consider wrapping it in a procedure or package. As
long as a procedure does not contain any commits or rollbacks within it, it will be provided with
the same default atomicity level Oracle provides to all statements. This means that the
protections automatically afforded to statements will also apply to your procedure, and
therefore, your transaction.

• Exception handling can have a significant impact on a transaction's integrity. Exceptions
should be handled with relevant application errors, and any unhandled exceptions should
always raise the database error. Using the When Others clause to bypass an error condition is a
serious flaw in your code.

• Consider using the DBMS.Application_Info package to label your transactions. This will help
identify specific sections of code quickly and accurately when troubleshooting errors or tuning
performance. I’ll talk more about DBMS.Application_Info and instrumentation in the next
chapter.

The Order Entry Schema
Before I move on to talking about active transactions, let's talk about the sample schema you’ll be using
for your transaction examples. The Order Entry (OE) schema contains a product set that is available for
orders, and it is associated with the Human Resources (HR) schema you may already be familiar with. In
this case, some of those employees are sales representatives who will take orders on behalf of your
customers. Listing 14-1 shows the names of the tables in the default Order Entry schema.

Listing 14-1. Order Entry (OE) Schema Tables

TABLE_NAME

CATEGORIES
CUSTOMERS
INVENTORIES
ORDERS
ORDER_ITEMS
PRODUCT_DESCRIPTIONS
PRODUCT_INFORMATION
WAREHOUSES

The OE schema may be missing a few critical components; there are no warehouses in the
WAREHOUSES table and there is no inventory in the INVENTORIES table, so you are out of stock on
everything and you have no place to store the stock if you did have any. It's hard to create orders
without any inventory, so you’ll need to add data to the existing tables first.

You’ll start by adding a warehouse to the company's Southlake, Texas location where there should
be plenty of real estate, and then you’ll add lots of inventory to be sold. I've used the DBMS.RANDOM
procedure to generate over 700,000 items, so if you choose to follow along, your actual inventory may
vary. But you should end up with enough products in stock to experiment with a few transactions, and
you can always add more. As you create your orders, you will notice the PRODUCT_INFORMATION
table contains some very old computing equipment. If it helps, consider the equipment vintage and
pretend you’re selling collectibles.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 ■ TRANSACTION PROCESSING

441

The ORDERS table contains an ORDER_STATUS column, but the status is represented by a numeric
value. You will create a lookup table for the order status values, and since the existing orders use a range
of one through 10, your ORDER_STATUS table will contain ten records. Although this is not a PL/SQL
book, I have created a few functions and a procedure to provide some necessary functionality without
having to show a lot extra code that might detract from primary purpose of an example. You will see
functions to get the list price from the PRODUCT_INFORMATION table, one to get a count of number of
line items added to an order, and another one to calculate the order total using the sum of the line items.
The contents of the functions are not important to your transactions, but the code to create them is
included in the download available at the Apress website, along with the rest of the schema updates.

You will also create a billing schema and a credit authorization procedure. The procedure accepts a
customer id number and order total, and then returns a randomly generated number to simulate the
process of ensuring payment for the products. In the real world, billing would likely represent an entire
accounting system and possibly a distributed transaction, but for your purposes, you simply need to
represent the customer's promise to pay for the items they wish to order. Remember, the most
important rule for any transaction is that it should contain a complete logical unit of work. The credit
authorization represents the exchange of funds for the product. You’re not in business to give your
products away, and the customer isn't going to send you cash unless they receive something in return.
It's this exchange that represents a transaction. Listing 14-2 shows the rest of the OE schema changes.

Listing 14-2. Order Entry (OE) Schema Changes

-- create 'billing' user to own a credit authorization procedure

conn / as sysdba
create user billing identified by &passwd ;

grant create session to billing ;
grant create procedure to billing ;

--- add warehouses and inventory using a random number to populate inventory quantities

connect oe

insert into warehouses values (1, 'Finished Goods', 1400) ;

insert into inventories
select product_id, 1, round(dbms_random.value(2, 5000),0)
 from product_information;

commit;

--- check total quantity on hand

select sum(quantity_on_hand) from inventories;

--- create a sequence for the order id

create sequence order_id start with 5000;

CHAPTER 14 ■ TRANSACTION PROCESSING

442

--- create a table for order status

create table oe.order_status
 (
 order_status number(2, 0) not null,
 order_status_name varchar2(12) not null,
 constraint order_status_pk order_status)
);

--- add values for order status 1 through 10 to match existing sample data

insert into order_status (order_status, order_status_name) values (0, 'Pending');
insert into order_status (order_status, order_status_name) values (1, 'New');
insert into order_status (order_status, order_status_name) values (2, 'Cancelled');
insert into order_status (order_status, order_status_name) values (3, 'Authorized');
insert into order_status (order_status, order_status_name) values (4, 'Processing');
insert into order_status (order_status, order_status_name) values (5, 'Shipped');
insert into order_status (order_status, order_status_name) values (6, 'Delivered');
insert into order_status (order_status, order_status_name) values (7, 'Returned');
insert into order_status (order_status, order_status_name) values (8, 'Damaged');
insert into order_status (order_status, order_status_name) values (9, 'Exchanged');
insert into order_status (order_status, order_status_name) values (10, 'Rejected');

--- create a function to get the list prices of order items

@get_listprice.fnc

--- create a function to get the order total

@get_ordertotal.fnc

--- create a function to get the order count

@get_orderitemcount.fnc

--- create order detail views

@order_detail_views.sql

--- Create credit_request procedure

connect billing

@credit_request.sql

mailto:@get_listprice.fnc
mailto:@get_ordertotal.fnc
mailto:@get_orderitemcount.fnc
mailto:@order_detail_views.sql
mailto:@credit_request.sql

CHAPTER 14 ■ TRANSACTION PROCESSING

443

Now that you know what you’re selling and you’ve got a CUSTOMERS table to tell you who you
might be selling it to, let's take a look at an order transaction. Your longstanding customer, Maximilian
Henner of Davenport, Iowa has contacted the sales manager, John Russell, and placed an order for five
12GB hard drives, five 32GB RAM sticks, and 19 boxes of business cards containing 1,000 cards per box.
Mr. Henner has a credit authorization of $50,000, although your customers table does not tell you how
much he may already owe for prior purchases. That would be stored in your imaginary billing system.
John enters Mr. Henner's order in the order entry screen of your sales system, and creates order number
2459 for customer 141. The order is a direct order entered into the system by your employee, id number
145. When your sales manager sends a copy of this order to his customer, the order should look
something like this:

 Order No: 2459

 Customer: Maximilian Henner

 2102 E Kimberly Rd

 Davenport, IA 52807

 Sold by: John Russell

No Product Description Qty Price Sale Price Total

1 2255 HD 12GB @7200 /SE 5 775.00 658.75 3,293.75

2 2274 RAM - 32MB 5 161.00 136.85 684.25

3 2537 Business Cards Box – 1000 19 200.00 170.00 3230.00

The customer would like to purchase multiple quantities of three different products, so you need to

add three items to the ORDER_ITEM table. Each item needs a product id, a quantity, and a list price.
There is a discount percentage that is applied to the entire order, and it will be used to calculate the
discounted price. The discounted priced is multiplied by the item quantity to produce the line item total.

As you add the items to the order, you also must reduce the on-hand inventory for those items so
that another sales person will not commit to delivering a product that is no longer available. Next, you
need to calculate the order total as a sum of the line items and then call the credit authorization
procedure to verify that Mr. Henner has the required amount available in his credit line. Once you have
the authorization, you will set the order total to equal the amount charged and the transaction is
complete. All of these steps are required for the order to exist and therefore, these steps comprise your
logical unit of work for an order.

Before you enter the order, you’ll check the inventory for the products the customer has requested
as shown in listing 14-3.

Listing 14-3. Verify Available Inventory

SQL> select product_id, quantity_on_hand
 from inventories
 where product_id in (2255, 2274, 2537)
 order by product_id ;

CHAPTER 14 ■ TRANSACTION PROCESSING

444

PRODUCT_ID QUANTITY_ON_HAND
---------- ----------------
 2255 672
 2274 749
 2537 2759

If you look at the statements as they would be received by the database to create this order, reduce

the inventory, and obtain a credit authorization, they might look something like the transaction shown
in Listing 14-4.

Listing 14-4. Order Transaction in a Procedure

SQL> begin

 savepoint create_order;

 insert into orders
 (order_id, order_date, order_mode, order_status, customer_id, sales_rep_id)
 values
 (2459, sysdate, 'direct', 1, 141, 145) ;

 --- Add first ordered item and reduce inventory

 savepoint detail_item1;

 insert into order_items
 (order_id, line_item_id, product_id, unit_price, discount_price, quantity)
 values
 (2459, 1, 2255, 775, 658.75, 5) ;

 update inventories set quantity_on_hand = quantity_on_hand - 5
 where product_id = 2255 and warehouse_id = 1 ;

 --- Add second ordered item and reduce inventory

 savepoint detail_item2;

 insert into order_items
 (order_id, line_item_id, product_id, unit_price, discount_price, quantity)
 values
 (2459, 2, 2274, 161, 136.85, 5) ;

 update inventories set quantity_on_hand = quantity_on_hand - 5
 where product_id = 2274 and warehouse_id = 1 ;

 --- Add third ordered item and reduce inventory

 savepoint detail_item3;

CHAPTER 14 ■ TRANSACTION PROCESSING

445

 insert into order_items
 (order_id, line_item_id, product_id, unit_price, discount_price, quantity)
 values
 (2459, 3, 2537, 200, 170, 19) ;

 update inventories set quantity_on_hand = quantity_on_hand - 19
 where product_id = 2537 and warehouse_id = 1 ;

 --- Request credit authorization

 savepoint credit_auth;

 begin billing.credit_request(141,7208); end;

 savepoint order_total;

 --- Update order total

 savepoint order_total;

 update orders set order_total = 7208 where order_id = 2459;

 exception
 when others then RAISE;
 end;
 /

Customer ID = 141
Amount = 7208
Authorization = 3452

PL/SQL procedure successfully completed.

You see the output from the credit authorization and get a confirmation that your procedure
completed. You have not yet ended your transaction as you haven't issued a commit or a rollback. First,
you’ll query the data to confirm your updates, including the update to reduce the on-hand inventory.
The confirmation queries are shown in listing 14-5.

Listing 14-5. Confirm Transaction Updates

SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = 2459 ;

CHAPTER 14 ■ TRANSACTION PROCESSING

446

 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 2459 Maximilian Henner +1 319 123 4282 New 7,208.00 04 Jul 2010

1 row selected.

SQL> select line_item_id ITEM, product_name, unit_price,
 discount_price, quantity, line_item_total
 from order_detail_line_items
 where order_id = 2459
 order by line_item_id ;

 ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
----- ------------------------ ---------- -------------- ---------- ---------------
 1 HD 12GB @7200 /SE 775.00 658.75 5 3,293.75
 2 RAM - 32 MB 161.00 136.85 5 684.25
 3 Business Cards Box - 1000 200.00 170.00 19 3,230.00

3 rows selected.

SQL> select product_id, quantity_on_hand
 from inventories
 where product_id in (2255, 2274, 2537)
 order by product_id ;

PRODUCT_ID QUANTITY_ON_HAND
---------- ----------------
 2255 667
 2274 744
 2537 2740

All required operations within your transaction have been confirmed. The order has been created,

three products have been added, the inventory was reduced, and your order total was updated to reflect
the sum of the individual line items. Your transaction is complete, and you can commit the changes. But
instead you’re going to roll them back and use this transaction again.

■NOTE The most important rule for transaction processing is to ensure the transaction is ACID compliant. The
transaction in Listing 14-4 has been wrapped in a procedure with an exception clause to illustrate the atomicity
principal. The remainder of the examples may be shown as independently entered SQL statements, and in some
cases, only a portion of the transaction will be shown, but that is only to keep the examples to a reasonable length.
If there is one message you take away from this chapter, it is the importance of ensuring that the entire
transaction succeeds as a whole or fails as a whole.

CHAPTER 14 ■ TRANSACTION PROCESSING

447

The Active Transaction
As soon as you issue the first SQL statement that alters data, the database recognizes an active
transaction and creates a transaction id. The transaction id will remain the same whether you have one
DML statement in your transaction or twenty, and the transaction id will only exist as long as your
transaction is active and your changes are still pending. In the order example from the previous section,
the transaction id is responsible for tracking only one transaction, the new order for Mr. Henner. Once
you rolled the entire transaction back, your transaction ended and the transaction id was gone. You
would see the same result if you committed your work.

The SCN number, on the other hand, continues to increment regardless of where you are in your
transaction process. The SCN number identifies a specific point in time for the database, and it can be
used to return the database to a prior point in time while still ensuring the data is consistent. Committed
transactions will remain committed (durability) and any pending transactions will be rolled back
(atomicity).

If you were to check the transaction id and SCN number while executing the individual statements
that comprised the order procedure shown earlier, you would see something like the results in Listing 14-6.

Listing 14-6. Order Transaction with Transaction ID and SCN Shown

SQL> insert into orders
 (order_id, order_date, order_mode, order_status, customer_id, sales_rep_id)
 values
 (2459, sysdate, 'direct', 1, 141, 145) ;

1 row created.

SQL> select current_scn from v$database;

CURRENT_SCN

 83002007

SQL> select xid, status from v$transaction ;

XID STATUS
---------------- ----------------
0A001800CE8D0000 ACTIVE
.......

SQL> --- Update order total

SQL> update orders set order_total = 7208 where order_id = 2459;

1 row updated.

SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = 2459;

CHAPTER 14 ■ TRANSACTION PROCESSING

448

 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 2459 Maximilian Henner +1 319 123 4282 New 7,208.00 04 Jul 2010

SQL> select line_item_id, product_name, unit_price,
 discount_price, quantity, line_item_total
 from order_detail_line_items
 where order_id = 2459
 order by line_item_id ;

ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
---- ---------------------------------- ---------- -------------- ---------- ---------------
 1 HD 12GB @7200 /SE 775.00 658.75 5 3,293.75
 2 RAM - 32 MB 161.00 136.85 5 684.25
 3 Business Cards Box - 1000 200.00 170.00 19 3,230.00

SQL> select current_scn from v$database;

CURRENT_SCN

 83002012

SQL> select xid, status from v$transaction ;

XID STATUS
---------------- ----------------
0A001800CE8D0000 ACTIVE

SQL> rollback;

Rollback complete.

SQL> select current_scn from v$database;

CURRENT_SCN

 83002015

SQL> select xid, status from v$transaction ;

no rows selected

If the database were flashed back to SCN 83002012, none of the operations in your order would

exist. Since any changes you had made were pending at that point in time, the only way Oracle can
guarantee data consistency is to roll back all non-committed work. Whether you committed the
transaction or rolled it back is immaterial. The updates were not committed at SCN 830020012, and
pending changes are always reversed.

CHAPTER 14 ■ TRANSACTION PROCESSING

449

Using Savepoints
In the initial order transaction, you included savepoints but did not make use of them. Instead, you
executed your transaction, confirmed the order information with two queries, and then rolled the entire
transaction back. In the example shown in Listing 14-7, you will roll back to savepoint item_detail1,
which is recorded prior to adding any product to the order. When you re-execute the queries to check
the order data, notice in Listing 14-8 that all changes occurring after the savepoint are reversed, yet the
order itself still exists. Your sales rep would have the option of continuing with Mr. Henner's order by
adding new line items or rolling it back completely to end the transaction. Let's take a look at your data
after the returning to a savepoint.

Listing 14-7. Returning to a Savepoint

SQL> savepoint create_order;

Savepoint created.

SQL> insert into orders
 (order_id, order_date, order_mode, order_status, customer_id, sales_rep_id)
 values
 (2459, sysdate, 'direct', 1, 141, 145) ;

1 row created.

SQL> --- Add first ordered item and reduce inventory

SQL> savepoint detail_item1;

Savepoint created.

SQL> insert into order_items
 (order_id, line_item_id, product_id, unit_price, discount_price, quantity)
 values
 (2459, 1, 2255, 775, 658.75, 5) ;

1 row created.

SQL> update inventories set quantity_on_hand = quantity_on_hand - 5
 where product_id = 2255 and warehouse_id = 1 ;

1 row updated.

SQL> --- Add second ordered item and reduce inventory

SQL> savepoint detail_item2;

Savepoint created.

CHAPTER 14 ■ TRANSACTION PROCESSING

450

SQL> insert into order_items
 (order_id, line_item_id, product_id, unit_price, discount_price, quantity)
 values
 (2459, 2, 2274, 161, 136.85, 5) ;

1 row created.

SQL> update inventories set quantity_on_hand = quantity_on_hand - 5
 where product_id = 2274 and warehouse_id = 1 ;

1 row updated.

SQL> --- Add third ordered item and reduce inventory

SQL> savepoint detail_item3;

Savepoint created.

SQL> insert into order_items
 (order_id, line_item_id, product_id, unit_price, discount_price, quantity)
 values
 (2459, 3, 2537, 200, 170, 19) ;

1 row created.

SQL> update inventories set quantity_on_hand = quantity_on_hand - 19
 where product_id = 2537 and warehouse_id = 1 ;

1 row updated.

SQL> --- Request credit authorization

SQL> savepoint credit_auth;

Savepoint created.

SQL> exec billing.credit_request(141,7208) ;
Customer ID = 141
Amount = 7208
Authorization = 1789

PL/SQL procedure successfully completed.

SQL> savepoint order_total;

Savepoint created.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 ■ TRANSACTION PROCESSING

451

SQL> --- Update order total

SQL> savepoint order_total;

Savepoint created.

SQL> update orders set order_total = 7208 where order_id = 2459;

1 row updated.

SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = 2459;

 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 2459 Maximilian Henner +1 319 123 4282 New 7,208.00 04 Jul 2010

SQL> select line_item_id, product_name, unit_price, discount_price,
 quantity, line_item_total
 from order_detail_line_items
 where order_id = 2459
 order by line_item_id ;

ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
---- ------------------------- ---------- -------------- ---------- ---------------
 1 HD 12GB @7200 /SE 775.00 658.75 5 3,293.75
 2 RAM - 32 MB 161.00 136.85 5 684.25
 3 Business Cards Box - 1000 200.00 170.00 19 3,230.00

SQL> rollback to savepoint detail_item1;

Rollback complete.

Listing 14-8. Verifying Data After Rollback to a Savepoint

SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = 2459;

 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 2459 Maximilian Henner +1 319 123 4282 New 04 Jun 2010

SQL> select line_item_id, product_name, unit_price, discount_price,
 quantity, line_item_total

CHAPTER 14 ■ TRANSACTION PROCESSING

452

 from order_detail_line_items
 where order_id = 2459
 order by line_item_id ;

no rows selected

SQL> select product_id, quantity_on_hand
 from inventories
 where product_id in (2255, 2274, 2537)
 order by product_id ;

PRODUCT_ID QUANTITY_ON_HAND
---------- ----------------
 2255 672
 2274 749
 2537 2759

Notice how in the first set of queries selects, both the order and the three products are added to the

ORDER_ITEMS table. After you’ve rolled back to the item_detail1 savepoint, there are no products
associated with the order, the inventory has returned to its previous level, and while the order header
still exists, the order total field is now null.

Serializing Transactions
When a transaction is executed in serializable mode, Oracle's multi-version read consistency model
provides a view of the data as it existed at the start of the transaction. No matter how many other
transactions may be processing updates at the same time, a serializable transaction will only see its own
changes. This creates the illusion of a single user database, as changes committed by other users after
the start of the transaction remain invisible. Serializable transactions are used when a transaction needs
to update data and requires repeatable reads. Listings 14-8, 14-9 and 14-10 will demonstrate when a
serialized transaction or repeatable read may be required.

Executing transactions in serializable mode does not mean that updates are processed sequentially.
If a serializable transaction attempts to update a record that has been changed since the transaction
began, the update will not be permitted and Oracle will return this error:

ORA-08177: can't serialize access for this transaction

At this point, the transaction could be rolled back and repeated. For a serializable transaction to be

successful there needs to be a strong possibility that no one else will update the same data while the
transaction is executing. You can increase the odds of success by completing any changes that may
conflict with other updates early in your transaction, and by keeping the serialized transaction as short
and quick as possible.

This makes the need for serializable updates somewhat contrary to their usage. If the data is unlikely
to be updated by another user, then why would you need serializable isolation? Yet if the data is
changeable enough to require serializable isolation, it may be difficult to achieve.

For the next example, you will open two sessions. Session A will initiate a serializable transaction and
add an additional product to an existing order. After the item has been added, and before the order total
has been updated, you’ll pause the transaction to make a change to the same order in another session. In

CHAPTER 14 ■ TRANSACTION PROCESSING

453

Session B, you’ll update the status of the order to “Processing” and commit your changes. Then you’ll
return to Session A to update the order. This will result in an ORA-08177 error, as shown in Listing 14-9.

Listing 14-9. Serialized Transaction and ORA-08177

Session A: Serialized transaction to add an additional item

SQL> set transaction isolation level serializable;

Transaction set.

SQL> variable o number
SQL> execute :o := &order_id
Enter value for order_id: 5006

PL/SQL procedure successfully completed.

SQL> variable d number
SQL> execute :d := &discount
Enter value for discount: .1

PL/SQL procedure successfully completed.

SQL> --- Add new ordered item and reduce on-hand inventory

SQL> variable i number
SQL> execute :i := &first_item
Enter value for first_item: 1791

PL/SQL procedure successfully completed.

SQL> variable q number
SQL> execute :q := &item_quantity
Enter value for item_quantity: 15

PL/SQL procedure successfully completed.

SQL> variable p number
SQL> execute :p := get_ListPrice(:i)

PL/SQL procedure successfully completed.

SQL> insert into order_items
 (order_id, line_item_id, product_id, unit_price, discount_price, quantity)
 values
 (:o, 1, :i, :p, :p-(:p*:d), :q) ;

1 row created.

CHAPTER 14 ■ TRANSACTION PROCESSING

454

SQL> update inventories set quantity_on_hand = quantity_on_hand - :q
 where product_id = :i and warehouse_id = 1 ;

1 row updated.

SQL> pause Pause ...
Pause ...

Session B: Order Status Update

SQL> variable o number
SQL> execute :o := &order_id
Enter value for order_id: 5006

PL/SQL procedure successfully completed.

SQL> variable s number
SQL> execute :s := &status
Enter value for status: 4

PL/SQL procedure successfully completed.

SQL> update orders
 set order_status = :s
 where order_id = :o ;

1 row updated.

SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = :o;

 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 5006 Harry Mean Taylor +1 416 012 4147 Processing 108.00 04 Jul 2010

SQL> select line_item_id, product_name, unit_price, discount_price,
 quantity, line_item_total
 from order_detail_line_item
 where order_id = :o
 order by line_item_id ;

ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
---- ------------------------- ---------- -------------- ---------- ---------------
 1 Cable RS232 10/AM 6 5.40 20 108.00

SQL> commit;

CHAPTER 14 ■ TRANSACTION PROCESSING

455

Session A: Return to the serializable transaction

SQL> --- Get New Order Total

SQL> variable t number
SQL> execute :t := get_OrderTotal(:o)

PL/SQL procedure successfully completed.

SQL> --- Update order total

SQL> update orders set order_total = :t where order_id = :o ;
update orders set order_total = :t where order_id = :o
*
ERROR at line 1:
ORA-08177: can't serialize access for this transaction

Since Session B had already committed changes to order 5006, Session A was not permitted to

update the order total. This is necessary to prevent a lost update. Session A could not see that the order
status had changed; its serialized view of the data still considered the order to be “New.” If Session A had
replaced the record in the order table with its version of the data, changes made by Session B would be
overwritten by the previous version of the data even though they were committed changes.

In this case, the order total would have to be updated earlier in Session A’s transaction for this
transaction to be successful. However, since the order total is a sum of the individual line items, that
number is unknown until the new line item is added. This is also a case where serializable isolation
might really be required. If two sessions were attempting to add line items to the same order at the same
time, the calculated order total might end up inaccurate.

■NOTE I have switched from hard-coded data values to user variables in the transactions. This makes it easier
to execute the order transactions repeatedly for testing and view the results at each step. The code to process
orders with prompts, variables, and functions is available on the Apress web site.

Isolating Transactions
Using the same pair of transactions, let's take a quick look at what can happen when you don't properly
isolate a transaction. In this case, Session A will commit the additional items to order 5007 before
pausing, which means the product has been added to the order and made durable, but order total does
not include the additional product. Listing 14-10 shows how permitting other sessions to see partial
transactions can jeopardize data integrity.

Listing 14-10. Inappropriate Commits and Transaction Isolation Levels

Session A: Serializable transaction to add an additional item

SQL> set transaction isolation level serializable;

CHAPTER 14 ■ TRANSACTION PROCESSING

456

Transaction set.

SQL> variable o number
SQL> execute :o := &order_id
Enter value for order_id: 5007

PL/SQL procedure successfully completed.

SQL> variable d number
SQL> execute :d := &discount
Enter value for discount: .2

PL/SQL procedure successfully completed.

SQL> --- Add new ordered item and reduce on-hand inventory

SQL> variable i number
SQL> execute :i := &first_item
Enter value for first_item: 3127

PL/SQL procedure successfully completed.

SQL> variable q number
SQL> execute :q := &item_quantity
Enter value for item_quantity: 5

PL/SQL procedure successfully completed.

SQL> variable p number
SQL> execute :p := get_ListPrice(:i)

PL/SQL procedure successfully completed.

SQL> insert into order_items
 (order_id, line_item_id, product_id, unit_price, discount_price, quantity)
 values
 (:o, 1, :i, :p, :p-(:p*:d), :q) ;

1 row created.

SQL> update inventories set quantity_on_hand = quantity_on_hand - :q
 where product_id = :i and warehouse_id = 1 ;

1 row updated.

SQL> commit;

CHAPTER 14 ■ TRANSACTION PROCESSING

457

Commit complete.

SQL> pause Pause ...
Pause ...

Session B: Order Status Update

SQL> variable o number
SQL> execute :o := &order_id
Enter value for order_id: 5007

PL/SQL procedure successfully completed.

SQL> variable s number
SQL> execute :s := &status
Enter value for status: 4

PL/SQL procedure successfully completed.

SQL> update orders
 set order_status = :s
 where order_id = :o ;

1 row updated.

SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = :o;

 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 5007 Alice Oates +41 4 012 3563 Processing 16,432.00 04 Jul 2010

SQL> select line_item_id, product_name, unit_price, discount_price,
 quantity, line_item_total
 from order_detail_line_item
 where order_id = :o
 order by line_item_id ;

ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
---- ---------------------------------- ---------- -------------- ---------- ---------------
 1 Monitor 21/HR/M 889.00 711.20 5 3,556.00
 2 Laptop 128/12/56/v90/110 3,219.00 2,575.20 5 12,876.00
 3 LaserPro 600/6/BW 498.00 398.40 5 1,992.00

SQL> commit;

CHAPTER 14 ■ TRANSACTION PROCESSING

458

Notice in the output above that the LaserPro 600 printer has been added to the order, but the order
total does not reflect the additional $1,992. The status update transaction is able to view changes made
by the partial transaction. Since Session A issued a commit, its serializable transaction has ended.
Either session will now be able to record their view of the order table, and the statement that is recorded
last gets to determine the data in the order header. If Session A completes first, Session B will alter the
order status to “Processing” but the order total will remain wrong. If Session B completes first, Session A
will set the correct order total, but the order will be returned to an order status of ‘New.” Either option
results in a lost update, which demonstrates why it's so critical to ensure that transaction completes a
single logical unit of work. Due to Session A's partial transaction, data consistency has been
jeopardized.

What if Session B was running a report instead of updating the order's status? Session A would
eventually result in a consistent update, but Session B may end up reporting inaccurate data. This is a
slightly less serious infraction, as the data in the database will be accurate. However, end users make
decisions based on reports, and the impact of a poorly placed commit will depend on the decisions to be
made. The best solution to this issue is two-fold. First, the code executed in Session A should be
corrected to removed the ill-placed commit and ensure the entire transaction will commit or fail as a
single unit. Second, if data is changing quickly and the reports are not bound by date or time ranges,
setting the report transaction to ensure a repeatable read may also be advisable.

Autonomous Transactions
Within your main transaction, you have the option of calling an autonomous transaction, which is an
independent transaction that can be called from within another transaction. The autonomous
transaction is able to commit or rollback its changes without impacting the calling, or main, transaction.
Autonomous transactions are very useful if you have information that you need to store, regardless of
the final resolution of the main transaction. Error logging is possibly the best example of a good use of
autonomous transactions, and in some cases auditing is an appropriate use as well, although overusing
autonomous transactions is not a good idea. For most of us, there are better tools available in the
database for auditing, and any attempts to circumvent normal database or transaction behavior is likely
to create problems eventually.

So when would you want to use an autonomous transaction? I can think of a few examples in your
ordering system, and in both cases, the goal would be to retain information to prevent lost sales
opportunities. For example, you might want to record the customer id and a timestamp in an
ORDER_LOG table in case the order failed. If the transaction was successful, the entry in ORDER_LOG
could note that order was created successfully. This would allow you to provide your sales team with a
report on any attempted orders that were not completed. If you've done much shopping online, you
may have received one of those e-mail reminders that you have left items in your shopping cart. Maybe
you were shopping, but something came up, or perhaps you decided that you didn't really need to
purchase that item after all. Either way, the vendor knows you were interested enough in the items to
think about buying them, and they don’t want to miss an opportunity to sell products to an interested
customer. I've been browsing Amazon lately for diving equipment, in part because I'm still learning
about the gear and in part to do a little price comparison with my local dive shop. Within a day or two,
Amazon will send an e-mail to let me know about a special sale on one of the products I was browsing. I
find this a little disconcerting, especially when I haven't even logged in while browsing, but I have to
admit that it can be awfully tempting when you receive the news that the shiny, expensive piece of
equipment you really wanted is now 20% less.

Another possibility for an autonomous transaction would be to record customer information when
a new customer places their first order. Creating a new customer can be considered a separate logical
unit of work so you’re not breaking any of the transaction design rules by committing the customer
information outside of the order. If the order is interrupted for any reason, it would be advantageous to
retain the contact data so someone can follow up with the customer to make sure the order has been
placed correctly.

CHAPTER 14 ■ TRANSACTION PROCESSING

459

In Listing 14-11, you’ll create an ORDER_LOG table with four fields: customer_id, order_id,
order_date, and order_status. Next, you’ll create autonomous transaction in a procedure. The
record_new_order procedure will log the customer id, the order id, and the current date, committing the
information immediately. You’ll add a call to the procedure in the order transaction as soon as the order
id and customer id are known.

Listing 14-11. Creating the Autonomous Order Logging Transaction

SQL> @autonomous_transaction
SQL> create table order_log
 (
 customer_id number not null,
 order_id number not null,
 order_date date not null,
 order_outcome varchar2(10),
 constraint order_log_pk primary key (customer_id, order_id, order_date)
);

Table created.

SQL> create or replace procedure record_new_order (p_customer_id IN NUMBER,
 p_order_id IN NUMBER)
 as
 pragma autonomous_transaction;
 begin
 insert into order_log
 (customer_id, order_id, order_date)
 values
 (p_customer_id, p_order_id, sysdate);

 commit;
 end;
 /

Procedure created.

Listing 14-12 shows the execution of a new order transaction containing the autonomous
transaction to log the customer information. The main transaction is rolled back, yet when you query
the order_log table, the customer information is stored. This is because the write to the order_log table
is an autonomous transaction and does not depend on the successful completion of the calling
transaction.

CHAPTER 14 ■ TRANSACTION PROCESSING

460

Listing 14-12. Executing an Order Transaction with the Order Logging Autonomous Transaction

SQL> @order_transaction

SQL> WHENEVER SQLERROR EXIT SQL.SQLCODE ROLLBACK;
SQL> variable o number
SQL> execute :o := order_id.nextval

PL/SQL procedure successfully completed.

SQL> variable c number
SQL> execute :c := &customer_id
Enter value for customer_id: 264

PL/SQL procedure successfully completed.

SQL> execute oe.record_new_order(:c,:o);

PL/SQL procedure successfully completed.

SQL> variable s number
SQL> execute :s := &salesperson_id
Enter value for salesperson_id: 145

PL/SQL procedure successfully completed.

SQL> variable d number
SQL> execute :d := &discount
Enter value for discount: .1

PL/SQL procedure successfully completed.

SQL> savepoint create_order;

Savepoint created.

SQL> insert into orders
 (order_id, order_date, order_mode, order_status, customer_id, sales_rep_id)
 values
 (:o, sysdate, 'direct', 1, :c, :s) ;

1 row created.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 14 ■ TRANSACTION PROCESSING

461

SQL> --- Add first ordered item and reduce on-hand inventory

SQL> savepoint detail_item1;

Savepoint created.

SQL> variable i number
SQL> execute :i := &first_item
Enter value for first_item: 2335

PL/SQL procedure successfully completed.

SQL> variable q number
SQL> execute :q := &item_quantity
Enter value for item_quantity: 1

PL/SQL procedure successfully completed.

SQL> variable p number
SQL> execute :p := get_ListPrice(:i)

PL/SQL procedure successfully completed.

SQL> insert into order_items
 (order_id, line_item_id, product_id, unit_price, discount_price, quantity)
 values
 (:o, 1, :i, :p, :p-(:p*:d), :q) ;

1 row created.

SQL> update inventories set quantity_on_hand = quantity_on_hand - :q
 where product_id = :i and warehouse_id = 1 ;

1 row updated.

SQL> --- Get Order Total

SQL> variable t number
SQL> execute :t := get_OrderTotal(:o)

PL/SQL procedure successfully completed.

SQL> -- Request credit authorization

SQL> savepoint credit_auth;

Savepoint created.

CHAPTER 14 ■ TRANSACTION PROCESSING

462

SQL> execute billing.credit_request(:c,:t);
Customer ID = 264
Amount = 90
Authorization = 99

PL/SQL procedure successfully completed.

SQL> --- Update order total

SQL> savepoint order_total;

Savepoint created.

SQL> update orders set order_total = :t where order_id = :o ;

1 row updated.

SQL> select order_id, customer, mobile, status, order_total, order_date
 from order_detail_header
 where order_id = :o ;

 ORDER_ID CUSTOMER MOBILE STATUS ORDER_TOTAL ORDER_DATE
---------- ------------------------- --------------- ------------ -------------- -----------
 5020 George Adjani +1 215 123 4702 New 90.00 05 Jul 2010

SQL> select line_item_id ITEM, product_name, unit_price, discount_price, quantity,
line_item_total
 from order_detail_line_items
 where order_id = :o
 order by line_item_id ;

 ITEM PRODUCT_NAME UNIT_PRICE DISCOUNT_PRICE QUANTITY LINE_ITEM_TOTAL
----- ------------------------ ---------- -------------- ---------- ---------------
 1 Mobile phone 100.00 90.00 1 90.00

SQL> rollback;

Rollback complete.

SQL> select * from order_log;

CUSTOMER_ID ORDER_ID ORDER_DATE ORDER_STATUS
----------- -------- ------------------- ------------
 264 5020 2010-07-05 00:45:56

CHAPTER 14 ■ TRANSACTION PROCESSING

463

The order log retains a committed record of the attempted order. As for the order status, there are
several ways you could handle that. You could create another procedure that would set the order status
in the ORDER_LOG table when the order was committed by the application. If the order status was not
populated in the ORDER_LOG, you would know the order had not been committed. You could also
schedule a process to compare the ORDER_LOG table to the ORDERS table. If no record was found in
the ORDERS table, then you would update the ORDER_LOG table to note the order had failed.

When using autonomous transactions, you want to be certain that you are not attempting to divide
a transaction or circumvent normal database behavior. You also want to think carefully about the effect
you are creating when you allow the autonomous transaction to commit while rolling the main
transaction back. The work in the autonomous transaction should clearly be its own logical unit of work.

Summary
Transactions are the heart of the database. You create databases to store information and if that
information is going to be useful, the data must be protected and it must remain consistent. If you
jeopardize the integrity of the data, you have significantly devalued the system. Data integrity is an all or
nothing proposition: either you have it or you don’t. Although I’ve heard people use percentage values
to describe a database’s level of accuracy, that seems to be a downward spiral into increasing
uncertainty. Once you know part of the data is wrong, how do you know any of the data is accurate?
And how do you know which part of the data you can trust?

If your data is going to remain trustworthy, you need to ensure that each transaction complies with
the ACID properties. Transactions must be atomic, containing one logical unit of work that will succeed
or fail as a whole. Transactions must be consistent: they need to ensure the data is consistent when they
begin, and that the data will remain consistent when the transaction ends. Transactions should occur in
isolation: uncommitted changes should not be visible to users or other transactions, and some
transactions require higher levels of isolation than others. Transactions must be durable: once the
changes have been committed to the database and the database has responded that the changes exist,
users should be able to count on the fact that there is a record of their changes.

Fortunately, Oracle makes it fairly easy for you to build ACID compliant transactions as long as you
define the boundaries of your transaction carefully and accurately. Oracle does not require you to
specify that you are starting a new transaction; instead the database knows which kinds of statements
begin a transaction, and it creates a transaction id to track the operations within it. You should always
specifically commit or rollback your transactions, as failing to do so can make those transaction
boundaries a little fuzzy. Relying on the default behavior of software tools is risky, as the behavior may
change in a future release.

Building sound transactions requires both technical skills and functional knowledge, and having
both of those is a rare and valuable commodity in the IT industry. This book will provide a solid
foundation for the development of your technical skill. You can further develop those skills by following
up with the reference material mentioned earlier, but learning to apply those skills requires practice.
Start by downloading the changes I made to the Order Entry schema and build a few transactions of your
own. Deliberately introduce some bad choices just to see what happens. (But you don’t leave that code
lying around—it can be dangerous!) Experimenting with isolation levels can be particularly interesting.
Practice building a few more complex transactions, and make sure that the transaction will fail if any
part of it fails. Then add some custom exception handling and savepoints so that you don’t have to lose
the entire transaction if you need to revert part of it. Once you’ve got something you’re proud of, wrap it
up in a procedure and be sure to share what you’ve learned with someone else.

C H A P T E R 1 5

■ ■ ■

465

Testing and Quality Assurance

Robyn Sands

As you've worked through the chapters of this book, you may have written some code to test the
examples. And since you chose this particular book instead of a “Welcome to SQL” style book, it's likely
that you had written quite a few SQL statements before you ever picked this book up. As you've read this
book, did some of the chapters remind you of your prior work? If so, how did you feel about the code
you've written in the past?

If you're like most developers, there were times when you thought, “Hey, considering how little I
knew about this functionality back then, I did pretty well.” And there may have been a few times when
you cringed a bit, realizing that something you were very proud of at the time wasn't such a great
approach after all. Don't worry; we all have applications that we would write completely differently if we
only knew then what we know now. Besides, it's always easier to write better code with hindsight vision
or as an armchair code jockey.

If the code you write today is better than the code you wrote yesterday, you’re continuing to grow
and learn, and that is commendable. Realizing our older work could have been done better is an
inevitable part of the learning process. As long as we learn from our mistakes and do it a little better with
the next application or the next bit of code, we're moving in the right direction.

It’s also true that we need to be able to measure the quality of our current code now, not five years
from now when we've grown even wiser. We want to find the problems in our code before those
problems affect our users. Most of us want to find all the errors or performance issues before anyone
else even sees our work. However, while that kind of attitude may indicate an admirable work ethic, it's
not an advisable or even achievable goal. What we can achieve is a clear definition what a specific piece
of code needs to accomplish and how we will prove that the code meets the defined requirements.
Code should have measurable indicators of success that can prove or disprove the fact that we have met
our goal.

So what are those measurable factors? While the target measurement will vary depending on the
application, there are several basic requirements for all application code. First and foremost, the code
needs to return accurate results and we need to know that results will continue to be accurate
throughout the system’s life cycle. If end users cannot count on the data returned by a database
application, that’s a pretty serious failure.

Performance is another measurable attribute of our code. The target run times will be highly
dependent on the application in question: a database used by the home owner's association to track
who has paid their annual fees is not required to perform at the same level as a database containing the
current stock quotes, but the methods used to compare execution plans and measure run time can be
the same. Code quality requires that we understand the application requirements, the function being
performed, and the strengths and weaknesses of the specific system. Testing should focus on verifying
functionality, pushing the weakest links to their breaking point, and recording all measurements along
the way.

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

466

Test Cases
For the examples in this chapter, you will be working with the same Order Entry sample schema that you
used for the transaction processing examples in Chapter 14. You will make more changes to your
schema, adding new data and altering views and reports. You will begin by defining the changes to be
made and the tests you will use to verify the success of those changes.

So here is the backstory: one of your suppliers, identified only as “Supplier 103089” in the database,
is changing their product numbers for the software you purchase from them to resell to your customers.
The new identifiers are appended with a '-' and a two character value to identify the software package
language. For example, the supplier's product identifier for all English software packages will end in “-
EN”. The supplier will require their product identifier to be referenced for ordering, software updates,
and warranty support. The new product identifiers have an effective date of October 10, 2010. This
change presents the following challenges for your company:

• The Order Entry schema includes the supplier’s identifier in the PRODUCT_INFORMATION
table, but the supplier product identifier is not stored in the sample schema database at all. You
will alter the order entry schema to add this field and create a numerical value to serve as the
current supplier product id. These changes can be considered a prerequisite to the changes
instituted by your supplier.

• Once you have added an initial supplier product identifier for all the products you sell, you
need to determine how you will add the modified product identifiers for this one supplier. You
also need to have a method of controlling the effective date of the new identifiers.

• The purchasing department uses an inventory report to determine which products are getting
low on stock. This report will need to reflect the current supplier product identifier until
October 10, 2010. After that date, the report should print the new supplier product identifier so
the purchasing agent can place and verify orders easily.

• The order entry system will continue to use your internal product identifier when orders are
received from your customers. Orders and invoices must show your product identifier and
name, plus the supplier product identifier.

• You have inventory on hand that is packaged with the current supplier product identifier. You
can continue to sell those products as-is but your customer invoices must show the actual
supplier product ID found on the packaging. This means your inventory system must treat the
items labeled with the new numbering scheme as a distinct product.

As you make these changes, there are several basic tests and quality issues to consider. The points

that follow are not intended to be all-inclusive as every system will have its own unique test
requirements; however, there are some quality checks that can be applied to all systems. You’ll use the
following points as a starting point:

• All objects that were valid before your changes should be valid when your changes are
complete. Views, functions, procedures, and packages can be invalidated by a table change,
depending on how the code for those objects was originally written. You will check for invalid
schema objects both before and after you make your changes. Objects that are invalidated as an
indirect result of your planned modifications should recompile successfully without further
changes.

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

467

• All data changes and results output must be accurate. Verifying data can be one of the more
tedious tasks when developing or altering a database application, and the more data in the
system, the more tedious the work will be. It's also the most critical test your code must past: if
the data is not accurate, it doesn't matter if the other requirements have been met or how fast
the code executes. If the data being stored or returned cannot be trusted, your code is wrong
and you’ve failed the most basic requirement. The simplest approach is to break data
verification into manageable components, beginning by verifying the core data set, and then
gradually expanding the test to the more unique use cases (the “edge cases”) until you are
certain all data is correct.

• Query performance can be verified by comparing the before and after versions of the execution
plan. If the execution plan indicates the process has to work harder after your modifications,
you want to be sure that additional work is, in fact, required and not the result of a mistake. Use
of execution plans was addressed in detail in Chapter 6 so refer back to that chapter for more
information on the topic plus tips on making the best use of the information found in the
execution plan.

Later in this chapter, I will discuss code instrumentation and the Instrumentation Library for Oracle

(ILO). ILO uses Oracle’s DBMS_APPLICATION_INFO procedures. While it is possible to use the
DBMS_APPLICATION_INFO procedures on their own, ILO makes it very easy and straightforward to add
instrumentation to your code. I've added some additional functionality to the ILO package; the updates
are available for download at Apress. Once your code is instrumented, these additional modules make it
possible to build test systems that record processing times as you make iterative changes to your code or
system configuration. This performance data will make it very clear when your changes have had a
positive impact on processing times and when you might want to consider another approach.

Testing Methods
There are as many different approaches to software testing as there are software development—and
there have quite possibly been an equal number of battles fought over both topics. Although it may be
slightly controversial in a database environment, I'm going to advocate an approach known as Test
Driven Development (TDD). Test Driven Development originated in the realm of extreme programming
so you will need to make some modifications to the process to make it effective for database
development, but it offers some very genuine benefits for both new development and modification
efforts.

In TDD, the developer begins by creating simple, repeatable tests that will fail in the existing system
but will succeed once the change is implemented correctly. This approach has the following benefits:

• In order to write the test that will fail, you will have to thoroughly understand the requirements
and the current implementation before you even begin to write application code.

• Building the unit test script first ensures that you start by working through the logic of the
necessary changes, thereby decreasing the odds that your code will have bugs or need a major
rewrite.

• By creating small, reusable unit tests to verify the successful implementation of a change, you
build a library of test scripts that can be used both to test the initial implementation of the
change and to confirm that the feature is still operating as expected as other system changes are
made.

• These small unit test scripts can be combined to create larger integration-testing scripts or
become part of an automated test harness to simplify repetitive testing.

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

468

• TDD assists in breaking changes or new development into smaller, logical units of work. The
subsets may be easier to understand and explain to other developers, which can be especially
important when project members are not co-located.

• When test design is delayed until after development, testing frequently ends up being
shortchanged, with incomplete or poorly written tests due to schedule constraints. Including
test development efforts in the code development phases results in higher quality tests that are
more accurate.

As acknowledged earlier, TDD needs some adjustments in a database environment or you run the

risk of building yet another black box database application that is bound to fail performance and
scalability testing. Whenever you are developing or modifying an application that stores or retrieves
information from a database, as you are preparing those first unit tests, you must consider the data
model or work with the individual(s) responsible for that task. In my (sometimes) humble opinion, the
data model is the single most important indicator of a database application’s potential to perform.
The schema design is crucial to the application’s ability to scale for more users, more data, or both. This
does not mean that development cannot begin until there is a flawless entity-relationship model, but it
does mean that the core data elements must be understood and the application tables should be well
designed for at least those core elements. And if the database model is not fully developed, then build
the application using code that will not result in extensive changes as the data model is refactored.

So what exactly am I suggesting? To put it bluntly, if your application schema will continue to be
developed progressively, use procedures and packages for your application code. This will allow the
database to be refactored as data elements are moved or added, without requiring major front end code
rewrites.

■NOTE This has been far from a complete explanation of Test Driven Development or database refactoring. I
strongly recommend the book Refactoring Databases: Evolutionary Database Design by Scott W. Ambler and
Pramodkumar J. Sadalage for a look at database development using Agile methods. If you are interested in
information specifically on TDD, you are welcome to contact me directly for additional references.

But let’s get back to your application changes, shall we? In the case of the changing supplier
product identifier, you begin by asking some questions. How will this new data element be used by your
company and your employees? How will this change impact your order entry and inventory data? Will
this change impact systems or processes beyond your order entry system? At minimum, your
purchasing agents need the supplier's current product identifier to place an order for new products.
Depending on how well recognized the component is, the supplier’s product identifier could be used
more widely than one might expect. A specific product or component may even be a selling point with
your customers. A great example is CPUs: the make and the model of the processor in the laptop can be
far more important than the brand name on the case. If this is true for the products you are reselling,
the supplier's product id may be represented throughout multiple systems beyond the ordering system,
so it would be necessary to extend your evaluation to include additional systems and processes.

Unit Tests
As noted in the previous section, your first goal will be to write the unit tests you need to demonstrate
that your application modifications are successful. However, since this is a database application, you
need to determine where this data element belongs before you can even begin to write the first unit test.
Although the Oracle-provided sample schemas are far from perfect, you cannot refactor the entire

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

469

schema in this chapter, so there will be many data design compromises in the examples. This can also
be true in the real world: it is seldom possible to make all the corrections we know should be made. This
is why correcting problems in the schema design can be a long, iterative process requiring very careful
management.

■NOTE Reminder: The focus for this chapter is testing methods. I’ll keep the examples as short as possible to
avoid detracting from the core message. This means the examples do not represent production ready code, nor do
the sample schemas represent production ready data models.

Considering the primary Order Entry functions that will make use of the supplier product identifier,
you decide to store the supplier product id in the PRODUCT_INFORMATION table. This table contains
other descriptive attributes about the product, and it is already used in the output reports that will now
need to include your newest data element. These are not the sole considerations when deciding where
and how to store data, but for your purposes in this chapter, it will do. In the real world, the amount of
data to be stored and accessed, which data values will read most frequently, and how often specific data
values will be updated should all be considered prior to making decisions about where the data belongs.

Once you’ve decided where you will keep the data, you can begin preparing the necessary unit tests
for your change. So, what are the unit tests that will fail before you’ve added the supplier’s product id to
your schema? Here’s a list of the unit tests you will complete in this chapter:

• Include the supplier’s product id on individual orders and invoices.

• Print the supplier’s product id on the open order summary report.

• Print a purchasing report that shows the current supplier’s product id.

If you have been using a TDD process throughout development, then there are likely to be several

generic unit tests that have already been written and may be appropriate to include in this round of
tests. Typical verification tests may focus on the following tasks:

• Confirm that all objects are valid before and after your changes.

• Confirm that an insert will fail if required constraints are not met.

• Verify that default values are populated when new data records are added.

• Execute a new order transaction with and without products from this specific supplier.

If you have been thorough in your initial evaluation and unit test development work, you will know

which tests are expected to fail. Other operations, such as the new order transaction I covered in the last
chapter, you would expect to succeed, as you did not note that any changes are required for a new order.
Should the existing unit tests for creating a new order fail after your changes, it would indicate that you
did not analyze the impact of this latest change as thoroughly as you should have.

Before you make any changes to the database objects, you should confirm the state of the existing
objects. Preferably, all objects will be valid before you start making changes. This is important as it
ensures that you are aware of any objects that were invalid prior to your changes, and it helps you to
recognize when you are responsible for invalidating the objects. Listing 15-1 shows a query to check for
invalid objects and the result of the query.

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

470

Listing 15-1. Checking for Invalid Objects Prior to Altering Database Objects

SQL> select object_name, object_type, last_ddl_time, status
 from user_objects where status != 'VALID';

no rows selected

Listing 15-2 shows your three unit test scripts. Each of these scripts represents a report that must
include the correct supplier product identifier as related to your internal product number. The first test
creates a report for a single order, which is essentially the customer’s invoice. The second test is the
purchasing report, which must print the correct supplier product identifier plus the inventory on hand.
The third unit test is a complete listing of all open orders; it has been built using several views.

Listing 15-2. Unit Test Scripts

--- order_report.sql

set linesize 115
column order_id new_value v_order noprint
column order_date new_value v_o_date noprint
column line_no format 99
column order_total format 999,999,999.99

BREAK ON order_id SKIP 2 PAGE
BTITLE OFF

compute sum of line_item_total on order_id

ttitle left 'Order ID: ' v_order -
 right 'Order Date: ' v_o_date -
 skip 2

spool logs/order_report.txt

select h.order_id ORDER_ID, h.order_date, li.line_item_id LINE_NO,
 li.supplier_product_id SUPP_PROD_ID, li.product_name, li.unit_price,
 li.discount_price, li.quantity, li.line_item_total
 from order_detail_header h, order_detail_line_items li
 where h.order_id = li.order_id
 and h.order_id = ‘&Order_Number’
 order by h.order_id, line_item_id ;

spool off

--- purchasing_report.sql

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

471

break on supplier skip 1
column target_price format 999,999.99
set termout off

spool logs/purchasing_report.txt

select p.supplier_id SUPPLIER, p.supplier_product_id SUPP_PROD_ID,
 p.product_name PRODUCT_NAME, i.quantity_on_hand QTY_ON_HAND,
 (p.min_price * .5) TARGET_PRICE
 from product_information p, inventories i
 where p.product_id = i.product_id
 and p.product_status = 'orderable'
 and i.quantity_on_hand < 1000
 order by p.supplier_id, p.supplier_product_id ;

spool off

set termout on

--- order_reports_all.sql

set linesize 115
column order_id new_value v_order noprint
column order_date new_value v_o_date noprint
column line_no format 99
column order_total format 999,999,999.99

BREAK ON order_id SKIP 2 PAGE
BTITLE OFF

compute sum of line_item_total on order_id

ttitle left 'Order ID: ' v_order -
 right 'Order Date: ' v_o_date -
 skip 2

select h.order_id ORDER_ID, h.order_date,
 li.line_item_id line_no, li.product_name, li.supplier_product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
 from order_detail_header h, order_detail_line_item li
 where h.order_id = li.order_id
order by h.order_id, li.line_item_id ;

Listing 15-3 shows execution of your unit test scripts and the resulting (expected) failures.

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

472

Listing 15-3. Initial Unit Test Results

SQL> @ order_report.sql
 li.supplier_product_id,
 *
ERROR at line 2:
ORA-00904: "LI"."SUPPLIER_PRODUCT_ID": invalid identifier

SQL> @purchasing_report.sql
 order by p.supplier_id, p.supplier_product_id
 *
ERROR at line 6:
ORA-00904: "P"."SUPPLIER_PRODUCT_ID": invalid identifier

SQL> @order_report_all.sql
 li.line_item_id line_no, li.product_name, li.supplier_product_id ITEM_NO,
 *
ERROR at line 2:
ORA-00904: "LI"."SUPPLIER_PRODUCT_ID": invalid identifier

Unit tests are typically created for and executed from the application interface but it’s extremely

helpful to create database-only unit tests as well. Having a set of scripts that you can run independently
of the application code outside of the database will allow you to check database functionality before you
hand new code over to the test team. And if the front-end application tests result in unexpected errors,
you will already have information about a successful database level execution, which will help both
teams troubleshoot problems more efficiently.

Regression Tests
The goal of regression testing is to confirm that all prior functionality continues to work as expected.
You also must be certain that you do not re-introduce old issues (bugs) into your code as you implement
new functionality. Regression tests are most likely to fail when there has not been adequate source code
control so someone has inadvertently used an obsolete piece of code as their starting point.

If unit tests were written for the existing functionality as the first step when the functionality was
developed, those unit tests become the regression tests to confirm that each component of the system is
still working as expected. In your case, the tests used to verify the order transaction process can be used
to verify that orders will still be processed as expected. Although I’m cheating a bit, I’ll skip the re-
execution of the order entry transactions as I spent many pages on this topic in the last chapter.

Schema Changes
As a prerequisite to executing your examples, you need to make several changes to your schema to
support storing a supplier product number at all. You’ll add a new varchar2 column in the
PRODUCT_INFORMATION table to store the SUPPLIER_PRODUCT_ID field for each item you sell.
You’ll populate the new column with a value to represent the current supplier product ids for all the

mailto:@purchasing_report.sql
mailto:@order_report_all.sql

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

473

products you sell, and you’ll use the DBMS_RANDOM package to generate these numbers. Once this
data exists, your basic unit tests referencing the supplier product identifier should succeed.

However, to support the concept of effective product ids, you will add new records to the
PRODUCT_INFORMATION table using your supplier’s new identification values, a new internal product
number with the same product description and pricing. While you could update the existing records,
this would violate the requirement to accurately reflect the supplier’s product identifier shown on the
product packaging in your warehouses. It would also result in changing historical data, since you’ve
already sold copies of this software to other customers. Although the software in the package is
unchanged, the fact that your supplier has relabeled it essentially creates a brand new product, which is
why you need these new product records. The new records will be entered with a product status of
“planned,” since the effective date is in the future. On the October 10, 2010, the new parts will be marked
as “orderable” and the current parts will become “obsolete.”

In order to manage the effective dates for the changing internal product identifiers, you will create a
new table, PRODUCT_ID_EFFECTIVITY. You’ll also create a PRODUCT_ID sequence to generate your
new internal identifiers, making certain that your sequence begins at a higher value that any of your
existing product records. Although I won’t cover it in this chapter, this table could be used by a
scheduled process that would update the PRODUCT_STATUS field in the PRODUCT_INFORMATION
table to reflect whether a product was planned, orderable, or obsolete. It is the change in product status
that will trigger which supplier’s product id is shown on the purchasing report so the purchasing agent
can reference the correct number when placing new orders. Listing 15-4 shows the schema changes as
they are processed.

Listing 15-4. Schema Changes and New Product Data

SQL> alter table product_information add supplier_product_id varchar2(15);

Table altered.

SQL> update product_information
 set supplier_product_id = round(dbms_random.value(100000, 80984),0) ;

288 rows updated.

SQL> commit;

Commit complete.

SQL> create sequence product_id start with 3525 ;

Sequence created.

SQL> create table product_id_effectivity (
 product_id number,
 new_product_id number,
 supplier_product_id varchar(15),
 effective_date date) ;

Table created.

SQL> insert into product_id_effectivity

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

474

 (select product_id, product_id.nextval,
 round(dbms_random.value(100000, 80984),0)||'-'||
 substr(product_name, instr(product_name,'/',-1,1)+1), '10-oct-10'
 from product_information, dual
 where supplier_id = 103089
 and product_name like '%/%') ;

9 rows created.

SQL> select * from product_id_effectivity ;

PRODUCT_ID NEW_PRODUCT_ID SUPPLIER_PRODUC EFFECTIVE_DATE
---------- -------------- --------------- -------------------
 3170 3525 93206-SP 0010-10-10 00:00:00
 3171 3526 84306-EN 0010-10-10 00:00:00
 3176 3527 89127-EN 0010-10-10 00:00:00
 3177 3528 81889-FR 0010-10-10 00:00:00
 3245 3529 96987-FR 0010-10-10 00:00:00
 3246 3530 96831-SP 0010-10-10 00:00:00
 3247 3531 85011-DE 0010-10-10 00:00:00
 3248 3532 88474-DE 0010-10-10 00:00:00
 3253 3533 82876-EN 0010-10-10 00:00:00

9 rows selected.

SQL> commit ;

Commit complete.

SQL> insert into product_information (
 product_id, product_name, product_description, category_id,
 weight_class, supplier_id, product_status, list_price, min_price,
 catalog_url, supplier_product_id)
 (select e.new_product_id,
 p.product_name,
 p.product_description,
 p.category_id,
 p.weight_class,
 p.supplier_id,
 'planned',
 p.list_price,
 p.min_price,
 p.catalog_url,
 e.supplier_product_id

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

475

 from product_information p, product_id_effectivity e
 where p.product_id = e.product_id
 and p.supplier_id = 103089) ;

9 rows created.

SQL> select product_id, product_name, product_status, supplier_product_id
 from product_information
 where supplier_id = 103089
 order by product_id ;

PRODUCT_ID PRODUCT_NAME PRODUCT_STATUS SUPPLIER_PRODUC
---------- --------------------------------- -------------------- ---------------
 3150 Card Holder - 25 orderable 3150
 3170 Smart Suite - V/SP orderable 3170
 3171 Smart Suite - S3.3/EN orderable 3171
 3175 Project Management - S4.0 orderable 3175
 3176 Smart Suite - V/EN orderable 3176
 3177 Smart Suite - V/FR orderable 3177
 3245 Smart Suite - S4.0/FR orderable 3245
 3246 Smart Suite - S4.0/SP orderable 3246
 3247 Smart Suite - V/DE orderable 3247
 3248 Smart Suite - S4.0/DE orderable 3248
 3253 Smart Suite - S4.0/EN orderable 3253
 3525 Smart Suite - V/SP planned 93206-SP
 3526 Smart Suite - S3.3/EN planned 84306-EN
 3527 Smart Suite - V/EN planned 89127-EN
 3528 Smart Suite - V/FR planned 81889-FR
 3529 Smart Suite - S4.0/FR planned 96987-FR
 3530 Smart Suite - S4.0/SP planned 96831-SP
 3531 Smart Suite - V/DE planned 85011-DE
 3532 Smart Suite - S4.0/DE planned 88474-DE
 3533 Smart Suite - S4.0/EN planned 82876-EN

20 rows selected.

Once you’ve completed the necessary schema updates, your next step will be to check for invalid
objects again. All objects were valid when you ran your initial check, but now you have altered a table
that is likely to be referenced by several other code objects in your schema. If those objects were coded
properly, you will be able to recompile them as-is and they’ll become valid again. If the code is sloppy
(perhaps someone used a ‘select * from PRODUCT_INFORMATION’ clause to populate an object that
does not have the new field), then the recompile will fail and you’ll need to plan for more application
modifications. The unit test to look for invalid objects, plus the two recompiles that are required after
your changes are shown in Listing 15-5.

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

476

Listing 15-5. Invalid Objects Unit Test and Object Recompile

SQL> select object_name, object_type, last_ddl_time, status
 from user_objects
 where status != 'VALID';

OBJECT_NAME OBJECT_TYPE LAST_DDL_ STATUS
----------------------------------- ------------------- --------- -------
GET_ORDER_TOTAL PROCEDURE 04-jul-10 INVALID
GET_LISTPRICE FUNCTION 04-jul-10 INVALID

SQL> alter function GET_LISTPRICE compile ;

Function altered.

SQL> alter procedure GET_ORDER_TOTAL compile ;

Procedure altered.

SQL> select object_name, object_type, last_ddl_time, status
 from user_objects
 where status != 'VALID';

no rows selected

Repeating the Unit Tests
Once you’ve confirmed that your planned schema changes have been successfully implemented and all
objects are valid, it’s time to repeat the remaining unit tests. This time, each of the tests should execute
and you should be able to verify that the supplier’s product id is accurately represented in the data
results. Results from the second execution of the unit test are shown in Listing 15-6. To minimize the
number of trees required to print this book, output from the reports will be abbreviated.

Listing 15-6. Second Execution of Unit Tests

SQL> @order_report

Order ID:5041 Order Date: 13 Jul 2010

 NO SUP_PROD_ID PRODUCT_NAME UNIT_PRICE DISC_PRICE QTY ITEM_TOTAL
--- ----------- ------------------------- ---------- ---------- ---- ----------
 1 98811 Smart Suite - S4.0/DE 222.00 199.80 5 999.00

SQL> @purchasing_report

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

477

 SUPPLIER S_PRODUCT PRODUCT_NAME QTY_ON_HAND TARGET_PRICE
---------- ------------ ----------------------- ----------- ------------
 103086 96102 IC Browser Doc - S 623 50.00

 103088 83069 OSI 1-4/IL 76 36.00

 103089 86151 Smart Suite - S4.0/EN 784 94.00
 89514 Smart Suite - V/DE 290 48.00
 92539 Smart Suite - V/EN 414 51.50
 93275 Smart Suite - V/FR 637 51.00
 95024 Smart Suite - S4.0/SP 271 96.50
 95857 Smart Suite - V/SP 621 66.00
 98796 Smart Suite - S3.3/EN 689 60.00
 98811 Smart Suite - S4.0/DE 114 96.50
 99603 Smart Suite - S4.0/FR 847 97.50
.......

SQL> @order_report_all.sql

Order ID: 2354 Order Date: 14 Jul 2002
ID PRODUCT_NAME ITEM_NO UNIT_PRICE DISCOUNT_PRICE QTY LINE_ITEM_TOTAL
--- ------------------------ -------- ---------- -------------- ----- ---------------
 1 KB 101/EN 94979 48.00 45.00 61 2,745.00
 1 KB 101/EN 98993 48.00 45.00 61 2,745.00
 1 KB 101/EN 85501 48.00 45.00 61 2,745.00
.......

Order ID: 5016 Order Date: 06 Jul 2010
 ID PRODUCT_NAME ITEM_NO UNIT_PRICE DISCOUNT_PRICE QTY LINE_ITEM_TOTAL
--- ------------------------ -------- ---------- -------------- ----- ---------------
 1 Inkvisible Pens 86030 6.00 5.40 1000 5,400.00

Order ID: 5017 Order Date: 06 Jul 2010
 ID PRODUCT_NAME ITEM_NO UNIT_PRICE DISCOUNT_PRICE QTY LINE_ITEM_TOTAL
--- ------------------------ -------- ---------- -------------- ----- ---------------
 1 Compact 400/DQ 87690 125.00 118.75 25 2,968.75

Order ID: 5041 Order Date: 13 Jul 2010
 ID PRODUCT_NAME ITEM_NO UNIT_PRICE DISCOUNT_PRICE QTY LINE_ITEM_TOTAL
--- ------------------------ -------- ---------- -------------- ----- ---------------
 1 Smart Suite - S4.0/DE 98811 222.00 199.80 5 999.00

Take note that in each case where the product name shows a product that will be affected by your
supplier’s new identifiers, your reports are still showing the current supplier identifier. That’s because
these reports have all been executed as of a date prior to the October 10, 2010 effective date. What you
have not yet addressed in your testing is a mechanism to set products referencing the old supplier
product identifiers to “obsolete” and to make your new products referencing the new supplier product
identifier “orderable.” After the effective date has passed, you need the purchasing report in particular

mailto:@order_report_all.sql

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

478

to reference the new IDs. Order data should continue to represent the item ordered and shipped, which
would not necessarily be determined by the effective date for the part number change. Instead, you
want your sales team to sell the older product first, so you would only begin to see the new product
identifiers on orders and invoices after the existing inventory was depleted. This thought process
should trigger the development of a few more unit tests, such as testing the process to alter product
status after a product change effectivity date had passed and confirming that the Order Entry system will
not make the new product identifiers available for purchase until the old stock has been depleted.

Execution Plan Comparison
One of the best tools available for evaluating the impact of the changes you make to database objects
and code is the execution plan. By recording the execution plan both before and after your changes, you
have a detailed measurement of exactly how much work the database needs to complete in order to
process requests for the data in the past and how much work will be required to process those same
requests in the future. If the comparison of the before and after versions of the execution plan indicates
that a significant amount of additional work is required, it may be necessary to reevaluate the code to
see if you can optimize it. If you find the process is already as optimized as it can be, you can then use
the information to nicely explain to the users that their report may take longer in the future due to the
additional functionality. Once you express your findings in those terms, you will discover exactly how
much the users value that new functionality, and it will be up to them to decide if the changes are
important enough to move to production.

Comparing the execution plans can also make it very clear when there is something wrong with a
query. If you find that a process is working much harder to get the data, but the new changes don’t
justify the additional work, there is a strong possibility that there is an error in the code somewhere.

For the next example, you will review the execution plans of the complete order report from your
unit testing. The execution plan recorded before you made any changes to the database is shown in
Listing 15-7. The scripts to gather the execution plans are based on the approach demonstrated in
Chapter 6.

Listing 15-7. Order Report Execution Plan (Before)

alter session set statistics_level = 'ALL';

set linesize 105
column order_id new_value v_order noprint
column order_date new_value v_o_date noprint
column ID format 99
column order_total format 999,999,999.99

BREAK ON order_id SKIP 2 PAGE
BTITLE OFF

compute sum of line_item_total on order_id

ttitle left 'Order ID: ' v_order -
 right 'Order Date: ' v_o_date -
 skip 2

spool logs/order_report_all_pre.txt

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

479

select /* OrdersPreChange */ h.order_id ORDER_ID, order_date,
 li.line_item_id ID, li.product_name, li.product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
 from order_detail_header h, order_detail_line_items li
 where h.order_id = li.order_id
 order by h.order_id, li.line_item_id ;

spool off

set lines 150
spool logs/OrdersPreChange.txt

@pln.sql OrdersPreChange

PLAN_TABLE_OUTPUT
--
SQL_ID ayucrh1mf6v4s, child number 0

select /* OrdersPreChange */ h.order_id ORDER_ID, order_date,
li.line_item_id ID, li.product_name, li.product_id ITEM_NO,
li.unit_price, li.discount_price, li.quantity, li.line_item_total
from order_detail_header h, order_detail_line_items li where
h.order_id = li.order_id order by h.order_id, li.line_item_id

Plan hash value: 3662678147

| Id |Operation |Name |Starts |E-Rows |A-Rows |Buffers |

0	SELECT STATEMENT		1		417	29
1	SORT ORDER BY		1	474	417	29
* 2	HASH JOIN		1	474	417	29
3	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	297	297	16
4	NESTED LOOPS		1	474	417	13
5	MERGE JOIN		1	474	417	9
* 6	TABLE ACCESS BY INDEX ROW	ORDERS	1	79	79	2
7	INDEX FULL SCAN	ORDER_PK	1	114	114	1
* 8	SORT JOIN		79	678	417	7
9	TABLE ACCESS FULL	ORDER_ITEMS	1	678	678	7
* 10	INDEX UNIQUE SCAN	ORDER_STATUS_PK	417	1	417	4

Predicate Information (identified by operation id):

 2 - access("OI"."PRODUCT_ID"="PI"."PRODUCT_ID")
 6 - filter("O"."SALES_REP_ID" IS NOT NULL)

mailto:@pln.sql

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

480

 8 - access("O"."ORDER_ID"="OI"."ORDER_ID")
 filter("O"."ORDER_ID"="OI"."ORDER_ID")
 10 - access("O"."ORDER_STATUS"="OS"."ORDER_STATUS")

35 rows selected.

The order report is generated by joining two views: the order header information and the order line
item details. You’ll assume the report is currently running fast enough to meet user requirements and
that there are no indicators that the quantity of data in the underlying tables is expected to increase
dramatically in the future. The report is deemed as meeting requirements and the execution plan shall
be saved for future reference.

This order report was executed as one of your first unit tests to verify that your unit tests work as
expected. After you made the required database changes, you executed the order report again and
confirmed that it completed. The report also seems to complete in about the same amount of time as it
did in the past. But let’s take a look at the latest execution plan to see how the report is really
performing. The post-change execution plan is shown in Listing 15-8.

Lising 15-8. Order Report Execution Plan (After)

alter session set statistics_level = 'ALL';

set linesize 115
column order_id new_value v_order noprint
column order_date new_value v_o_date noprint
column ID format 99
column order_total format 999,999,999.99

BREAK ON order_id SKIP 2 PAGE
BTITLE OFF

compute sum of line_item_total on order_id

ttitle left 'Order ID: ' v_order -
 right 'Order Date: ' v_o_date -
 skip 2

spool logs/order_report_all_fail.txt

select /* OrdersChangeFail */ h.order_id ORDER_ID, order_date,
 li.line_item_id ID, li.product_name, p.supplier_product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
 from order_detail_header h, order_detail_line_items li, product_information p
 where h.order_id = li.order_id
 and li.product_id = p.product_id
 order by h.order_id, li.line_item_id ;

spool off

set lines 150

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

481

spool logs/OrdersChangeFail.log

@pln.sql OrdersChangeFail

PLAN_TABLE_OUTPUT

SQL_ID avhuxuj0d23kc, child number 0

select /* OrdersChangeFail */ h.order_id ORDER_ID, order_date,
li.line_item_id ID, li.product_name, p.supplier_product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
from order_detail_header h, order_detail_line_items li,
product_information p where h.order_id = li.order_id and
li.product_id = p.product_id order by h.order_id, li.line_item_id

Plan hash value: 1984333101

| Id |Operation |Name |Starts |E-Rows |A-Rows |Buffers |

0	SELECT STATEMENT		1		417	45
1	SORT ORDER BY		1	474	417	45
* 2	HASH JOIN		1	474	417	45
3	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	297	297	16
* 4	HASH JOIN		1	474	417	29
5	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	297	297	16
6	NESTED LOOPS		1	474	417	13
7	MERGE JOIN		1	474	417	9
* 8	TABLE ACCESS BY INDEX RO	ORDERS	1	79	79	2
9	INDEX FULL SCAN	ORDER_PK	1	114	114	1
* 10	SORT JOIN		79	678	417	7
11	TABLE ACCESS FULL	ORDER_ITEMS	1	678	678	7
* 12	INDEX UNIQUE SCAN	ORDER_STATUS_PK	417	1	417	4

Predicate Information (identified by operation id):

 2 - access("PI"."PRODUCT_ID"="P"."PRODUCT_ID")
 4 - access("OI"."PRODUCT_ID"="PI"."PRODUCT_ID")
 8 - filter("O"."SALES_REP_ID" IS NOT NULL)
 10 - access("O"."ORDER_ID"="OI"."ORDER_ID")
 filter("O"."ORDER_ID"="OI"."ORDER_ID")
 12 - access("O"."ORDER_STATUS"="OS"."ORDER_STATUS")

39 rows selected.

mailto:@pln.sql

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

482

Looking at this latest plan, the database is doing much more work after your changes, even though
the report is not taking any appreciable amount of extra time to complete. You know there is no good
reason for this to be so: you’ve only added one additional column to a table that was already the central
component of the query. Furthermore, the table in question already required a full table scan, as most
of the columns are needed for the report. But the execution plan shows that your report is now doing
two full table scans of the PRODUCT_INFORMATION table. Why?

In this case, I’ve made a common error deliberately to illustrate how an execution plan can help find
quality problems in changed code. Rather than simply add the new column to the existing
ORDER_DETAIL_LINE_ITEM view that is built on the PRODUCT_INFORMATION table, the
PRODUCT_INFORMATION table has been joined to the ORDER_DETAIL_LINE_ITEM view, resulting in
a second full table scan of the central table.

This probably seems like a really foolish mistake to make, but it can be easily done. I’ve seen many
developers add a new column to a query by adding a new join to a table or view that was already part of
the existing report. This error will have a clear and visible impact on an execution plan, especially if the
query is complex (and it usually is when this type of error is made). Listing 15-9 shows the execution
plan for the same query once the additional join is removed and the column is added to the existing
ORDER_DETAIL_LINE_ITEM view instead.

Listing 15-9. Order Report Execution Plan (Corrected)

alter session set statistics_level = 'ALL';

set linesize 115
column order_id new_value v_order noprint
column order_date new_value v_o_date noprint
column ID format 99
column order_total format 999,999,999.99

BREAK ON order_id SKIP 2 PAGE
BTITLE OFF

compute sum of line_item_total on order_id

ttitle left 'Order ID: ' v_order -
 right 'Order Date: ' v_o_date -
 skip 2

spool logs/order_report_all_corrected.txt

select /* OrdersCorrected */ h.order_id ORDER_ID, order_date,
 li.line_item_id ID, li.product_name, li.supplier_product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
 from order_detail_header h, order_detail_line_items li
 where h.order_id = li.order_id
 order by h.order_id, li.line_item_id ;

spool off

set lines 150

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

483

spool logs/OrdersCorrected_plan.txt

@pln.sql OrdersCorrected

PLAN_TABLE_OUTPUT
--
SQL_ID 901nkw7f6fg4r, child number 0

select /* OrdersCorrected */ h.order_id ORDER_ID, order_date,
li.line_item_id ID, li.product_name, li.supplier_product_id ITEM_NO,
 li.unit_price, li.discount_price, li.quantity, li.line_item_total
from order_detail_header h, order_detail_line_items li where
h.order_id = li.order_id order by h.order_id, li.line_item_id

Plan hash value: 3662678147

| Id |Operation |Name |Starts |E-Rows |A-Rows |Buffers |

0	SELECT STATEMENT		1		417	29
1	SORT ORDER BY		1	474	417	29
* 2	HASH JOIN		1	474	417	29
3	TABLE ACCESS FULL	PRODUCT_INFORMATION	1	297	297	16
4	NESTED LOOPS		1	474	417	13
5	MERGE JOIN		1	474	417	9
* 6	TABLE ACCESS BY INDEX ROW	ORDERS	1	79	79	2
7	INDEX FULL SCAN	ORDER_PK	1	114	114	1
* 8	SORT JOIN		79	678	417	7
9	TABLE ACCESS FULL	ORDER_ITEMS	1	678	678	7
* 10	INDEX UNIQUE SCAN	ORDER_STATUS_PK	417	1	417	4

Predicate Information (identified by operation id):

 2 - access("OI"."PRODUCT_ID"="PI"."PRODUCT_ID")
 6 - filter("O"."SALES_REP_ID" IS NOT NULL)
 8 - access("O"."ORDER_ID"="OI"."ORDER_ID")
 filter("O"."ORDER_ID"="OI"."ORDER_ID")
 10 - access("O"."ORDER_STATUS"="OS"."ORDER_STATUS")

35 rows selected.

You can see by this latest execution plan that your report is now performing as expected, with no

additional impact to performance or use of system resources.

mailto:@pln.sql

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

484

Instrumentation
One of my favorite Oracle features is instrumentation. The database itself is fully instrumented, which is
why you can see exactly when the database is waiting and what it is waiting for. Without this
instrumentation, a database would be something of a black box, providing little information about
where resources are spending, or not spending, their time.

Oracle also provides the DBMS_APPLICATION_INFO package that you can use to instrument the
code that you write. This package allows you to label the actions and modules within your code so that
you can more easily identify which processes in your application are active. You can also combine your
instrumentation data with Oracle’s Active Session History (ASH), Active Workload Repository (AWR),
and other performance management tools to gain further insight into your application’s performance
while easily filtering out other unrelated processes.

The simplest method I know of for adding instrumentation to application code is the Instrumentation
Library for Oracle (ILO), which is available at http://sourceforge.net/projects/ilo/. ILO is open source
software written and supported by my friends at Method-R. Method-R also offers the option to purchase a
license for ILO so that it can be used in commercial software products. I’ve been using ILO to instrument
code for several years and have added functionality to the 2.3 version. The enhancements allow me to
record the exact start and stop time of an instrumented process using the database’s internal time
references. This data can then be used to calculate statistical indicators on process execution times, which
helps to highlight potential performance issues before they become major problems. I’ve also added code to
enable 10044 tracing for a specific process by setting an On/Off switch in a table. So if I determine that I
need trace data for a specific application process, I can set tracing to On for that process by its instrumented
process name and it will be traced every time it executes until tracing is set to Off again. The configuration
module can also be used to set the elapsed time collection On or Off, but I usually prefer to leave elapsed
time recording on and purge older data when it is no longer useful.

If you’d like to test the ILO instrumentation software as you go through the next few sections, start
by downloading ILO 2.3 from SourceForge.net and install it per the instructions. You can then download
the code to store elapsed time and set the trace and timing configuration from the Apress download site.
Instructions to add the updates are included in the ZIP file.

Adding Instrumentation to Code
Once you’ve installed the ILO schema, adding instrumentation to your application is easily done. There are
several ways to accomplish this. Of course, you’ll need to determine the best method and the appropriate
configuration based on your environment and requirements, but here are a few general guidelines:

• Within your own session, you can turn timing and tracing on or off at any time. You can also
instrument any of your SQL statements by executing the ILO call to begin a task before you
execute your SQL statement and executing the call to end the task after the statement. This
approach is shown in Listing 15-10.

• You can encapsulate your code within a procedure and include the calls to ILO within the
procedure itself. This has the added advantage of ensuring that every call to the procedure is
instrumented and that the ILO action and module are labeled consistently. Consistent labeling
will be very important if you want to aggregate your timing data in a meaningful way, or track
trends in performance. We will look at the billing.credit_request procedure from Chapter 14
with added calls to ILO in Listing 15-11.

• You can create an application-specific wrapper to call the ILO procedures. One benefit of using a
wrapper is that you can make sure a failure in ILO does not result in a failure for the application
process. While you do want good performance data, you don’t want to prevent the application
from running because ILO isn’t working. A simple wrapper is included with the ILO update
download at Apress.

http://sourceforge.net/projects/ilo

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

485

Listing 15-10. ILO Execution in a Single Session

SQL> exec ilo_timer.set_mark_all_tasks_interesting(TRUE,TRUE);

PL/SQL procedure successfully completed.

SQL> exec ilo_task.begin_task('Month-end','Purchasing');

PL/SQL procedure successfully completed.

SQL> @purchasing_report

SQL> exec ilo_task.end_task;

PL/SQL procedure successfully completed.

Selected from ILO_ELAPSED_TIME table:

INSTANCE: TEST
SPID: 21509
ILO_MODULE: Month-end
ILO_ACTION: Purchasing
START_TIME: 14-JUL-10 06.08.19.000000 AM
END_TIME: 14-JUL-10 06.09.06.072642 AM
ELAPSED_TIME: 46.42
ELAPSED_CPUTIME: .01
ERROR_NUM: 0

Listing 15-11. Incorporating ILO into a Procedure

create or replace procedure credit_request(p_customer_id IN NUMBER,
 p_amount IN NUMBER,
 p_authorization OUT NUMBER,
 p_status_code OUT NUMBER,
 p_status_message OUT VARCHAR2)

 IS

 /**
 status_code values
 status_code status_message
 =========== ===
 0 Success
 -20105 Customer ID must have a non-null value.
 -20110 Requested amount must have a non-null value.
 -20500 Credit Request Declined.
 **/

 v_authorization NUMBER;

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

486

BEGIN
 ilo_task.begin_task('New Order', 'Credit Request');

 SAVEPOINT RequestCredit;

 IF ((p_customer_id) IS NULL) THEN
 RAISE_APPLICATION_ERROR(-20105, 'Customer ID must have a non-null value.', TRUE);
 END IF;

 IF ((p_amount) IS NULL) THEN
 RAISE_APPLICATION_ERROR(-20110, 'Requested amount must have a non-null value.', TRUE);
 END IF;

 v_authorization := round(dbms_random.value(p_customer_id, p_amount), 0);

 IF (v_authorization between 324 and 342) THEN
 RAISE_APPLICATION_ERROR(-20500, 'Credit Request Declined.', TRUE);
 END IF;

 p_authorization:= v_authorization;
 p_status_code:= 0;
 p_status_message:= NULL;

 ilo_task.end_task;

EXCEPTION
 WHEN OTHERS THEN
 p_status_code:= SQLCODE;
 p_status_message:= SQLERRM;

 BEGIN
 ROLLBACK TO SAVEPOINT RequestCredit;
 EXCEPTION WHEN OTHERS THEN NULL;
 END;

 ilo_task.end_task(error_num => p_status_code);

END credit_request;
/

Execution Script:

set serveroutput on

DECLARE
 P_CUSTOMER_ID NUMBER;
 P_AMOUNT NUMBER;

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

487

 P_AUTHORIZATION NUMBER;
 P_STATUS_CODE NUMBER;
 P_STATUS_MESSAGE VARCHAR2(200);

BEGIN
 P_CUSTOMER_ID := '&customer';
 P_AMOUNT := '&amount';

 billing.credit_request(
 P_CUSTOMER_ID => P_CUSTOMER_ID,
 P_AMOUNT => P_AMOUNT,
 P_AUTHORIZATION => P_AUTHORIZATION,
 P_STATUS_CODE => P_STATUS_CODE,
 P_STATUS_MESSAGE => P_STATUS_MESSAGE
);
commit;

 DBMS_OUTPUT.PUT_LINE('P_CUSTOMER_ID = ' || P_CUSTOMER_ID);
 DBMS_OUTPUT.PUT_LINE('P_AMOUNT = ' || P_AMOUNT);
 DBMS_OUTPUT.PUT_LINE('P_AUTHORIZATION = ' || P_AUTHORIZATION);
 DBMS_OUTPUT.PUT_LINE('P_STATUS_CODE = ' || P_STATUS_CODE);
 DBMS_OUTPUT.PUT_LINE('P_STATUS_MESSAGE = ' || P_STATUS_MESSAGE);

END;
/

Execution:

SQL> @exec_CreditRequest
Enter value for customer: 237
Enter value for amount: 10000

P_CUSTOMER_ID = 237
P_AMOUNT = 10000
P_AUTHORIZATION = 8302
P_STATUS_CODE = 0
P_STATUS_MESSAGE =

PL/SQL procedure successfully completed.

SQL> @exec_CreditRequest
Enter value for customer: 334
Enter value for amount: 500

P_CUSTOMER_ID = 237
P_AMOUNT = 500
P_AUTHORIZATION =

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

488

P_STATUS_CODE = -20500
P_STATUS_MESSAGE = ORA-20500: Credit Request Declined.

PL/SQL procedure successfully completed.

Selected from ILO_ELAPSED_TIME table:

INSTANCE: TEST
SPID: 3896
ILO_MODULE: New Order
ILO_ACTION: Request Credit
START_TIME: 14-JUL-10 01.43.41.000000 AM
END_TIME: 14-JUL-10 01.43.41.587155 AM
ELAPSED_TIME: .01
ELAPSED_CPUTIME: 0
ERROR_NUM: 0

The level of granularity you decide to implement with your instrumentation depends on your goals.

For some tasks, it will be perfectly acceptable to include multiple processes in a single ILO module or
action. For critical code, I recommend that you instrument the individual processes with their own
action and module values, which will give you more visibility into complex procedures. If you are
supporting an application that is not instrumented and it seems like too big a task to go back and
instrument all the existing code, consider adding the instrumentation just to the key processes.

Again, how you decide to implement will depend on your needs. Instrumentation is exceptionally
useful for testing code and configuration changes during development and performance testing. Once
the calls to ILO have been built into the code, you can turn timing/tracing on or off in production to
provide definitive performance data. Overhead is exceedingly low and being able to enable tracing
easily will help you find the problems much more quickly.

Using the ILO_ELAPSED_TIME table to store performance data will typically allow you to retain
critical performance data for longer periods of time. While it is possible to set longer retention values for
AWR data, some sites may not have the resources available to keep as much data as they would like.
Since the ILO data is not part of the Oracle product itself, you have the option to customize the retention
levels to your needs without endangering any Oracle delivered capabilities.

■NOTE Keep the ILO code in its own schema and allow other schemas to use the same code base. This will
keep the instrumentation code and data consistent, which will allow you to roll performance data up to the server
level or across other multiple servers when appropriate.

Testing for Performance
Once you’ve added instrumentation to your code, you open the door to all kinds of potential uses for the
instrumentation and the data you collect. Earlier in this chapter, I talked about building test harnesses
by automating many small unit test scripts and then replaying those tasks to confirm that new and old
functionality are working as expected and that old bugs have not been reintroduced. If your code is
instrumented, you can record the timing for each execution of the test harness and you will have

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

489

complete information on the exact amount of elapsed time and CPU time required for each labeled
module and action.

The ILO package includes an ILO_COMMENT field in addition to the ILO_MODULE and
ILO_ACTION labels. In some cases, this field can be used to record some identifying piece of
information about a specific process execution. For example, if you were to add instrumentation to the
order transaction from the last chapter, you could record the order number in the ILO_COMMENT field.
Then if you found an exceptionally long execution in your ILO_ELAPSED_TIME table, you could connect
that execution time with an order number, which then connects you to a specific customer and a list of
ordered items. Combining this information with the very specific timestamp recorded in your table can
help you troubleshoot the problem, ensure the transaction did process correctly, and determine the
cause of the unusually long execution time.

In other cases, you may want to use the comment field to label specific set of test results for future
reference. When testing changes to an application or instance configuration, it’s always better to make
one change and measure the results before making additional adjustments. Otherwise, how will you
know which change was responsible for the results you obtained? This can be very difficult to do, unless
you’ve created a test harness and measurement tool that can be easily and consistently re-executed
multiple times. By making a single change, re-executing the complete test package while recording
timing data, and labeling the results set of that test execution, you create a series of data sets, each
showing the impact of a specific change, test dataset, or stress factor. Over time, this information can be
used to evaluate the applications ability to perform under a wide range of conditions.

A sample of data retained from one such test harness is shown in Table 15-1 (times are shown in
seconds).

Table 15-1. Repetitive Test Results

ILO ACTION COUNT MIN AVG MAX VAR

CPU

MIN

CPU

AVG

CPU

MAX

CPU

VAR

process 1 46 0 .01 .09 0 0 .008 .03 0

process 2 2 .12 .125 .13 0 .12 .125 .13 0

process 3 2772526 0 .382 4.44 .078 0 .379 2.6 .074

child 3a 2545208 .01 .335 2.26 .058 .01 .332 1.77 .055

child 3b 2752208 0 .065 2.24 .011 0 .065 1.39 .01

child 3c 2153988 0 0 .21 0 0 0 .02 0

child 3d 2153988 0 0 .36 0 0 0 .07 0

child 3e 2153988 0 0 .16 0 0 0 .02 0

child 3f 2153988 0 0 .42 0 0 0 .02 0

process 4 1564247 0 .001 .18 0 0 .001 .02 0

process 5 2873236 0 .043 6.2 .013 0 .041 .49 .006

process 6 149589 0 .018 5.53 .002 0 .013 .11 0

process 7 2395999 0 .001 6 0 0 .001 .03 0

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

490

While the numbers shown above aren’t particularly meaningful on their own, if you have this set of
numbers representing code executions prior to a change and you have another set of numbers from the
same server with the same data set representing code execution after the code has been changed, you
have definitive information regarding the impact your code changes have had on the database. Imagine
being able to quickly and painlessly repeat this test for subsequent code changes and configuration
adjustments, and you’ll begin to appreciate the potential of code instrumentation combined with
repeatable, automated test processes.

Testing to Destruction
Testing a system to its breaking point can be one of the more entertaining aspects of software testing,
and meetings to brainstorm all the possible ways to break the database are seldom dull. Early in my
career, I developed and managed an Oracle database application built using client/server technology.
(Yes, this was long ago and far away.) The application itself was a problem tracking tool that allowed
manufacturing workers to record issues they found and send those problems to Engineering for review
and correction. The initial report landed in Quality Engineering, where it would be investigated and
assigned to the appropriate Engineering group. As each Engineering department signed off on their
work, the request would move on to the next group. The application was reasonably successful so it
ended up on many workstations throughout a very large facility.

If you ever want to see “testing to destruction” in action, try supporting a database application
installed on the workstations of hundreds of electrical, hydraulic, and structural engineers. In a fairly
short period of time, I learned that engineers will do everything in their power to learn about the
computers on their desks, and they considered breaking those computers and the applications on them
to be an educational experience. I can’t say that I disagree with them: sometimes taking something apart
just so you can build it again really is the best way to understand the guts of the tool.

However, after several months of trying to support this very inquisitive group of people, I developed
a new approach to discourage excessive tampering. By keeping a library of ghosted drives containing
the standard workstation configuration with all the approved applications, I could replace the hard drive
on a malfunctioning computer in under 10 minutes and the engineer and I could both get back to work.
Since everyone was expected to store their work on the server, no one could really object to my repair
method. However, most engineers did not like losing their customized desktops, so they soon quit trying
quite so hard to break things.

Although I loved to grumble at those engineers, I really owe them a very big thank you, for now
whenever I need to think about how to test a server or application to destruction, all I need to do is think
about those engineers and wonder what they would do. And never discount even the craziest ideas: if
you can think of it, someone is likely to try it. As you work to identify your system’s weak links, consider
everything on the following list, and then think of some more items:

Data Entry: What happens when a user or program interface sends the wrong kind of data or too
much data?

Task Sequences: What happens when a user skips a step or performs the tasks out of order?

Repeating/Simultaneous Executions: Can the user run the same process simultaneously? Will that
action corrupt data or will it just slow the process down?

Unbounded Data Ranges: Can the user request an unreasonable amount of data? What happens if
the user enters an end range that is prior to the start range (such as requesting a report on sales from
July 1, 2010 to June 30, 2010)?

Resource usage: Excessive use of CPU, memory, temporary storage and undo space can impact
many users at the same time. Your DBA should limit usage with resource caps appropriately, but
you still need to identify all the potential ways users and processes can grab more than their fair
share.

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

491

I bet some of you could add some very interesting options for other ways to break systems. Can you
also identify the ways to prevent those problems? While finding the best correction is a bit harder and
not as entertaining, every time you can make it difficult for a user to break your code, you create a more
robust system—one that will need less support and less maintenance over the long run.

Every system will have its own weakest links. Once you’ve identified those weaknesses, assemble
your unit tests into a test harness that will push that resource beyond its limits so you can see how the
system responds. In general, it seems that memory and I/O usage are the primary stressors for a
databases system. However, lately I’ve been working on an Oracle 11g database with spatial
functionality, and in this case, CPU processing is the system’s bottleneck. When we designed the system
capacity tests, we made certain that the spatial processes would be tested to the extreme and we
measured the internal database performance using the ILO data as shown in the last section. We also
had external measurements of the total application and system performance, but having the ILO elapsed
time data provided some unique advantages over other test projects I’ve participated in.

First and foremost, the ILO data provides specific measurements of the time spent in the database.
This makes it easier to troubleshoot performance issue that do show up, as you can quickly tell when the
process is slow in the database and when it is not. A second advantage is that the recorded timestamps
give a very specific indicator of exactly when a problem occurred, what other processes were running at
the same time, and the specific sequencing of the application processes. With this information, you can
easily identify the point when the system will hit the knee in its performance curve. And since the
elapsed time module in ILO uses DBMS_UTILITY.get_time and DBMS_UTLITITY.get_cpu_time, you can
record exactly how much time your process spent active in the database and what portion of that time
was spent on CPU.

This detailed performance data is also useful for troubleshooting, as the low level timestamps assist
in narrowing down the timeframe for the problem. Once you know the specific timeframe you need to
research, you can review a much smaller quantity of AWR or StatsPack data to see what happened and
find the answers quickly. Once the window is small enough, any problem will be almost immediately
visible. We will look at a specific case in the next section.

Troubleshooting through Instrumentation
Sometimes it can be difficult to identify the cause of small problems. When you don’t know the source of
the problem, you also don’t know the potential impact the problem could have on your application. In
one such case, developers had noticed timeouts from the database at random intervals, yet the process
they suspected of causing the issue showed no sign of the errors and the database appeared to be
working well below its potential.

About a week after a new test server was installed, a review of the ILO_ELAPSED_TIME table showed
that most tasks were performing well, except there were two processes that had overrun the 30 second
timeout clock on the application. The error numbers recorded on the tasks showed the front end
application had ended the connection: this message was consistent with a possible timeout, but it was
not very helpful. The captured ILO data is shown in Table 15-2.

If you take a look at process 7, you will note that the maximum completion time does exceed 30
seconds and the variance in processing times is relatively high when compared to other processes in the
application. The process spends almost no time on CPU, so this is a problem worth investigating. Where
is this time going? It’s also interesting to note that this was not a process that anyone would have
expected to have a performance issue. Process 3 had been the target of previous timeout investigations;
it has to perform considerably more work than process 7.

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

492

Table 15-2. Timeout Errors

ILO ACTION COUNT MIN AVG MAX VAR

CPU

MIN

CPU

AVG

CPU

MAX

CPU

VAR

process 1 4 0.01 0.015 0.03 0 0 0.01 0.03 0

process 2 2 0 0 0 0 0 0 0 0

process 3 56 0.01 0.112 0.8 0.015 0.01 0.109 0.62 0.011

child 3a 36 0.04 0.078 0.15 0 0.03 0.078 0.15 0.001

child 3b 56 0 0.01 0.09 0 0 0.009 0.07 0

child 3c 36 0 0 0.01 0 0 0.001 0.01 0

child 3d 36 0 0.001 0.01 0 0 0 0.01 0

child 3e 36 0 0.001 0.01 0 0 0.001 0.01 0

child 3f 36 0 0.001 0.01 0 0 0.001 0.01 0

process 4 8 0 0.01 0.02 0 0 0.008 0.02 0

process 5 1 0.01 0.01 0.01 0 0.01 0.01 0.01 0

process 6 152 0 0.002 0.1 0 0 0.002 0.09 0

process 7 90 0 0.681 30.57 20.449 0 0.002 0.02 0

process 8 1 0 0 0 0 0.01 0.01 0.01 0

process 9 77 0 0.001 0.01 0 0 0.001 0.01 0

process 10 8 0 0.008 0.01 0 0 0.008 0.01 0

Next, let’s take a look at Table 15-3, which contains the results of a query looking for all cases in
which process 7 exceeded 30 seconds.

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

493

Table 15-3. Processes Exceeding 30 Seconds

SPID ILO ACTION START TIME END TIME ELAPSED TIME ERROR

28959 process 7
22-JUL-10
05.40.00.000000 PM

22-JUL-10
09.40.31.234635 PM 30.45 –1013

29221 process 7
22-JUL-10
05.55.30.000000 PM

22-JUL-10
09.56.00.619850 PM 30.57 –1013

The start and stop times shown in Table 15-3 reflect the connection pool start and stop times, which

is a much wider window than you need in order to troubleshoot this problem. You also record internal
database and CPU clock times in the ILO_ELAPSED_TIME table: it is these values that are used to
calculate the elapsed times as shown in Table 15-4. Table 15-4 also shows the sequential execution of
the processes, and you’ll notice that process 7 was executed repeatedly within intervals of just a few
seconds.

Table 15-4. Sequential Listing of Processes with Internal Clock Times

SPID ILO ACTION GO TIME STOP TIME ELAPSED TIME CPU TIME ERROR

29221 process 7 498854690 498854690 0 0 0

28959 process 7 498856045 498859090 30.45 0 -1013

29047 process 7 498862109 498862109 0 0 0

29309 process 3 498862111 498862121 0.1 0.11 0

29309 child 3a 498862113 498862121 0.08 0.07 0

29309 child 3b 498862113 498862113 0 0 0

29309 child 3c 498862121 498862121 0 0 0

29309 child 3d 498862121 498862121 0 0 0

29309 child 3e 498862121 498862121 0 0 0

29309 child 3f 498862121 498862121 0 0 0

28959 process 7 498947571 498947571 0 0 0

29221 process 7 498948957 498952014 30.57 0 -1013

continued

CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE

494

Table 15-4. Sequential Listing of Processes with Internal Clock Times

SPID ILO ACTION GO TIME STOP TIME ELAPSED TIME CPU TIME ERROR

29047 process 7 498957717 498957717 0 0 0

29309 process 3 498957718 498957728 0.1 0.1 0

29309 assign_child1 498957720 498957728 0.08 0.07 0

29309 assign_child2 498957720 498957720 0 0 0

29309 assign_child3 498957728 498957728 0 0 0

29309 assign_child4 498957728 498957728 0 0.01 0

29309 assign_child5 498957728 498957728 0 0 0

29309 assign_child6 498957728 498957728 0 0 0

Looking at the two processes that exceeded thirty seconds, you have a very small timeframe when

both errors occurred. Your next step will be to check the Active Workload Repository (AWR) for that
particular timeframe. Reviewing the AWR data shown in Listing 15-12, the problem is immediately clear.

Listing 15-12. AWR Output for One Hour Timeframe

Top 5 Timed Foreground Events
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
                                                           Avg 
                                                          wait   % DB 
Event                                 Waits     Time(s)   (ms)   time Wait Class 
------------------------------ ------------ ----------- ------ ------ ---------- 
enq: TX - row lock contention             2          61  30511   78.6 Application 
DB CPU                                               12          15.0 
SQL*Net break/reset to client        21,382           5      0    6.6 Application 
log file sync                            32           0      1     .1 Commit 
SQL*Net message to client            10,836           0      0     .0 Network 
 
 

Between the series of events shown in Table 15-2 and the AWR output shown in Listing 15-20, the 
cause of the timeouts becomes clear.  Process 7 had been called two or even three times, when only one 
execution should be necessary.  If those calls came in fast enough, the second process would attempt to 
update the same row, creating a lock and preventing the first process from committing.  When process 1 
could not commit in 30 seconds, the process would terminate and the second (or third) process would 
be able to save its changes successfully.  Since the application has a built-in timeout, this problem is a 
minor one, and a self correcting one at that.   

The tables above show data from a newly installed server with only a few executions. I’ve selected 
this particular data set as it is easy to use as an example, but it does make it appear as if it would have 
been possible to spot this problem with almost any other troubleshooting tool.  However, consider this: 



CHAPTER 15 ■ TESTING AND QUALITY ASSURANCE 

 

495 

when this same data is reviewed on more active test servers over longer periods of time, timeouts for this 
process may occur on one day in any given month, and there are likely to be no more the four to six 
processes that exceed 30 seconds on that day.  This process may execute hundreds of thousands of times 
over two or three months on a busy test server.  And then there are test results like those shown in Table 
15-1.  In that case, the process is executed millions of times without a single timeout.  Trying to spot this 
problem from an AWR report and then identifying the process that caused the application lock would 
take a bit more time with that many executions.  And while this problem is not significant right now, it 
has the potential to cause the application to miss required performance targets.  Due to the data 
recorded by the instrumentation, the problem can be monitored and addressed before that happens. 

Although this is a simple example, identifying these kinds of problems can be difficult, especially 
during typical development test cycles.  Early in unit testing, tests are not normally executed in rapid 
succession, so some problems may not appear until later.  And once testing has moved on to load 
testing, an occasionally longer running process or two may not be noticed among millions of executions.  
Yet by using the ILO execution times to abbreviate the amount of AWR performance data that must be 
reviewed, problems like this can be identified and diagnosed in just a few moments.   And while access 
to AWR and ASH data may not be available to you in all development environments, the instrumentation 
data you create will be.  

Summary 
I’ve covered a wide range of information in this chapter, including execution plans and instrumentation, 
performance and failures, testing theory and practical application.  Each of these topics could have been 
a chapter or even an entire book on their own, which is why there are already many, many books out 
there. 

What I hope you will take away from this chapter is the recognition that each system has its own 
strengths and limitations, so any testing and measurement approach should be customized to some 
extent for the specific system needs and performance requirements.  No single testing method can be 
perfectly effective for all systems, but the basic approach is fairly straightforward.  Break the work down 
into measurable test modules, measure, adjust. and measure again.  Whenever possible, minimize the 
changes between test iterations but keep the test realistic.  You can test the functionality of your code 
with unit tests on a subset of the data, but testing performance requires a comparable amount of data on 
a comparably configured system.  Verifying that a report runs exceptionally fast on a development server 
with little data and no other users doesn’t prove anything if that report will be run on a multiuser data 
warehouse.  Understanding what you need to measure and confirm is crucial to preparing an 
appropriate test plan.  And be sure to consider testing and performance early in the process.  That does 
not necessarily mean that you need to write a perfectly optimized piece of code right out of the gate, but 
you should be aware of the limitations your code is likely to face in production and write the code 
accordingly.   It also doesn’t hurt to have a few alternatives in your back pocket, so you are prepared to 
optimize the code and measure it once again.  





C H A P T E R  1 6  

 
■  ■  ■   

497 

Plan Stability and Control 

Kerry Osborne 

One of the most frustrating things about Oracle’s Cost Based Optimizer (CBO) is its tendency to change 
plans for statements at seemingly random intervals. Of course, these changes are not random at all. But 
because the optimizer code is so complex, it’s often difficult to determine why a plan changed. Oracle 
recognized this issue years ago and has been working to improve the situation for at least a decade. They 
have provided many tools for identifying when plans change and why they changed. They have also 
provided numerous tools that allow you to exert varying degrees of control over the execution plans that 
the optimizer chooses. 

This chapter is made up of two main focus areas. The first focus area concerns itself with plan 
instability. It is concerned with issues that cause you to not experience the stability you expect. You’ll 
learn how to identify when and why plans have changed, how to locate plan changes that have created a 
significant performance impact, and gain some insight into common causes of plan instability issues. 
The second focus area, as you’ve probably guessed by now, covers various techniques for controlling 
execution plans. I probably should say “influencing” instead of “controlling,” because there is really no 
foolproof method of locking an execution plan (at least as of release 11.2.0.1 of the Oracle database).  

In this chapter, I will use a number of scripts, but for readability purposes, in most cases, I will not 
show the source of these scripts in the listings. The scripts can be found in the example download for 
this book. 

Plan Instability: Understanding The Problem 
Oracle’s CBO is an extremely complex piece of software. Its job is basically to work out the fastest way to 
retrieve a given set of data as specified by a SQL statement. Generally speaking, it must do this in an 
extremely short period of time using pre-calculated statistical information about the objects involved 
(tables, indexes, partitions, etc.). The optimizer usually doesn’t have the time to verify any of the 
information. The tight time constraints are imposed because parsing is a serialized operation. Therefore, 
the database needs to do it as quickly as possible and as infrequently as possible; otherwise, parsing can 
become a severe bottleneck to scalability.  I should note here that my comments are basically aimed at 
what I would typically call an OLTP type environment—an environment with many users, executing lots 
of relatively quick SQL statements. Of course, in environments with relatively few but long running 
statements, it’s much more important to get the correct plan than to get a decent plan quickly. These 
types of systems though don’t suffer from plan stability issues nearly as often (partly because they tend 
to use literals as opposed to bind variables, but I’ll talk about that more later).  



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

498 

So why do plans change? Well there are three main inputs to the CBO:  

• Statistics - associated with the objects that are referenced by the SQL statement 

• Environment - optimizer related parameter settings for example 

• SQL - the statement itself 
 

So, unless one of those three things changes, the plan should not change. Period. I believe that the 
frustration with plan instability arises primarily from the belief that “nothing has changed,” when in fact 
something has changed. I can’t even count the number of times that I have heard that phrase. The story 
usually goes something like this:  
 

Them:  “Everything was working fine and then all of a sudden, the system just started  
crawling.”  

Me:   “When did this happen?” 

Them:  “12:00 noon on Thursday” 

Me:  “What changed around that time?”  

Them:  “Nothing changed!”  

 
Of course, they are not intentionally trying to lie to me. What they really mean is, “Nothing has 

changed… that I think could have anything to do with this particular issue.”  But regardless of whether 
someone thinks an event is relevant or not, or if they even know about it or not, there was a change that 
precipitated the issue.  

So the first thing I want you to get out of this chapter is that performance doesn’t just magically get 
worse (or better). If a SQL statement gets a new plan, there is a reason. Something changed! 

Let’s briefly go over the possibilities for why a plan can change. 

Changes to Statistics 
This is a rather obvious place to look for changes that can cause new plans to be generated.  Object level 
statistics are gathered frequently on most systems. By default, 10g and 11g both have a job that runs on a 
nightly basis to calculate new statistics. If these jobs are running on your system, it means that every day 
you have an opportunity to get a new plan. While a thorough discussion of statistics gathering is outside 
the scope of this chapter, you should be aware of what mechanisms are in play in your environment. You 
should also know that you can quickly check to see when stats were last gathered on an object and that 
you can restore a previous version of an objects statistics in a matter of seconds. Finally, you should be 
aware that by default the standard stats gathering jobs in 10g and 11g allow statements to stay in the 
shared pool for some period of time after new stats have been gathered. This feature is called rolling 
invalidation. By default in 10g and 11g, the dbms_stats procedures set the no_invalidate parameter to 
dbms_stats.auto_invalidate. This means that cursors will not automatically be invalidated when 
statistics are gathered. Existing cursors will be invalidated at some random time during the next five 
hours. This is a feature designed to prevent parsing storms that can occur if all statements referencing a 
specific object are invalidated at the same time. Generally speaking, this feature is a good thing, but you 
should be aware that a plan change can be due to a statistics change, even though the statistics change 
occurred several hours before the new plan showed up. Listing 16-1 is an example of checking for a 
tables last statistics gathering and for restoring a previous version (all scripts are in the example 
download for the book). 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

499 

Listing 16-1. Table Statistics Setting and Restoring 

SYS@LAB112> exec dbms_stats.set_table_stats(ownname => 'KSO', tabname => 'SKEW', - 
                                            numrows => 1234, numblks => 12, - 
                                            avgrlen => 123, no_invalidate => false); 
 
PL/SQL procedure successfully completed. 
 
SYS@LAB112> @set_col_stats 
Enter value for owner: KSO 
Enter value for table_name: SKEW 
Enter value for col_name: PK_COL 
Enter value for ndv: 1234 
Enter value for density: 1/1234 
Enter value for nullcnt: 0 
 
PL/SQL procedure successfully completed. 
 
SYS@LAB112> @dba_tables 
Enter value for owner: KSO 
Enter value for table_name: SKEW 
 
OWNER      TABLE_NAME                STATUS   LAST_ANAL   NUM_ROWS     BLOCKS 
---------- ------------------------- -------- --------- ---------- ---------- 
KSO        SKEW                      VALID    12-AUG-10       1234         12 
 
SYS@LAB112> @col_stats 
Enter value for owner: KSO 
Enter value for table_name: SKEW 
Enter value for column_name:  
 
COLUMN_NAME  DATA_TYPE        DENSITY          NDV HISTOGRAM       BUCKETS LAST_ANAL  
------------ ----------  ------------ ------------ --------------- ------- ---------  
PK_COL       NUMBER        .000810373        1,234 NONE                  1 12-AUG-10 
COL1         NUMBER        .000002568      902,848 HEIGHT BALANCED      75 02-AUG-10  
COL2         VARCHAR2      .500000000            2 NONE                  1 03-AUG-10  
COL3         DATE          .000002581    1,000,512 HEIGHT BALANCED      75 02-AUG-10  
COL4         VARCHAR2      .000000016            3 FREQUENCY             2 02-AUG-10  
 
SYS@LAB112> @tab_stats_history 
Enter value for owner: KSO 
Enter value for table_name: SKEW 
 
OWNER         TABLE_NAME                STATS_UPDATE_TIME 
------------- ------------------------- -------------------------------- 
KSO           SKEW                      31-JUL-10 09.06.42.785067 PM -05:00 
KSO           SKEW                      02-AUG-10 07.14.04.486871 PM -05:00 
KSO           SKEW                      02-AUG-10 09.29.48.761056 PM -05:00 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

500 

KSO           SKEW                      02-AUG-10 09.31.11.788522 PM -05:00
KSO           SKEW                      02-AUG-10 09.38.00.524266 PM -05:00
KSO           SKEW                      12-AUG-10 08.27.17.497396 PM -05:00 

6 rows selected. 

SYS@LAB112> @restore_table_stats.sql 

Note: No_Invalidate=false - means invalidate all cursors now (stupid triple negatives) 

Enter value for owner: KSO 
Enter value for table_name: SKEW
Enter value for as_of_date: 03-aug-10
Enter value for no_invalidate: false 

PL/SQL procedure successfully completed. 

SYS@LAB112> @dba_tables 
Enter value for owner: KSO 
Enter value for table_name: SKEW 

OWNER      TABLE_NAME                STATUS   LAST_ANAL   NUM_ROWS     BLOCKS
---------- ------------------------- -------- --------- ---------- ---------- 
KSO        SKEW                      VALID    02-AUG-10   32000004     162294 

SYS@LAB112> @col_stats 
Enter value for owner: KSO 
Enter value for table_name: SKEW
Enter value for column_name:  

COLUMN_NAME  DATA_TYPE        DENSITY          NDV HISTOGRAM       BUCKETS LAST_ANAL 
------------ ----------  ------------ ------------ --------------- ------- ---------  
PK_COL       NUMBER        .000000032   32,000,004 HEIGHT BALANCED      75 02-AUG-10
COL1         NUMBER        .000002568      902,848 HEIGHT BALANCED      75 02-AUG-10
COL2         VARCHAR2      .000000016            2 FREQUENCY             1 02-AUG-10
COL3         DATE          .000002581    1,000,512 HEIGHT BALANCED      75 02-AUG-10
COL4         VARCHAR2      .000000016            3 FREQUENCY             2 02-AUG-10 

Changes to the Environment 
There are many parameters that affect the optimizer’s calculations. Some of the optimizer parameters
have values that are calculated automatically based on the values of other parameters or the physical
characteristics of the machine the database is running on, such as the number of CPUs. If any of these
environmental values change, the optimizer may come up with a new plan. This is also one of the
reasons that it is sometimes difficult to get the plans in Development and Test environments to match
the plans that are generated in Production.  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

mailto:@restore_table_stats.sql


CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

501 

The settings in affect when a statement is parsed can be obtained by enabling a 10053 trace. Oracle 
also keeps track of the settings for each of the optimizer-related parameters in an X$ table called 
X$KQLFSQCE. This is the structure that underlays the V$SQL_OPTIMZER_ENV view, which (much like 
v$parameter) doesn’t display the hidden parameters (unless they have been altered). The 
optim_parms.sql script shows all the parameters, including the so-called hidden parameters that start 
with an underscore (this is the complete list of parameters that affect the optimizer’s calculations and 
the same ones that are dumped in a 10053 trace file). In Listing 16-2, you see the optimizer parameter 
values for SQL statement 84q0zxfzn5u6s in a 10.2.04 instance. Note that these are the values that were 
set when the statement was parsed. 

Listing 16-2. Optimizer Parameter Values  

SYS@LAB1024> @optim_parms 
Enter value for sql_id: 84q0zxfzn5u6s 
Enter value for child_no: 0 
Enter value for isdefault:  
Enter value for show_hidden: Y 
 
NAME                                     VALUE                ISDEFAUL 
---------------------------------------- -------------------- -------- 
_pga_max_size                            330540 KB            NO 
optimizer_mode_hinted                    false                YES 
optimizer_features_hinted                0.0.0                YES 
parallel_execution_enabled               true                 YES 
parallel_query_forced_dop                0                    YES 
parallel_dml_forced_dop                  0                    YES 
parallel_ddl_forced_degree               0                    YES 
parallel_ddl_forced_instances            0                    YES 
_query_rewrite_fudge                     90                   YES 
optimizer_features_enable                10.2.0.4             YES 
_optimizer_search_limit                  5                    YES 
cpu_count                                16                   YES 
active_instance_count                    1                    YES 
... 
_first_k_rows_dynamic_proration          true                 YES 
_px_ual_serial_input                     true                 YES 
_optimizer_native_full_outer_join        off                  YES 
_optimizer_star_trans_min_cost           0                    YES 
_optimizer_star_trans_min_ratio          0                    YES 
_optimizer_fkr_index_cost_bias           10                   YES 
_optimizer_connect_by_combine_sw         true                 YES 
_optimizer_use_subheap                   true                 YES 
_optimizer_or_expansion_subheap          true                 YES 
_optimizer_sortmerge_join_inequality     true                 YES 
_optimizer_use_histograms                true                 YES 
_optimizer_enable_density_improvements   false                YES 
 
204 rows selected. 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

502 

Changes to the SQL 
This one may not make much sense at first blush. How can the SQL statement change? When I talk about 
plan instability, I am talking about the optimizer coming up with different plans for a single statement 
(i.e. the same SQL text and therefore the same sql_id). However, there are a couple of reasons that the 
text of a statement (and its sql_id or hash_value) remains fixed but the actual SQL statement that the 
optimizer evaluates may change. These are: 

• If a statement references views and an underlying view changes, the statement has changed. 

• If a statement uses bind variables and the values passed via the variables change, the statement 
has changed. 

The first situation is easy to understand and rarely a point of confusion. The second situation, though, 
can be confusing. We have been trained over the years to use variables in our SQL statements so that 
Oracle can reuse the statements without having to reparse them. So instead of writing a statement like this: 
 
select avg(col1) from skew where col1 > 1; 
  

We would typically write it like this: 
 
select avg(col1) from skew where col1 > :X; 
 

That way, we can pass any value we want to our program via variable X and Oracle would not have 
to reparse the statement. This is a very good thing when it comes to scalability, particularly for systems 
where many users execute many statements concurrently. However, unless the bind variables always 
contain the same data, the optimizer is basically evaluating a different SQL statement every time it 
undergoes a hard parse. This is due to the fact that Oracle introduced a feature in 9i that allows the 
optimizer to “peek” at the values of bind variables during the part of the parsing process where the 
execution plan is determined. This is the infamous Bind Variable Peeking that you’ve probably already 
heard about. And it is one of the major contributors to plan stability issues. 

Bind Variable Peeking 
When Oracle introduced histograms in 8i, they provided a mechanism for the optimizer to recognize that 
the values in a column were not distributed evenly. That is, in a table with 100 rows and 10 distinct values, 
the default assumption the optimizer would make, in the absence of a histogram, would be that no matter 
which value you picked, you would always get 100/10 or 10 rows back. Histograms let the optimizer know if 
that was not the case. The classic example would be 100 records with 2 distinct values where value “Y” 
occurred 99 times and the value “N” occurred only 1 time.  Without a histogram, the optimizer would 
always assume that whether you requested records with a “Y” or an “N” you would get half the records 
back (100/2 = 50). Therefore, you always want to do a full table scan as opposed to using an index on the 
column. A histogram, assuming it was accurate (I’ll come back to that later), would let the optimizer know 
that the distribution was not normal (i.e. not spread out evenly—also commonly called skewed) and that a 
“Y” would get basically the whole table, while an “N” would get only 1%. This would allow the optimizer to 
pick an appropriate plan regardless of which value was specified in the Where Clause. 

So let’s consider the implications of that. Would that improve the response time for the query where 
the value was “Y”? The answer is no. In this simple case, the default costing algorithm is close enough 
and produces the same plan that the histogram produces. The full table scan takes just as long whether 
the optimizer thought it was getting 50 rows or 99 rows. But what about the case where you specified the 
value of “N”? In this case, with a histogram you would pick up the index on that column and presumably 
get a much better response time than the plan with the full table scan. This is an important point. 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

503 

Generally speaking, it is only the outliers—the exceptional cases, if you will—where the histogram really 
makes a difference. 

So at first glance, it looked like a pretty good idea. But there was a fly in the ointment. You had to use 
literals in your SQL statements for the optimizer to be able use the histograms. So you had to write your 
statements like this: 
 
SELECT XYZ FROM TABLE1 WHERE COLUMN1 = ‘Y’; 
SELECT XYZ FROM TABLE1 WHERE COLUMN1 = ‘N’; 
 

This is not a problem in this simple example because you only have two possibilities. But consider a 
statement with two or three skewed columns, each with a couple hundred distinct values. The possible 
combinations could quickly grow into the millions. Not a good thing for the shared pool or scalability of 
your system. 

Enter the star: bind variable peeking, a new feature introduced in 9i that was added to allow the 
optimizer to peek at the value of bind variables and then use a histogram to pick an appropriate plan, 
just like it would do with literals. The problem with the new feature was that it only looked at the 
variables once, when the statement was parsed. So let’s make that simple example a little more realistic 
by assuming you have a table with 10 million rows where 99% have a value of “Y” and 1% have a value of 
“N”. In this example, if the first time the statement was executed it was passed a “Y”, the full table scan 
plan would be locked in and it would be used until the statement had to be re-parsed, even if the value 
“N” was passed to it in subsequent executions. 

Let’s consider the implication of that. When you get the full table scan plan (because you passed a 
“Y” the first time) it behaves the same way no matter what which value you pass subsequently. Oracle 
always performs a full table scan, always does the same amount of work, and usually results in the same 
basic elapsed time. From a user standpoint, that seems reasonable. The performance is consistent. (This 
is the way it would work without a histogram, by the way.) On the other hand, if the index plan gets 
picked because the first execution that caused the parse occurs with a value of “N”, the executions where 
the value is “N” will almost certainly be faster than they were before (maybe considerably faster) , but 
the execution with a value of “Y” will be incredibly slow. That’s because using an index to read virtually 
every row in a table is incredibly slow. This is not at all what the users expect. They expect the response 
time to be about the same every time they execute a piece of code. And this is the problem with bind 
variable peeking. It’s basically just Russian Roulette. It just depends on what value you happen to pass 
the statement when it’s parsed (which could be any execution, by the way). 

So is bind variable peeking a feature or a bug? Figure 16-1 illustrates how that can sometimes be a 
tricky question to answer. 

 

Figure 16-1. Feature or Bug? (Figure by Noah Osborne) 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

504 

Well technically it’s not a bug because it works the way it’s designed. I just happen to believe that it 
was not a good decision to implement it that way. But what other choices did the optimizer 
development group have? 

• They could have evaluated the bind variables and re-parsed for every execution of every 
statement using bind variables. This would eliminate the advantage of having bind variables in 
the first place and would never work for high transaction systems. So it was basically not an 
option. 

• They could have just said no, and made us use literals in order to get the benefit of histograms. 
This is probably not a bad option in retrospect; the fact that they added 
_optim_peek_user_binds, which allows us to turn off bind variable peeking altogether, probably 
means that they decided later to give us that option via setting this hidden parameter. 

• They could have implemented a system where they could identify statements that might benefit 
from different plans based on the values of bind variables. Then peek at those variables for 
every execution of those “bind sensitive” statements (Sound familiar? It’s what they finally did 
in 11g with Adaptive Cursor Sharing). 

 
So why is it such a pervasive problem? (And I do believe it is a pervasive problem with 10g in 

particular.)  
 

1. We’ve been taught to always use bind variables. It’s a “best practice” which allows SQL 
statements to be shared, thus eliminating a great deal of work/contention. Using bind 
variables is an absolute necessity when building scalable high transaction rate systems. Of 
course, just because it’s a “best practice” doesn’t mean you have to follow it blindly. There are 
situations where literals work better. 
 

2. In 10g, the default stats gathering method was changed to automatically gather histograms. 
So in a typical 10g database, there are a huge number of histograms, many of them 
inappropriate (i.e. on columns that don’t have significantly skewed distributions) and many 
of them created with very small sample sizes causing the histograms to be less than accurate. 
Note that 11g does a better job on both counts. That is to say, 11g seems to create fewer 
inappropriate histograms and appears to create much more accurate histograms, even with 
relatively small sample sizes.  
 

3. In my humble opinion, Bind Variable Peeking is not that well understood. When I talk to 
people about the issue, they usually have heard of it and have a basic idea what the problem 
is, but their behavior (in terms of the code they write and how they manage their databases) 
indicates that they don’t really have a good handle on the issue. 
 

So what’s the best way to deal with this issue? Well, recognizing that you have a problem is the first 
step to recovery. In other words, being able to identify that you have a problem with plan stability is an 
appropriate first step. Direct queries against the Statspack or AWR tables are probably the best way to 
identify the issue. What you’re looking for is statements that flip flop back and forth between two or 
more plans. Note that there are other reasons for statements to change plans, but bind variable peeking 
is high on the list of usual suspects. 

 
 
 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

505 

■NOTE  Adaptive Cursor Sharing is a new feature of 11g that is aimed at fixing performance issues due to bind 
variable peeking. The basic idea is to try to automatically recognize when a statement might benefit from multiple 
plans. If a statement is found that the optimizer thinks is a candidate, it is marked as bind aware. Subsequent 
executions will peek at the bind variables and new cursors with new plans may result. The feature does work, 
although it has a few quirks. The two biggest drawbacks are that it must execute a statement badly before it will 
notice that an additional plan is needed, and that the information regarding bind sensitivity is not persistent (i.e. if 
the statement gets flushed from the shared pool, all information about bind sensitivity is lost). As a result, we 
continue to see bind variable peeking issues in 11g. 

Identifying Plan Instability 
Sometimes it’s painfully obvious when a plan has changed for the worse. A quick look at Enterprise 
Manager or a query against gv$session will show dozens of sessions executing the same statement. Other 
times the problem is not as obvious. One of the best ways to identify the problem is to look for 
statements with multiple plans that have very different performance characteristics depending on which 
plan they use. AWR is extremely handy for this as it keeps copies of execution statistics as well as plans 
used for the most “important” statements. Note that not all statements are captured by AWR. Those that 
rank high in number of executions, logical i/o, physical i/o, elapsed time, CPU time, or parses will be 
there, but if you have a statement that is very efficient which later becomes very inefficient, the very 
efficient version may not be captured by AWR. Regardless of the fact that AWR does not represent a 
complete record of every statement executed, it does provide data on most statements that are of 
interest.  

Capturing Data on Currently-Running Queries 
One of my most used diagnostic scripts queries v$session for all sessions that have a status of ACTIVE. 
This can be used to see what is actually running at any give point in time. It is not perfect because really 
fast statements may not show up very often, even if they are dominating the workload. So I often use 
Tanel Poder’s snapper script for this same purpose. His script has many advantages but one of the most 
useful is that runs many times in a tight loop and aggregates the data so that very fast statements still 
show up in the output. Listing 16-3 shows both scripts in action. 

Listing 16-3. Two Diagnostic Scripts, as.sql and Session Snapper 

SYS@LAB112> @as 
 
 SID PROG       SQL_ID         CHILD PLAN_HASH_VALUE      EXECS   AVG_ETIME SQL_TEXT 
---- ---------- ------------- ------ --------------- ---------- ----------- --------------- 
  24 sqlplus@ho gf5nnx0pyfqq2      0      4072605661         55       86.18 select a.col2,   
  42 sqlplus@ho gf5nnx0pyfqq2      0      4072605661         55       86.18 
 100 sqlplus@ho gf5nnx0pyfqq2      0      4072605661         55       86.18 
  83 sqlplus@ho gf5nnx0pyfqq2      0      4072605661         55       86.18 
  61 sqlplus@ho gf5nnx0pyfqq2      0      4072605661         55       86.18 
 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

506 

SYS@LAB112> @snapper ash=sid+event+wait_class,ash1=sql_id 5 1 all 
Sampling with interval 5 seconds, 1 times... 
 
-- Session Snapper v3.11 by Tanel Poder @ E2SN ( http://tech.e2sn.com ) 
 
 
-------------------------------------------------------------- 
Active% |    SID | EVENT                     | WAIT_CLASS 
-------------------------------------------------------------- 
   100% |     83 | ON CPU                    | ON CPU 
    98% |     42 | ON CPU                    | ON CPU 
    98% |     61 | ON CPU                    | ON CPU 
    93% |     24 | ON CPU                    | ON CPU 
    88% |    100 | ON CPU                    | ON CPU 
    12% |    100 | direct path read temp     | User I/O 
     7% |     24 | direct path read temp     | User I/O 
     5% |    248 | control file parallel wri | System I/O 
     2% |     42 | direct path read temp     | User I/O 
     2% |     61 | direct path read temp     | User I/O 
 
------------------------- 
Active% | SQL_ID 
------------------------- 
   500% | gf5nnx0pyfqq2 
     5% | 
 
--  End of ASH snap 1, end=2010-08-12 22:23:17, seconds=5, samples_taken=42 
 

The scripts have very different output formats. My as.sql script has one line per session and shows 
the SQL_ID that is being executed by the session, along with the Average Elapsed Time for that 
statement. Keep in mind that this represents a single instant in time. So you should run it several times 
in succession to get a feel for what is actually happening. Tanel’s snapper, on the other hand, doesn’t 
require repeated running. Just give it a length of time to run and it automatically samples repeatedly for 
that length of time. It is also considerably more flexible than my simple script. The format is quite 
different, too. The top section shows the activity percentage by SID and Event. Notice that the same SID 
may have multiple entries if it spends significant time on more than one thing during the sample period. 
The second section shows a break down of the work by SQL statement. 

In the case shown, both snapper and my as.sql scripts show different views of the same situation. 
There are five sessions all running the same statement. Any time you are asked to look at a system and 
you see that many sessions are all running the same long running SQL statement, you have a pretty good 
idea where to start your investigation into the problem. 

Reviewing the History of a Statement’s Performance 
When the problem is obvious (as in the previous example where several sessions were all running the 
same long running query), it is often instructive to see what the performance of the statement of interest 
has looked like over time. This can easily be done by directly querying the AWR or Statspack tables. 
Listing 16-4 shows an example. 

http://tech.e2sn.com


CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

507 

Listing 16-4. The awr_plan_change.sql Script 

SYS@LAB112> @awr_plan_change 
Enter value for sql_id: 3dhwvfmkjzwtv 
 
SNAP_ID NODE BEGIN_INTERVAL_TIME     PLAN_HASH_VALUE   EXECS    AVG_ETIME        AVG_LIO 
------- ---- ----------------------- --------------- ------- ------------ -------------- 
   1785    3 24-APR-09 05.00 PM           1093407144       6        1.102        2,872.7 
   1786    2 24-APR-09 06.00 PM                          158        0.024        2,873.0 
   1786    3 24-APR-09 06.00 PM                          223        0.023        2,873.0 
   1787    2 24-APR-09 07.00 PM                          749        0.020        2,873.0 
   1787    3 24-APR-09 07.00 PM                          873        0.019        2,873.0 
   1788    2 24-APR-09 08.00 PM                          726        0.020        2,873.9 
   1788    3 24-APR-09 08.00 PM                          871        0.020        2,873.9 
   1789    2 24-APR-09 09.00 PM                          373        0.016        2,874.0 
   1789    3 24-APR-09 09.00 PM                          566        0.016        2,874.0 
   1892    2 29-APR-09 04.00 AM                            1        2.613        3,811.0 
   1897    2 29-APR-09 09.00 AM                            2        8.179        8,529.0 
   1918    3 30-APR-09 06.00 AM                            2        0.421          485.5 
   1919    2 30-APR-09 07.00 AM                            1        1.152        1,242.0 
   1920    2 30-APR-09 08.00 AM                            4        3.273        3,200.3 
   1920    3 30-APR-09 08.00 AM                           12        2.491        3,314.2 
   1921    2 30-APR-09 09.00 AM                            5        3.947        3,333.4 
   1921    3 30-APR-09 09.00 AM                            2        2.416        1,769.5 
   1922    3 30-APR-09 10.00 AM           4076066623       2       54.237    2,291,432.5 
   1923    2 30-APR-09 11.00 AM           1093407144       2        0.812          975.0 
   1923    3 30-APR-09 11.00 AM           4076066623       3      134.031      933,124.3 
   1924    3 30-APR-09 12.00 PM                            3      227.009    6,987,169.3 
   1926    2 30-APR-09 02.00 PM           1093407144       8        0.818        1,574.5 
   1926    3 30-APR-09 02.00 PM           4076066623       2      175.709    8,963,417.0 
   1927    2 30-APR-09 03.00 PM           1093407144       4        1.344        1,068.8 
   1927    3 30-APR-09 03.00 PM           4076066623       5      156.378   10,059,992.0 
   1928    2 30-APR-09 04.00 PM           1093407144       6        0.923        1,225.8 
   1928    3 30-APR-09 04.00 PM           4076066623       1      180.488    2,150,190.0 
   1930    3 30-APR-09 06.00 PM                            2      180.371    8,255,881.5 
   1934    3 30-APR-09 10.00 PM                            1      180.491    3,002,577.0 
   1939    2 01-MAY-09 03.00 AM           1093407144      21        0.825        1,041.8 
   1939    3 01-MAY-09 03.00 AM                            4        0.575        1,211.8 
   1944    3 01-MAY-09 08.00 AM                            6        1.328        1,788.3 
   1946    2 01-MAY-09 10.00 AM                            1        1.170        2,411.0 
   1946    3 01-MAY-09 10.00 AM                            4        2.041        2,414.3 
   1947    3 01-MAY-09 11.00 AM                           10        1.725        2,937.1 
   1948    3 01-MAY-09 12.00 PM                            3        2.232        3,415.7 
   1987    2 03-MAY-09 03.00 AM                            7        1.029          901.0 
   1990    3 03-MAY-09 06.00 AM                            3        1.225        1,465.7 
   1991    3 03-MAY-09 07.00 AM                           26        0.370          710.5 
   1992    2 03-MAY-09 08.00 AM                            6        0.213          685.7 
   1992    3 03-MAY-09 08.00 AM                            3        0.658          883.0 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

508 

   1993    2 03-MAY-09 09.00 AM                            8        0.769          950.9 
   1996    2 03-MAY-09 12.00 PM                            2        0.101          861.5 
   2015    3 04-MAY-09 07.00 AM                            4        0.376          854.5 
   2016    3 04-MAY-09 08.00 AM                            6        0.143          571.0 
   2019    2 04-MAY-09 11.00 AM                           12        0.937        1,352.1 
   2019    3 04-MAY-09 11.00 AM                           10        1.612        1,341.9 
   2019    3 04-MAY-09 11.00 AM           4076066623       1       41.592    3,942,672.0 
   2020    2 04-MAY-09 12.00 PM           1093407144      15        1.037        1,734.6 
   2020    3 04-MAY-09 12.00 PM           4076066623       1      181.044    1,764,007.0 
   2022    2 04-MAY-09 02.00 PM           1093407144       2        2.214        2,780.5  
 

The awr_plan_change.sql script simply queries DBA_HIST_SQLSTAT for a list of snapshots that 
contain information about the statement in question (based on its sql_id) and then prints out the 
relevant statistical information. In this output, I have shown the plan_hash_value, the average logical 
i/o, and the average elapsed time. (This sort of a report could also be generated from data collected by 
Statspack, by the way) One of the most interesting features of this kind of a historical view of a statement 
is the history of the plan(s) being used. The output in the example shows a classic case of plan instability. 
As you can see, the plan changes fairly often (note that the script uses the SQL*Plus break feature on the 
plan_hash_value column, so if the value does not change from row to row, the value is not printed). This 
is not a situation where something changed in the environment that caused a plan to change, but rather 
a situation where the plans are constantly in a state of flux. This is classic plan instability. If you had seen 
a single plan being used for many days and then an abrupt change to another plan, you would be 
looking for a change to statistics or some other environmental change such as an optimizer setting.   

You can also clearly see that the performance characteristics are wildly different between the two 
plans. In the sample output, you can see that plan 1093407144 does only a couple of thousand lios, while 
plan 4076066623 does a few million. Consequently, the average elapsed time is several minutes for the 
“bad” plan and a couple of seconds for the “good” plan. This is another characteristic of classic plan 
instability. There is often a single plan that, while not the absolute best performance you can get for any 
combination of bind variables, is good enough to be acceptable and provides the desired stability. 

Aggregating Statistics by Plan 
Generally speaking, you don’t care much about the optimizer changing its mind and picking a different 
plan unless the execution times vary widely from one plan to the other. When you have a lot of 
snapshots or a lot of plans, it’s often helpful to aggregate the statistics by plan. The awr_plan_stats.sql 
script does just that (Note: I’ve cut some of the rows from the above output so the averages won’t exactly 
match, but they are close enough to get the point across): 
 
SQL> @awr_plan_stats 
Enter value for sql_id: 3dhwvfmkjzwtv 
 
SQL_ID        PLAN_HASH_VALUE        EXECS          ETIME    AVG_ETIME        AVG_LIO 
------------- --------------- ------------ -------------- ------------ -------------- 
3dhwvfmkjzwtv      1093407144          207          100.0         .935        2,512.5 
3dhwvfmkjzwtv      4076066623           22        1,236.5      154.559    4,072,416.3 
 

The output from the awr_plan_stats.sql script clearly shows that in this example there are two plans 
with very different performance characteristics. This is a fairly common situation (although there are 
often more than two plans). But it is nevertheless a common occurrence where one plan is fairly 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

509 

consistent with a reasonable amount of work and a reasonable average elapsed time. Although you 
should be aware that averages can hide a lot of important details (such as a few very fast executions with 
the plan that has the horrible averages). But again, the goal is generally to get stability at a reasonable 
performance level. So finding a plan that you can stick with is often all you’re after. (I’ll talk about how 
you get the optimizer to stick with a single plan shortly.) 

■NOTE  The default retention period for both AWR and Statspack are woefully inadequate for this type of 
diagnosis. The default is seven days for AWR. I’ve been involved in many cases where the necessary data has 
scrolled out of the retention window and been purged before a proper diagnosis was done. AWR (and Statspack) 
data does not take up that much space, so I routinely set the retention to several months (and I know of sites 
where they retain multiple years of AWR data). There is even a supplied script that will allow you to estimate the 
storage requirements for AWR based on the workload in your system: $ORACLE_HOME/rdbms/admin/utlsyxsz.sql. 

Looking for Statistical Variance by Plan 
When the problem is not obvious but you suspect plan instability is an issue, it’s often helpful to look for 
statements that have run with more than one plan that have a large statistical variance in their execution 
times or the amount of work they do (logical i/os, for example). Listing 16-5 shows the header of a script 
(unstable_plans.sql) that can help identify statements that are suffering from plan instability along with 
an example of it usage.  

Listing 16-5. The.unstable_plans.sql Script 

---------------------------------------------------------------------------------------- 
-- 
-- File name:   unstable_plans.sql 
-- 
-- Purpose:     Attempts to find SQL statements with plan instability. 
-- 
-- Author:      Kerry Osborne 
-- 
-- Usage:       This scripts prompts for two values, both of which can be left blank. 
-- 
--              min_stddev: the minimum "normalized" standard deviation between plans 
--                          (the default is 2) 
-- 
--              min_etime:  only include statements that have an avg. etime > this value 
--                          (the default is .1 second) 
-- 
-- See http://kerryosborne.oracle-guy.com/2008/10/unstable-plans/ for more info. 
--------------------------------------------------------------------------------------- 
 
 
SQL> @unstable_plans 
Enter value for min_stddev:  

http://kerryosborne.oracle-guy.com/2008/10/unstable-plans


CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

510 

Enter value for min_etime:  

SQL_ID        SUM(EXECS)   MIN_ETIME   MAX_ETIME   NORM_STDDEV
------------- ---------- ----------- ----------- ------------- 
4fc7tprp1x3uj      43212         .18         .84        2.0222
47s01ypztkmn6          6       54.46      210.28        2.0230
3rx5cnvua3myj       8126         .03         .12        2.0728
80tb4vmrsag5j      29544         .78        3.16        2.1433
cahnk07yj55st         17       26.35      113.09        2.3272
2azfw6wnqn01s        388        1.39        6.20        2.4522
a31u2rn7zup46          4       30.38      183.82        2.5271
607twnwf0ym10         30      146.50      728.15        2.8075
7y3w2mnqnp8jn         65         .56        3.05        3.1227
82rq0xvp6u1t2         34       12.34      119.20        3.4625
9cp3tujh0z4mt      42455         .02         .15        3.5998
6ykn5wq4jmu91      58584         .01         .21        3.7001
cvfj7g4fub5kn        116         .43        3.76        5.4863
26nrsfgurpgpm     427450         .07        1.08        5.5286
brntkgfqa9u1u          2      261.26    2,376.86        5.7258
d9ddsn04krw9d         99         .43        5.66        5.9018
fnwxd5kmnp6x9       2227         .47        4.46        6.0031
96567x1dqvzw1         23       27.02      311.04        7.4330
5wwnfumndntbq         10       98.58    1,481.40        7.7765
dm4hyyyxyay5t       1368         .03         .36        7.8945
5ub7xd1pn57by    1118281         .04        1.23       10.8031
870uasttnradg     441864         .12        2.07       11.3099
2p86vc476bvht         34       14.66      297.76       13.6548
2gz0c5c3vw59b         30       53.45    1,197.24       15.1320
4g22whjx1ycnu        818         .55       22.02       15.3194
48k8mu4mt68pw       1578       13.58    2,002.27       81.6759
1ct9u20mx6nnf      25782         .00         .93      287.5165 

27 rows selected.  

The output in Listing 16-5 shows that there are several SQL statements in this system that are most
likely suffering from plan instability issues. The script pulls the info from the AWR tables and displays
the total executions, the average elapsed time for the fastest plan, the average elapsed time for the
slowest plan, and a calculated normalized standard deviation. As you can see, statement 1ct9u20mx6nnf
is the worst offender. However, it may not be all that noticeable to the users because the delta between
the slowest and the fastest plan is still less than a second. If it is executed many times in succession, the
users will almost certainly suffer, but otherwise they may not notice. On the other hand, SQL_ID
48k8mu4mt68pw varies from 14 seconds to over 30 minutes. Anyone that runs this statement will
certainly notice the difference. And seeing that it was executed over 1500 times certainly makes this one
appear as a significant contributor to perceived inconsistency. Finally, after identifying the suspects, I
usually use the awr_plan_stats.sql and awr_plan_change.sql to get a better idea of what’s going with
specific statements.  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

511 

Checking for Variations Around a Point in Time 

The other thing I occasionally do is to look for variations around a point in time. My whats_changed.sql 
script computes a normalized variance for elapsed time around a specific point in time. In fact, it 
computes the average elapsed time before a reference time and the average elapsed time after the 
reference time for every statement in the AWR tables. It then displays all statements whose average 
elapsed times are significantly different (2x by default). It’s similar to the unstable_plans.sql script, but 
it looks for variance around a point in time as opposed to variance between plans. It is most useful when 
new code is rolled out or a new index is created or basically whenever you want to see which statements 
have been affected either for the better or the worse. Listing 16-6 shows the script’s header and an 
example of its use. 

Listing 16-6. The  whats_changed.sql Script 

---------------------------------------------------------------------------------------- 
-- 
-- File name:   whats_changed.sql 
-- 
-- Purpose:     Find statements that have significantly different elapsed time than before. 
- 
-- Author:      Kerry Osborne 
-- 
-- Usage:       This scripts prompts for four values. 
-- 
--              days_ago: how long ago was the change made that you wish to evaluate 
--                        (this could easily be changed to a snap_id for more precision) 
-- 
--              min_stddev: the minimum "normalized" standard deviation between plans 
--                          (the default is 2 - which means twice as fast/slow) 
-- 
--              min_etime:  only include statements that have an avg. etime > this value 
--                          (the default is .1 second) 
-- 
--              faster_slower: a flag to indicate if you want only Faster or Slower SQL 
--                             (the default is both - use S% for slower and F% for faster) 
-- 
-- Description: This script attempts to find statements with significantly different 
--              average elapsed times per execution. It uses AWR data and computes a 
--              normalized standard deviation between the average elapsed time per 
--              execution before and after the date specified by the days_ago parameter. 
-- 
--              The ouput includes the following: 
-- 
--              SQL_ID - the sql_id of a statement that is in the shared pool (v$sqlarea) 
-- 
--              EXECS - the total number of executions in the AWR tables 
-- 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

512 

--              AVG_ETIME_BEFORE - the average elapsed time per execution before the  
--                                 REFERENCE_TIME specified by days_ago 
-- 
--              AVG_ETIME_AFTER - the average elapsed time per execution after the  
--                                REFERENCE_TIME specified by days_ago 
-- 
--              NORM_STDDEV - this is a normalized standard deviation  
--                            (i.e. how many times slower/faster is it now) 
-- 
-- See http://kerryosborne.oracle-guy.com/2009/06/what-did-my-new-index-mess-up  
-- for additional information. 
---------------------------------------------------------------------------------------- 
 
SQL> @whats_changed 
Enter Days ago: 30 
Enter value for min_stddev:  
Enter value for min_etime:  
Enter value for faster_slower:  
 
SQL_ID               EXECS AVG_ETIME_BEFORE AVG_ETIME_AFTER   NORM_STDDEV RESULT 
------------- ------------ ---------------- --------------- ------------- --------- 
5ub7xd1pn57by    1,118,281             0.18            0.05        2.0827 Faster 
03rhvyrhjxgg9        3,838             0.10            0.38        2.0925 Slower 
cahnk07yj55st           17           113.09           26.35        2.3272 Faster 
4bf2kzg2h1sd0          148             0.60            0.13        2.6403 Faster 
9cp3tujh0z4mt       42,455             0.12            0.02        2.7272 Faster 
fnwxd5kmnp6x9        2,227             0.92            4.47        2.7283 Slower 
607twnwf0ym10           30           146.50          728.15        2.8075 Slower 
akm80a52q4qs9          649             6.16            1.21        2.9014 Faster 
4g22whjx1ycnu          818             0.48            2.44        2.9272 Slower 
14mxyzzjzjvpq        1,537            33.08          191.20        3.3800 Slower 
6zncujjc43gsm        1,554            22.53          168.79        4.5894 Slower 
6zt6cu6upnm8y        3,340             0.62            0.08        4.8153 Faster 
870uasttnradg      441,864             0.98            0.12        4.9936 Faster 
d9ddsn04krw9d           99             5.66            0.68        5.1708 Faster 
cvfj7g4fub5kn          116             3.76            0.43        5.4863 Faster 
2p86vc476bvht           34            14.66          297.76       13.6548 Slower 
2gz0c5c3vw59b           30            53.45        1,197.24       15.1320 Slower 
 
17 rows selected. 
 

That wraps up the first portion of this chapter on identifying the problem. I’ve discussed a couple of 
primary causes for plans changing (statistics gathering and bind variable peeking) and I’ve covered some 
techniques for identifying the issue. In the next section, I’ll turn the discussion towards how to improve 
the situation. 
 
 

http://kerryosborne.oracle-guy.com/2009/06/what-did-my-new-index-mess-up


CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

513 

Plan Control: Solving the Problem 
When you have access to the code (and the change control requirements are not too stringent) you can 
make changes to get the plan you want. Mechanisms such as hints, changing the structure of the query 
itself, or using literals in key locations to avoid bind variable peeking issues are all viable options.  

■NOTE  See the next section “Plan Control: Without Access to the Code” for help in exerting control over 
execution plans when you do not have the luxury of being able to modify the code that is being executed. 

Discussions about controlling execution plans can turn into a religious debate.  Questions 
concerning the degree and mechanism of control can all degenerate from spirited debate into 
questioning our rival’s ancestry. There is a strong argument for letting the optimizer do what it was 
written to do. After all, it’s one of the most complex pieces of software in existence with countless man-
hours invested in its programming. In many (I dare say, most) situations the optimizer is capable of 
coming up with very serviceable execution plans. However, that assumes that the database is configured 
correctly, and that the statistics are accurate, and that the data model is reasonable, and that the SQL is 
written correctly, etc… That’s a lot of assumptions and rarely are they all true.  

So one camp says fix the configuration, the stats, the data model, or whatever else is leading the 
optimizer astray. On the surface, this seems like a perfectly reasonable position that would be hard to 
argue. If the statistics are not accurate, there will most likely be numerous issues even if they aren’t 
readily apparent. So fixing inaccurate statistics can improve things in many areas at the same time.  

The flip side is that fixing some things is almost an insurmountable task. Changing the data model, 
for example, presents a substantial challenge even in a small application, and it is certainly not 
something that can be done with any degree of expediency.  Likewise, changing configuration 
parameters can have sweeping effects that often require other adjustments. Because of those issues, 
there is a group that says, “Let’s just focus on fixing the slow running process.” People in this camp tend 
to want to zero in on a SQL statement and fix it. This argument is also hard to argue with since we are 
often under the gun to provide relief to the users of the system. 

The key, in my mind, is to weigh the cost (time to implement and risk) against the potential benefit. 
I tend to be a pragmatist and therefore rarely get into religious debates about which approach is “right.” 
I am quite comfortable with making a decision to implement a solution that provides quick relief, even if 
there is a long term solution that needs to be implemented at some point in the future. I consider myself 
akin to an emergency room doctor. When a patient's heart stops, I expect the doctor to break out the 
defibrillator and get the patient stabilized, not lecture him on proper lifestyle and put him on a diet and 
new exercise regime. There’s plenty of time for that later. On the other hand, once the guy has had the 
triple bypass, it would be foolish for his cardiologist to tell him that he should keep doing what he’s 
always been doing, just because the technology exists to give him another jump start in the emergency 
room and put in a couple more stents if necessary. 

The bottom line is that even when you have a system that is configured well with accurate statistics, 
you still occasionally run across plan stability issues. So let’s put the philosophical issues aside and talk 
about the basic tools you have at your disposal for controlling execution plans.  

Modifying Query Structure 
Prior to version 8, changing the structure of a query was basically the only tool available for influencing 
execution plans (other than making physical changes to the database objects like adding or dropping 
indexes). Modifying SQL structure is still a valid technique, but since the optimizer has become so adept 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

514 

at transforming queries, it is not nearly as useful as it once was. Nevertheless, being aware of alternative 
forms that will return the same set of rows can give you an advantage when you are trying to get the 
optimizer to pick a certain plan.  Alternative forms can open up or close off options that the optimizer 
has to choose from.  

Making Appropriate Use of Literals 
Although it’s been drummed into your head for years that you should use bind variables, they are not 
appropriate in every situation. In fact, anywhere you have skewed data distributions and need 
histograms to get the best plans, you should use literals as opposed to bind variables, at least for the 
special cases (i.e. the values that you want to make sure the optimizer is aware of). It is not necessary to 
choose one approach or the other for each statement, either. It is perfectly reasonable to code 
conditional logic that branches to a SQL construct which uses literals when the values are highly 
selective (or highly unselective). All of the other values can be covered by a single version of the 
statement that uses a bind variable. Of course, if the number of very popular (or very unpopular) values 
is high, you’ll have to weigh the cost of the coding effort, the impact on the shared pool, and the 
additional impediment to scalability caused by the additional parsing for all these unique SQL 
statements. As my Grand Dad used to say, “There’s no such thing as a free puppy.” 

Giving the Optimizer some Hints 
One of the oldest and most basic methods of controlling execution plans is embedding optimizer 
instructions directly into the statement. Unfortunately, the name of this feature, HINT, is somewhat 
misleading. The word “hint” makes it sound like it is a mild suggestion that the optimizer can consider 
or ignore as it pleases. Nothing could be further from the truth. Hints are actually directives to the 
optimizer. As long as the hint is valid, the optimizer will obey it. In general, hints are not well 
understood. One reason is that they are not particularly well documented. But worse than that, they 
return no error or warning message when an invalid hint is specified. In cases where there is a syntax 
error, or object names are mistyped, or the combination of hints cannot be applied together, they are 
simply silently ignored. So it is difficult to know if a hint is even recognized as valid, much less whether it 
is doing what it is supposed to do.  This lack of error or warning messages is probably the biggest reason 
for confusion about what they do.  

Hints can be used to tell Oracle to do a full table scan instead of using an index, or to do a nested 
loops join, or to use a specific index, or all of the above. Each of these access path oriented hints 
effectively reduces the universe of possible options that the optimizer can consider when coming up 
with an execution plan for a statement. Hints can also be used to alter optimizer settings, object 
statistics, and even internal optimizer calculations. These kinds of hints alter the way the optimizer does 
its work or the calculations that it makes, but do not directly limit the choices the optimizer has in terms 
of access paths. By the way, 11g provides a list of valid hints along with the version in which they were 
introduced via the V$SQL_HINT view.  Listing 16-7 shows the valid_hints.sql script. 

Listing 16-7. The valid_hints.sql Script 

SYS@LAB112> @valid_hints 
Enter value for hint: index 
Enter value for version:  
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

515 

NAME                                                             VERSION 
---------------------------------------------------------------- ------------------------ 
CHANGE_DUPKEY_ERROR_INDEX                                        11.1.0.7 
DOMAIN_INDEX_FILTER                                              11.1.0.6 
DOMAIN_INDEX_NO_SORT                                             8.1.5 
DOMAIN_INDEX_SORT                                                8.1.5 
IGNORE_ROW_ON_DUPKEY_INDEX                                       11.1.0.7 
INDEX                                                            8.0.0 
INDEX_ASC                                                        8.1.0 
INDEX_COMBINE                                                    8.1.0 
INDEX_DESC                                                       8.1.0 
INDEX_FFS                                                        8.1.0 
INDEX_JOIN                                                       8.1.5 
INDEX_RRS                                                        9.0.0 
INDEX_RS_ASC                                                     11.1.0.6 
INDEX_RS_DESC                                                    11.1.0.6 
INDEX_SS                                                         9.0.0 
INDEX_SS_ASC                                                     9.0.0 
INDEX_SS_DESC                                                    9.0.0 
INDEX_STATS                                                      10.1.0.3 
LOCAL_INDEXES                                                    9.0.0 
NO_DOMAIN_INDEX_FILTER                                           11.1.0.6 
NO_INDEX                                                         8.1.5 
NO_INDEX_FFS                                                     10.1.0.3 
NO_INDEX_SS                                                      10.1.0.3 
NO_PARALLEL_INDEX                                                8.1.0 
NO_USE_INVISIBLE_INDEXES                                         11.1.0.6 
NO_XMLINDEX_REWRITE                                              11.1.0.6 
NO_XMLINDEX_REWRITE_IN_SELECT                                    11.1.0.6 
NUM_INDEX_KEYS                                                   10.2.0.3 
PARALLEL_INDEX                                                   8.1.0 
USE_INVISIBLE_INDEXES                                            11.1.0.6 
USE_NL_WITH_INDEX                                                10.1.0.3 
XMLINDEX_REWRITE                                                 11.1.0.6 
XMLINDEX_REWRITE_IN_SELECT                                       11.1.0.6 
XMLINDEX_SEL_IDX_TBL                                             11.2.0.1 
 
34 rows selected. 
 

Hints can be applied to individual statements by embedding them inside comments that begin with 
a plus sign (+). Any comment immediately following a select, update, insert, or delete keyword that 
begins with a (+) will be evaluated by the optimizer. The comment can contain multiple hints. The 
documentation also states that comment text can be interspersed with hints. I would not recommend 
this technique, however, as not all hints are documented and you may inadvertently put in a word that 
that has significance to the optimizer. There can only be one hint-comment per query block. 
Subsequent comments that start with a (+) will not be evaluated by the optimizer. If you use an alias for 
an object name in your SQL statement, all hints must refer to the object by its alias. Also note that if you 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

516 

specify an owner name in your statement, the hint should not include the owner name (use an alias, it 
will make it easier). Listing 16-8 shows a couple of examples 

Listing 16-8. Examples of Hints 

Valid: 
 
select /* real comment */ /*+ gather_plan_statistics full (a) */ avg(col1) 
from kso.skew a where col1 = 1234234; 
 
select /*+ gather_plan_statistics full (a) */ /* real comment */ avg(col1) 
from kso.skew a where col1 = 1234234; 
 
select /*+ gather_plan_statistics full (skew) */ /* real comment */ avg(col1)  
from kso.skew where col1 = 1234234; 
 
 
Invalid 
 
-- don’t use owner in hint  
select /*+ gather_plan_statistics full (kso.skew) */ /* real comment */ avg(col1)  
from kso.skew  where col1 = 1234234; 
 
-- if you use a table alias it must be used in the hint 
select /*+ gather_plan_statistics full (skew) */ /* real comment */ avg(col1)  
from kso.skew a where col1 = 1234234; 
 
-- apparently the word comment has a special meaning – disabling the hints 
select /*+ real comment gather_plan_statistics more comment full (a) */ avg(col1)  
from kso.skew a where col1 = 1234234;  
 
-- the 2nd hint will not be evaluated as a hint 
select /*+ gather_plan_statistics */ /*+ full (kso.skew) */ /* real comment */ avg(col1) 
from kso.skew  where col1 = 1234234; 
 

The format of hints is actually more complicated than the abbreviated version you usually see. The 
simplified format you normally see is used to specify tables where the hints are embedded directly in the 
query blocks where the table occurs. This is not always desirable or even possible, so Oracle has a way of 
declaring hints that specify where the table is located in the SQL structure. This becomes important 
when specifying hints that affect objects inside of views, for example, and as you’ll see later on, for the 
hint based mechanisms that Oracle uses to try to improve plan stability.  The documentation refers to a 
“global hint format,” which basically means the query block an object resides is specified within the hint. 
Any hint that applies to one or more tables can make use of this global format. The query block names 
can be manually specified with a hint (QB_NAME) or can be assigned automatically by the system. The 
system generated names are not always intuitive. In simple statements, they often take the form of 
SEL$1, SEL$2, etc. (or UPD$1 or DEL$1 for update and delete statements).  Here are some examples 
using the FULL hint: 
 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

517 

select /*+ full (a) */ avg(col1) 
from kso.skew a where col1 = 1234234; 
 
select /*+ full (@SEL$1 a@SEL$1) */ avg(col1) 
from kso.skew a where col1 = 1234234; 
 
select /*+ full (a@SEL$1) */ avg(col1) 
from kso.skew a where col1 = 1234234; 
 
select /*+ full (@SEL$1 a) */ avg(col1) 
from kso.skew a where col1 = 1234234; 
 
select /*+ qb_name (MYQB) full (a@MYQB) */ avg(col1) 
from kso.skew a where col1 = 1234234; 
 

All five of the above statements are equivalent. The first @SEL$1 is the query block where the hint 
should be applied. The term a@SEL$1 is the fully qualified table alias. In this case, the whole query block 
name is redundant. There is only one table and one query block. In general, even when there are 
multiple query blocks, specifying the query block and then fully qualifying the alias is not necessary. 
There are situations, though, where you may need both. 

There are a couple of ways to determine the correct query block name when system assigned Query 
Block names are in play. One is to use dbms_xplan with the ALIAS parameter. The other is to look at the 
data in the OTHER_XML column of V$SQL that contains all the hints that Oracle thinks would be 
necessary to recreate the plan. These hints are fully qualified. Listing 16-9 shows examples of both 
techniques. 

Listing 16-9. Examples of Determining the Correct Query Block Name 

SYS@LAB112> @sql_hints 
SYS@LAB112> select 
  2  extractvalue(value(d), '/hint') as outline_hints 
  3  from 
  4  xmltable('/*/outline_data/hint' 
  5  passing ( 
  6  select 
  7  xmltype(other_xml) as xmlval 
  8  from 
  9  v$sql_plan 
 10  where 
 11  sql_id like nvl('&sql_id',sql_id) 
 12  and child_number = &child_no 
 13  and other_xml is not null 
 14  ) 
 15  ) d; 
Enter value for sql_id: 14swym6ry0x99 
Enter value for child_no: 0 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

518 

OUTLINE_HINTS 
---------------------------------------------------------------------------------------
IGNORE_OPTIM_EMBEDDED_HINTS 
OPTIMIZER_FEATURES_ENABLE('11.2.0.1') 
DB_VERSION('11.2.0.1') 
ALL_ROWS 
OUTLINE_LEAF(@"SEL$5DA710D3") 
UNNEST(@"SEL$2") 
OUTLINE(@"SEL$1") 
OUTLINE(@"SEL$2") 
INDEX(@"SEL$5DA710D3" "DEPARTMENTS"@"SEL$1" ("DEPARTMENTS"."DEPARTMENT_ID")) 
FULL(@"SEL$5DA710D3" "EMPLOYEES"@"SEL$2") 
LEADING(@"SEL$5DA710D3" "DEPARTMENTS"@"SEL$1" "EMPLOYEES"@"SEL$2") 
USE_MERGE(@"SEL$5DA710D3" "EMPLOYEES"@"SEL$2") 
 
12 rows selected. 
 
 
 
SYS@LAB112> select * from table(dbms_xplan.display_cursor('&sql_id','&child_no','alias')) 
  2  / 
Enter value for sql_id: 14swym6ry0x99 
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-----------------------------------------------------------------------------------------
SQL_ID  14swym6ry0x99, child number 0 
------------------------------------- 
select /* not in */ department_name    from hr.departments    where 
department_id not in (select department_id from hr.employees) 
 
Plan hash value: 4201340344 
 
-------------------------------------------------------------------------------------------- 
| Id  | Operation                     | Name        | Rows  | Bytes | Cost (%CPU)| Time      
-------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT              |             |       |       |     6 (100)|         |  
|   1 |  MERGE JOIN ANTI NA           |             |    17 |   323 |     6  (17)| 00:00:01| 
|   2 |   SORT JOIN                   |             |    27 |   432 |     2   (0)| 00:00:01| 
|   3 |    TABLE ACCESS BY INDEX ROWID| DEPARTMENTS |    27 |   432 |     2   (0)| 00:00:01| 
|   4 |     INDEX FULL SCAN           | DEPT_ID_PK  |    27 |       |     1   (0)| 00:00:01| 
|*  5 |   SORT UNIQUE                 |             |   107 |   321 |     4  (25)| 00:00:01| 
|   6 |    TABLE ACCESS FULL          | EMPLOYEES   |   107 |   321 |     3   (0)| 00:00:01| 
-------------------------------------------------------------------------------------------- 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

519 

Query Block Name / Object Alias (identified by operation id): 
------------------------------------------------------------- 
 
   1 - SEL$5DA710D3 
   3 - SEL$5DA710D3 / DEPARTMENTS@SEL$1 
   4 - SEL$5DA710D3 / DEPARTMENTS@SEL$1 
   6 - SEL$5DA710D3 / EMPLOYEES@SEL$2 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   5 - access("DEPARTMENT_ID"="DEPARTMENT_ID") 
       filter("DEPARTMENT_ID"="DEPARTMENT_ID") 
 
 
33 rows selected. 
  

Notice that the query block names in this example are more complex than the simple SEL$1 
although the aliases still use the SEL$1 format referencing their original position in the statement. The 
complex Query Block names are due to transformations done by the optimizer. Listing 16-10 shows what 
happens when you run the same query with query transformation turned off . 

Listing 16-10. The Same Query with Query Transformation Turned Off. 

SYS@LAB112> @dplan_alias 
Enter value for sql_id: 5nz6s5j41rsrt 
Enter value for child_no: 0 
 
PLAN_TABLE_OUTPUT 
----------------------------------------------------------------------------------------- 
SQL_ID  5nz6s5j41rsrt, child number 0 
------------------------------------- 
select /* NOT IN */ /*+ no_query_transformation */ department_name 
from hr.departments dept    where department_id not in (select 
department_id from hr.employees emp) 
 
Plan hash value: 3416340233 
 
---------------------------------------------------------------------------------- 
| Id  | Operation          | Name        | Rows  | Bytes | Cost (%CPU)| Time     | 
---------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT   |             |       |       |    30 (100)|          | 
|*  1 |  FILTER            |             |       |       |            |          | 
|   2 |   TABLE ACCESS FULL| DEPARTMENTS |    27 |   432 |     3   (0)| 00:00:01 | 
|*  3 |   TABLE ACCESS FULL| EMPLOYEES   |     2 |     6 |     2   (0)| 00:00:01 | 
---------------------------------------------------------------------------------- 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

520 

Query Block Name / Object Alias (identified by operation id):
------------------------------------------------------------- 

   1 - SEL$1 
   2 - SEL$1 / DEPT@SEL$1 
   3 - SEL$2 / EMP@SEL$2 

Predicate Information (identified by operation id):
--------------------------------------------------- 

   1 - filter( IS NULL) 
   3 - filter(LNNVL("DEPARTMENT_ID"<>:B1)) 

Notice that the more complicated Query Block names have disappeared. Furthermore, when you
specify your own query block names, you still get a generated name if a transformation takes place. This
makes sense if you think about it. Transformations can completely change the structure of the query,
turning a statement with a subquery (like this example) into a join, for example. This combines two
query blocks into a single new block. It is for this reason that I prefer to use the fully qualified alias rather
than the hint format that includes a Query Block name as the first element of the hint. For comparison,
Listing 16-11 shows another plan dump where transformations were allowed and the Query Blocks were
explicitly named. 

Listing 16-11. Explicitly Named Query Blocks 

SYS@LAB112> @dplan_alias 
Enter value for sql_id: 3fmskpabbf8y9
Enter value for child_no:  

PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------- 
SQL_ID  3fmskpabbf8y9, child number 0 
------------------------------------- 
select /* NOT IN */ /*+ qb_name(outer) */ department_name    from 
hr.departments dept    where department_id not in (select /*+ 
qb_name(inner) */ department_id from hr.employees emp) 

Plan hash value: 4201340344 

-------------------------------------------------------------------------------------------- 
| Id  | Operation                     | Name        | Rows  | Bytes | Cost (%CPU)| Time    |
-------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT              |             |       |       |     6 (100)|         |
|   1 |  MERGE JOIN ANTI NA           |             |    17 |   323 |     6  (17)| 00:00:01|
|   2 |   SORT JOIN                   |             |    27 |   432 |     2   (0)| 00:00:01|
|   3 |    TABLE ACCESS BY INDEX ROWID| DEPARTMENTS |    27 |   432 |     2   (0)| 00:00:01|
|   4 |     INDEX FULL SCAN           | DEPT_ID_PK  |    27 |       |     1   (0)| 00:00:01|
|*  5 |   SORT UNIQUE                 |             |   107 |   321 |     4  (25)| 00:00:01|
|   6 |    TABLE ACCESS FULL          | EMPLOYEES   |   107 |   321 |     3   (0)| 00:00:01|
-------------------------------------------------------------------------------------------- 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

521 

Query Block Name / Object Alias (identified by operation id): 
------------------------------------------------------------- 
 
   1 - SEL$F38A2936 
   3 - SEL$F38A2936 / DEPT@OUTER   == The alias remains in tact 
   4 - SEL$F38A2936 / DEPT@OUTER        even though a Query Block Name has 
   6 - SEL$F38A2936 / EMP@INNER         been generated due to transformation. 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   5 - access("DEPARTMENT_ID"="DEPARTMENT_ID") 
       filter("DEPARTMENT_ID"="DEPARTMENT_ID") 
 
 
34 rows selected. 

Notice that the aliases retained their original names even though the Query Block was renamed due to 
the transformation. The transformation can be verified by a 10053 trace, which details the decision 
making process that the optimizer goes through when determining an execution plan. Listing 16-12 
shows an excerpt from the trace file for the above statement. 

Listing 16-12. An excerpt from the Trace File 

Registered qb: OUTER 0xf64c3e34 (HINT OUTER) 
--------------------- 
QUERY BLOCK SIGNATURE 
--------------------- 
  signature (): qb_name=OUTER nbfros=1 flg=0 
    fro(0): flg=4 objn=73928 hint_alias="DEPT"@"OUTER" 
 
Registered qb: INNER 0xf64c1df0 (HINT INNER) 
--------------------- 
QUERY BLOCK SIGNATURE 
--------------------- 
  signature (): qb_name=INNER nbfros=1 flg=0 
    fro(0): flg=4 objn=73933 hint_alias="EMP"@"INNER" 
 
 
. . . 
 
JPPD: Applying transformation directives 
query block OUTER transformed to SEL$F38A2936 (#1) 
 
. . . 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

522 

Final query after transformations:******* UNPARSED QUERY IS ******* 
SELECT /*+ QB_NAME ("OUTER") */ "DEPT"."DEPARTMENT_NAME" "DEPARTMENT_NAME" FROM 
"HR"."EMPLOYEES" "EMP","HR"."DEPARTMENTS" "DEPT" WHERE 
"DEPT"."DEPARTMENT_ID"="EMP"."DEPARTMENT_ID" AND  NOT EXISTS (SELECT /*+ QB_NAME ("INNER") 
*/ 0 FROM "HR"."EMPLOYEES" "EMP" WHERE "EMP"."DEPARTMENT_ID" IS NULL) 
 
. . . 
 
Dumping Hints 
============= 
atom_hint=(@=0xf6473d1c err=0 resol=1 used=1 token=1003 org=1 lvl=2 txt=QB_NAME ("OUTER") ) 
====================== END SQL Statement Dump ====================== 
 

The trace file shows the original query blocks along with the objects in them. It shows that the first 
Query Block (named OUTER) was transformed into SEL$F38A2936. And it shows the final version of the 
statement that was executed. Notice that in the final version the original subquery is gone. It has been 
merged (unnested) into the OUTER query as a join, and a new subquery has been introduced that 
checks to see if DEPARTMENT_ID is null. Finally, there is a section at the bottom of every 10053 trace 
that shows hints that have been evaluated. I’d like to think that the err=0 means that there was not an 
error and the used=1 means that the hint was used, but I have not found these values to be consistent 
with my observations of whether a hint was actually used or not, although I think you can assume that 
the optimizer at least recognized the hint if it shows up in this section of the trace file.  

Plan Control: Without Access to the Code 
One of the most frustrating problems you face as DBAs is not being able to fix bad code. Your inability to 
change the code occurs for many reasons. In some cases, you are dealing with packaged applications 
where the code is just not available. In other cases, the politics of an organization can dictate lengthy 
delays in making changes to code. Regardless of the reasons, Oracle specialists often find themselves in 
the unenviable position of being asked to make things better without touching the code.  

Fortunately, Oracle provides many options for doing just that.  
Both changing statistics and modifying database parameters come to mind as effective techniques 

for affecting execution plan changes. These techniques can cause sweeping changes that affect many 
SQL statements. Obviously, the statistics need to be as accurate as possible. It will be very difficult to get 
reasonable performance if the statistics are not correct. The database also needs to be configured 
correctly, although from a stability standpoint, it is not imperative that every parameter be set to an 
“optimal” value. In fact, there are often trade offs that must be made. But the good news is that stability 
can usually be accomplished regardless of the configuration as long as it stays consistent.  

Changing access paths (i.e. adding or removing indexes) can also be an effective tool. Of course, this 
is also a sweeping change that can affect many SQL statements (maybe for the better, maybe not). 
Certainly adding an index will impose additional overhead to DML operations. This approach generally 
requires a fair amount of testing to be assured that statements other than the one you are attempting to 
fix are not negatively impacted. 

Among the most effective approaches, though, are techniques that focus on modifying execution 
plans of individual statements. Oracle has provided various mechanisms for accomplishing this over the 
years such as Stored Outlines, SQL Profiles, and Baselines. These techniques provide laser-like 
specificity by limiting their effect to a single statement (or in some cases, a set of statements). While 
these constructs are extremely powerful, they are not well documented and therefore not particularly 
well understood. They also suffer from some quirkiness. For example, despite what the documentation 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

523 

implies regarding Outlines locking execution plans, there are situations where creating an Outline on an 
existing statement, instead of locking in the current plan, will actually cause the plan to change. This 
quirk is not limited to the older Outline construct. It has been carried forward to the newer SQL Profiles 
and SQL Baselines as well. And if you think about it, the basic mechanism of these constructs (applying 
hints) is somewhat suspect. The more complicated a SQL statement is, the more options the optimizer 
has and the more difficult it becomes to narrow down the choices to a single plan. Nevertheless, it is a 
widely used technique and probably the best tool at your disposal for controlling the plan of a single 
statement. So let’s discuss each of these options in a little more detail. 

Option 1: Change the Statistics 
If statistics are inaccurate, they should be fixed. In order for the optimizer to do its job, you must give it 
the information it needs in order to make good decisions. Karen Morton wrote an excellent paper on the 
very complicated subject of gathering appropriate object statistics in 2009 called Managing Statistics for 
Optimal Query Performance. It can be found  at  http://method-r.com/downloads/doc_download/11-
managing-statistics-for-optimal-query-performance-karen-morton.  

I highly recommend that you review Karen’s paper. In terms of plan stability, just changing the stats 
is not sufficient.  Generally, it’s the method of gathering them that needs to be addressed. While a 
complete discussion of statistics gathering is out of the scope of this chapter, there are a few things that I 
believe are important to know: 

• The default stats gathering job in 10g will generate histograms on most columns. This is usually 
not a good thing. 11g does a much better job of gathering histograms where they are appropriate. 

• Histograms generated in 10g with small sample sizes are often not very accurate  (dbms_stats.auto_ 
sample_size often chooses very small sample sizes that result in inaccurate histograms). 

• Histograms are most useful for columns where the values are not evenly distributed. 

• Bind variables and histograms do not work well together if the data distribution is uneven. 

• Statistics should be gathered (or set) often enough to make sure that max and min values are 
close to reality. This is especially important with large tables where it takes a while for the 
default stats job to determine it’s time to re-gather (more than 10% of the rows have been 
modified).  Plans can change radically (and unexpectedly) when the values specified in Where 
clauses are above or below the range that the optimizer thinks is there. 

• Partitions should be pre-populated with representative stats if they will be queried before the 
normal statistics gathering job has had a chance to run; otherwise, you may get the dreaded 
“Why do my jobs always run slow on Mondays?” syndrome. 

• Most importantly, you should be intimately familiar with how statistics are generated on your 
systems. 

 
The bottom line is that object statistics need to be accurate. If they are way out of whack, there may 

be little choice but to address the issue before attempting any other measures. Of course, as in all triage 
situations, you may have to take some expedient actions in order to save the patient.  

One last thing on stats: Oracle provides the ability to manually set the values for the object statistics 
that the optimizer uses. Manually setting statistics for an object is a perfectly valid technique in some 
situations. For example, manually setting a maximum value for a frequently queried column that is 
constantly increasing and running ahead of the standard statistics gathering might be a perfectly 
reasonable thing to do. Building your own histogram with the values that are important to your 
application is also possible and may be a reasonable approach if you can’t get the normal stats gathering 
procedures to do what you want. Listing 16-13 shows a couple of scripts that manually set column 
statistics. 

http://method-r.com/downloads/doc_download/11-managing-statistics-for-optimal-query-performance-karen-morton
http://method-r.com/downloads/doc_download/11-managing-statistics-for-optimal-query-performance-karen-morton


CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

524 

Listing 16-13. Scripts that Manually Set Column Statistics 

SYS@LAB112> @col_stats 
Enter value for owner: KSO 
Enter value for table_name: LITTLE_SKEW 
Enter value for column_name:  
 
COLUMN_NAME DATA_TYPE  AVG_LEN      DENSITY      NDV ... LAST_ANAL LOW_VALUE    HIGH_VALUE 
----------- ---------- ------- ------------ -------- ... --------- ------------ ----------- 
PK_COL      NUMBER           5   .000010000   99,999 ... 03-AUG-10 1            1000002 
COL1        NUMBER           4   .000005000        2 ... 03-AUG-10 1            999999 
COL2        VARCHAR2         8   .000005000        1 ... 03-AUG-10 TESTING      TESTING 
COL3        DATE             8   .000005000        1 ... 03-AUG-10 08-nov-2008  08-nov-2008 
COL4        VARCHAR2         2   .000005000        2 ... 03-AUG-10 N            Y 
 
SYS@LAB112> @set_col_stats_max 
Enter value for owner: KSO 
Enter value for table_name:    
Enter value for column_name:  
Enter value for minimum:  
Enter value for maximum XXXXXXX 
 
PL/SQL procedure successfully completed. 
SYS@LAB112> @col_stats 
Enter value for owner: KSO 
Enter value for table_name: LITTLE_SKEW 
Enter value for column_name:  
 
COLUMN_NAME DATA_TYPE  AVG_LEN      DENSITY      NDV ... LAST_ANAL LOW_VALUE    HIGH_VALUE 
----------- ---------- ------- ------------ -------- ... --------- ------------ ----------- 
PK_COL      NUMBER           5   .000010000   99,999 ... 03-AUG-10 1            1000002 
COL1        NUMBER           4   .000005000        2 ... 03-AUG-10 1            999999 
COL2        VARCHAR2         8   .000005000        1 ... 13-AUG-10 TESTING      XXXXXXX 
COL3        DATE             8   .000005000        1 ... 03-AUG-10 08-nov-2008  08-nov-2008 
COL4        VARCHAR2         2   .000005000        2 ... 03-AUG-10 N            Y 
 
SYS@LAB112> @set_col_stats 
Enter value for owner: KSO 
Enter value for table_name: LITTLE_SKEW 
Enter value for col_name: COL1 
Enter value for ndv: 10 
Enter value for density: 1/10 
Enter value for nullcnt: 0 
 
PL/SQL procedure successfully completed. 
 
SYS@LAB112> @col_stats 
Enter value for owner: KSO 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

525 

Enter value for table_name: LITTLE_SKEW 
Enter value for column_name:  
 
COLUMN_NAME DATA_TYPE  AVG_LEN      DENSITY      NDV ... LAST_ANAL LOW_VALUE    HIGH_VALUE 
----------- ---------- ------- ------------ -------- ... --------- ------------ ----------- 
PK_COL      NUMBER           5   .000010000   99,999 ... 03-AUG-10 1            1000002 
COL1        NUMBER           4   .100000000       10 ... 13-AUG-10 1            999999 
COL2        VARCHAR2         8   .000005000        1 ... 13-AUG-10 TESTING      XXXXXXX 
COL3        DATE             8   .000005000        1 ... 03-AUG-10 08-nov-2008  08-nov-2008 
COL4        VARCHAR2         2   .000005000        2 ... 03-AUG-10 N            Y 
 

These scripts make use of the dbms_stats.set_column_stats procedure to manually set the column level 
statistics. The set_col_stats_max.sql script is probably the more useful of the two. Notice also that the 
call to the procedure modifies the LAST_ANALYZED field. 

Don’t be afraid of this technique. Remember, you know your data and how your applications use it 
(often better than Oracle does). Oracle has provided you the tools to set the statistics as you see fit. Keep 
in mind, though, that if you do decide to make manual changes to statistics, you will have to decide how 
to integrate those changes into the normal statistics gathering routine in place on your systems. Don’t 
make the mistake of manually fixing some statistics issue and then have the standard stats gathering job 
come along and wipe out your work a week later. 

Option 2: Change Database Parameters 
This is a SQL book so I won’t discuss this technique in depth. In general, I am very hesitant to attempt to 
modify plans by manipulating database parameters at the system level except in situations where 
something is completely misconfigured and I have a reasonable amount of time to test. There are a few 
parameters that show up on the frequent offenders list such as optimizer_index_cost_adj, 
optimizer_index_caching, optimizer_mode, cursor_sharing, and db_file_multiblock_read_count. 
Basically, anything with a non-default value is suspect in my mind, particularly if there is not a well 
defined reason why it’s set to a non-default value. The biggest problem with changing parameters is that 
they affect the optimizer’s calculations for every single statement in the system. That means that every 
single statement will be re-evaluated and the optimizer may come up with a new plan. Maybe that’s 
what you want, but changing parameters certainly provides the opportunity for many plans to change, 
which is by definition the opposite of increasing stability. 

Option 3: Add or Remove Access Paths 
There are definitely times when a new index will significantly improve performance of a query. And 
occasionally the statement is important enough to create one in a production system. But the problem 
with adding an index is that a single index can change the execution plans of a number of statements. 
Assuming that the statistics are in good shape, adding an index should rarely have a significant negative 
affect on a query. Nevertheless, indexes should be tested with a representative workload prior to 
introduction into production. Also, don’t forget that adding an index will most definitely add overhead 
to DML that affects the columns you index.  

And while I’m on the subject, removing unneeded indexes can significantly improve DML 
statements. It’s actually more common to see tables that are over-indexed than ones that are under-
indexed. That’s because it’s scarier to remove an index than to create one. As a result, it usually takes an 
Act of Congress to get one removed from a production system. One of the main reasons for this is that it 
can take a lot of time to re-create an index on a large table. 11g has a great new feature that makes this 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

526 

process more palatable, by the way. Indexes can now be marked as invisible, which means that the 
optimizer doesn’t consider them when determining execution plans.  So you can see how your 
application behaves in production minus the index that you intend to drop, without actually dropping it. 
Invisible indexes continue to be maintained so you won’t see any improvement in DML speed due to 
making an index invisible, but you will be to make it visible again by simply issuing an alter index 
statement should dropping the index turn out to have been a bad idea. 

So adding (or removing) an index is a technique that can be used to modify execution plans, but it is 
not a particularly useful one when it comes to plan stability issues. If plans change, you need to solve the 
issue that is causing them to change or prevent them from changing. So while I hate to say never, adding 
or removing an index is unlikely to do that. 

Option 4: Apply Hint Based Plan-Control Mechanisms 
Oracle Database 11g implements three plan-control mechanisms that rely upon optimizer hints. These 
mechanisms are so important and useful that they deserve a top-level section of their own. 

Plan Control: With Hint-Based Mechanisms 
The three hint-based mechanisms supported in Oracle Database 11g are: 

• Outlines  

• SQL Profiles 

• SQL Baselines 
 
These mechanisms are each designed with slightly different goals in mind, but they use the same 

basic approach of giving the application of a set of hints that is named and associated with a SQL 
statement. The hints are then applied behind the scenes to any matching statement that is executed.  

Outlines 
Outlines, or Stored Outlines as they are sometimes called, were introduced shortly after the CBO. They 
are the oldest of the hint-based mechanisms. The documentation and marketing material also referred 
to the new feature as “Plan Stability.” The design goal was to “lock” a specific plan for a statement. This 
was done by using the CREATE OUTLINE statement to parse a SQL statement (including coming up with 
an execution plan), determine a set of hints that should be sufficient to force the optimizer to pick that 
plan, and then store the hints. The next time a matching SQL statement was processed by the database, 
the hints would be applied behind the scenes before the execution plan was determined. The intention 
was that the set of hints would be sufficient to allow one and only one plan for the given statement, 
regardless of the optimizer settings, statistics, etc. By the way, “matching” basically means that the text 
of the statement matches. Originally, outlines had to match character for character just like the normal 
rules for sharing SQL statements, but for some reason, Oracle later decided that the matching 
algorithm should be somewhat relaxed. What that means is that in any version you’re likely to run into 
today, whitespace is collapsed and differences in case are ignored. So (at least as far as Outlines are 
concerned) ”select * from dual” is the same as “SELECT     *       FROM DuAl”. You’ll still get two different 
statements in the shared pool, but they will use the same Outline, if one exists. 

With 9i, Oracle started to enhance this feature by adding the ability to edit the outlines themselves, 
but they never really completed the job. In fact, they pretty much quit doing anything with the feature 
after 10gR1. The script that creates the DBMS_OUTLN package ($ORACLE_HOME/rdbms/admin/dbmsol.sql), 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

527 

for example, has not been updated since early in 2004 (with the exception of a tweak to keep it working 
in 11g). At any rate, the feature has worked pretty well over the years; in fact, it still works in 11g, 
although the documentation has been warning us for the last several years that the feature has been 
deprecated and is no longer being maintained.  

The first version of the feature required you to create an Outline by specifying the statement inline 
in a CREATE OUTLINE statement. Here’s an example: 
 
SYS@LAB112> create or replace outline junk for category test on 
  2  select avg(pk_col) from kso.skew a where col1 > 0; 
 
Outline created. 
 

This syntax was a bit unwieldy due to having to specify the complete SQL statement as part of the 
command. Fortunately, a way to create an Outline was later introduced that allowed an outline to be 
created on a statement that already existed in the shared pool. The CREATE_OUTLINE procedure was 
added to the DBMS_OUTLN package to do this. In general, it was a better approach because it was much 
easier to identify a cursor (with a hash_value) than to cut and paste a long SQL statement on to the 
command line. It also allowed you to see the plan that had been arrived at by the optimizer prior to 
creating the Outline. Listing 16-14 shows the definition of the procedure and an example of its use. 

Listing 16-14. CREATE_OUTLINE 

 
PROCEDURE CREATE_OUTLINE 
 Argument Name                  Type                    In/Out Default? 
 ------------------------------ ----------------------- ------ -------- 
 HASH_VALUE                     NUMBER                  IN 
 CHILD_NUMBER                   NUMBER                  IN 
 CATEGORY                       VARCHAR2                IN     DEFAULT 
 
 
SYS@LAB112> select sql_id, hash_value, child_number from v$sql 
  2  where sql_text like 'select avg(pk_col) from kso.skew where col1 = 136133' 
  3  / 
 
SQL_ID        HASH_VALUE CHILD_NUMBER 
------------- ---------- ------------ 
fh70fkqr78zz3 2926870499            0 
 
 
SYS@LAB112> exec dbms_outln.create_outline(2926870499,0,'DEFAULT'); 
 
PL/SQL procedure successfully completed. 
 
 
SYS@LAB112> select category, ol_name, hintcount hints, sql_text from outln.ol$; 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

528 

CATEGORY   OL_NAME                           HINTS SQL_TEXT 
---------- -------------------------------- ------------------------------------------- 
DEFAULT    OUTLINE_11.2.0.1                  6 select /*+ index(a SKEW_COL2_COL1) */  
DEFAULT    SYS_OUTLINE_10081416353513714     6 select avg(pk_col) from kso.skew where col1=  
TEST       JUNK                              6 select avg(pk_col) from kso.skew a where 
 

So you can see that the Outline was created in the DEFAULT category with a very ugly name and 
that it has 6 hints assigned to it. Let’s have a quick look at the hints: 
 
SYS@LAB112> @outline_hints 
Enter value for name: SYS_OUTLINE_10081416353513714 
Enter value for hint:  
 
NAME                           HINT 
------------------------------ ------------------------------------------------------------- 
SYS_OUTLINE_10081416353513714  IGNORE_OPTIM_EMBEDDED_HINTS 
SYS_OUTLINE_10081416353513714  OPTIMIZER_FEATURES_ENABLE('11.2.0.1') 
SYS_OUTLINE_10081416353513714  DB_VERSION('11.2.0.1') 
SYS_OUTLINE_10081416353513714  ALL_ROWS 
SYS_OUTLINE_10081416353513714  OUTLINE_LEAF(@"SEL$1") 
SYS_OUTLINE_10081416353513714  INDEX_RS_ASC(@"SEL$1" "SKEW"@"SEL$1" ("SKEW"."COL1")) 
 
6 rows selected. 
 

 
 In 10g and 11g, v$sql_plan has a column called other_xml. This column is a clob and all the rows are 

null except the top record in the plan, which contains a mishmash of stuff including the database 
version, the parsing schema name, the plan_hash_value, etc.  But the most interesting bit is that the 
complete set of hints that will be assigned to an Outline if one is created using the 
DBMS_OUTLN.CREATE_OUTLINE procedure, also contained in that column. Of course, it’s all in XLM 
format so you’ll have to do an XML type query to get it to come out nicely (or you can just use the 
sql_hints.sql script): 

 
SYS@LAB112> @sql_hints 
Enter value for sql_id: fh70fkqr78zz3 
Enter value for child_no: 0 
 
OUTLINE_HINTS 
-------------------------------------------------------------------------------------------- 
IGNORE_OPTIM_EMBEDDED_HINTS 
OPTIMIZER_FEATURES_ENABLE('11.2.0.1') 
DB_VERSION('11.2.0.1') 
ALL_ROWS 
OUTLINE_LEAF(@"SEL$1") 
INDEX_SS(@"SEL$1" "SKEW"@"SEL$1" ("SKEW"."COL2" "SKEW"."COL1")) 
 
6 rows selected. 

 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

529 

Outlines definitely suffer from some quirkiness. In fact, I have previously described them as “half 
baked.” 

 
Here are a few of things you should be aware of: 

• Outlines aren’t used unless you set the USE_STORED_OUTLINES pseudo parameter. This can 
be set at the session or the system level. Setting this at the session level only makes sense to me 
for testing purposes. The value can be TRUE, FALSE, or a category name. (More about 
categories in a minute.) The default value for 9i, 10g, and 11g is FALSE. This means that even if 
an Outline is created, it won’t be used. The really irritating thing about 
USE_STORED_OUTLINES is that it is not a full-fledged parameter, so you can’t see what it’s set 
to by selecting from the v$parameter view or it’s underlying X$ views (where the hidden 
parameters are exposed). Fairlie Rego has a post on his blog about using oradebug to see 
whether it has been set or not. More importantly, this quirk means that the 
USE_STORED_OUTLINES setting is not persisted across instance bounces. This prompted an 
official bug and enhancement request (see Oracle Support Note:560331.1). The official response 
was to suggest a database trigger to set the value when an instance is started 
(see outline_startup_trigger.sql in the example download for the recommended trigger). 

• The DBMS_OUTLN.CREATE_OUTLINE procedure uses the old HASH_VALUE identifier as 
opposed to the newer SQL_ID that was introduced in 10g. While most of the internal structures 
were updated to use SQL_ID, Outlines never were. This is just a slight irritation as it means you 
have to find the hash value to use the DBMS_OUTLN.CREATE_OUTLINE procedure. (See the 
create_outline.sql script in the example download for a way to get around this.) 

• The DBMS_OUTLN.CREATE_OUTLINE procedure is a bit buggy. It often results in error 1330 
that disconnects your session from Oracle. There is a Oracle Support note describing this issue 
(Note:463288.1) that references a bug (Bug 5454975) that is supposed to be fixed in 10.2.0.4. 
Anyway, the bottom line is that you should execute the command to enable stored Outlines at 
the session level (i.e. ALTER SESSION SET USE_STORED_OUTLINES=TRUE) before attempting 
to create an Outline with the DBMS_OUTLN.CREATE_OUTLINE procedure (again, see the 
create_outline.sql script). 

• The DBMS_OUTLN.CREATE_OUTLINE procedure does not allow a name to be specified for an 
Outline. Instead, it creates a system generated name. This is another minor irritation as 
Outlines can be renamed easily enough with the ALTER OUTLINE command (see the 
create_outline.sql script yet again for a way to do this when creating an outline). 

• Outlines are grouped together into categories. Each Outline is assigned to a single category. The 
default category is DEFAULT. If USE_STORED_OUTLINES is set to TRUE, Outlines in the 
DEFAULT category will be used. If USE_STORED_OUTLINES is set to some other text string, 
only Outlines in the category that matches the value of USE_STORED_OUTLINES will be used.  

• As with all hints, Outline hints are directives that will be obeyed unless they are invalid. Invalid 
hints will be silently ignored. An invalid hint does not necessarily cause other hints in the 
Outline to be ignored or disabled however. 

 
Listing 16-15 shows an example of creating an Outline the old fashioned way (using the Create 

Outline statement): 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

530 

Listing 16-15. Using the Create Outline statement 

SYS@LAB112> @outlines
Enter value for category: 
Enter value for name:  

CATEGORY NAME             USED     ENABLED  HINTS SQL_TEXT 
-------- ---------------- -------- -------- ----- ------------------------------------------ 
DEFAULT  OUTLINE_11.2.0.1 UNUSED   ENABLED      6 select /*+ index(a SKEW_COL2_COL1) */ 
TEST     JUNK             UNUSED   ENABLED      6 select avg(pk_col) from kso.skew a where   

2 rows selected. 

SYS@LAB112> create or replace outline junk2 on select avg(pk_col)  
  2  from kso.skew a where col1 > 1; 

Outline created. 

SYS@LAB112> @outlines
Enter value for category: 
Enter value for name:  

CATEGORY NAME             USED     ENABLED  HINTS SQL_TEXT 
-------- ---------------- -------- -------- ----- ------------------------------------------ 
DEFAULT  JUNK2            UNUSED   ENABLED      6 select avg(pk_col) from kso.skew a where 
DEFAULT  OUTLINE_11.2.0.1 UNUSED   ENABLED      6 select /*+ index(a SKEW_COL2_COL1) */ 
TEST     JUNK             UNUSED   ENABLED      6 select avg(pk_col) from kso.skew a where 

3 rows selected. 

SYS@LAB112> select avg(pk_col) from kso.skew a where col1 > 0; 

AVG(PK_COL)
----------- 
 16093749.3 

SYS@LAB112> @find_sql 
Enter value for sql_text: select avg(pk_col) from kso.skew a where col1 > 0
Enter value for sql_id:  

SQL_ID        CHILD  PLAN_HASH  EXECS AVG_ETIME AVG_LIO  SQL_TEXT 
------------- ------ ---------- ----- --------- -------- -------------------------------- 
05cq2hb1r37tr      0  568322376     1      9.74  162,310 select avg(pk_col) from kso.skew 
                                                         a where col1 > 0 

1 row selected. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

531 

SYS@LAB112> @dplan 
Enter value for sql_id: 05cq2hb1r37tr                                     
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  05cq2hb1r37tr, child number 0 
------------------------------------- 
select avg(pk_col) from kso.skew a where col1 > 0 
 
Plan hash value: 568322376 
 
--------------------------------------------------------------------------- 
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     | 
--------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT   |      |       |       | 28420 (100)|          | 
|   1 |  SORT AGGREGATE    |      |     1 |    24 |            |          | 
|*  2 |   TABLE ACCESS FULL| SKEW |    32M|   732M| 28420   (2)| 00:05:42 | 
--------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   2 - filter("COL1">0) 
 
 
19 rows selected. 
 

Notice that there is no indication that the statement is using an Outline. The outlines.sql script 
queries the outln.ol$ table that holds the outline definitions and it reports your new Outline as being 
UNUSED.  Also, the xplan output would include a note stating that an Outline was used if it had been 
used. The reason that the Outline hasn’t been used is because Outlines are not enabled by default. 
Listing 16-16 shows the command to enable them and then what you should expect to see when a 
statement is using an Outline.  

Listing 16-16. Enabling Outlines 

SYS@LAB112> alter session set use_stored_outlines=true; 
 
Session altered. 
 
SYS@LAB112> select avg(pk_col) from kso.skew a where col1 > 1; 
 
AVG(PK_COL) 
----------- 
 16049999.5 
 
1 row selected. 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

532 

 
SYS@LAB112> @find_sql 
Enter value for sql_text: select avg(pk_col) from kso.skew a where col1 > 1 
Enter value for sql_id:  
 
SQL_ID         CHILD  PLAN_HASH  EXECS  AVG_ETIME    VG_LIO SQL_TEXT 
------------- ------  ---------- -----  -----------  -------------------------------------- 
3u57q0vkbag55      0  568322376      1       9.97    162,527 select avg(pk_col)          
                                                                 from kso.skew a where col1 
> 1 
 
 
1 row selected. 
 
SYS@LAB112> @dplan 
Enter value for sql_id: 3u57q0vkbag55 
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  3u57q0vkbag55, child number 0 
------------------------------------- 
select avg(pk_col) from kso.skew a where col1 > 1 
 
Plan hash value: 568322376 
 
--------------------------------------------------------------------------- 
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     | 
--------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT   |      |       |       | 28414 (100)|          | 
|   1 |  SORT AGGREGATE    |      |     1 |    24 |            |          | 
|*  2 |   TABLE ACCESS FULL| SKEW |    29M|   664M| 28414   (2)| 00:05:41 | 
--------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   2 - filter("COL1">1) 
 
Note 
----- 
   - outline "JUNK2" used for this statement 
 
 
23 rows selected. 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

533 

SYS@LAB112> @outlines 
Enter value for category:  
Enter value for name:  
 
CATEGORY NAME              USED     ENABLED  HINTS SQL_TEXT 
-------- ---------------- -------- --------  ----------------------------------------------- 
DEFAULT  JUNK2             USED     ENABLED      6 select avg(pk_col) from kso.skew a where  
DEFAULT  OUTLINE_11.2.0.1 UNUSED    ENABLED      6 select /*+ index(a SKEW_COL2_COL1) */  
TEST     JUNK              UNUSED   ENABLED      6 select avg(pk_col) from kso.skew a where  
 
3 rows selected. 
 

Notice that the Note section of the xplan output clearly shows that Outline JUNK2 was used for this 
statement. Also notice that the outlines.sql script now reports that the Outline has been USED. Listing 
16-17 shows an example of getting the optimizer to use Outline JUNK which is not in the DEFAULT 
category. 

Listing 16-17. DEFAULT Category Outline Example 

SYS@LAB112> select avg(pk_col) from kso.skew a where col1 > 0; 
 
AVG(PK_COL) 
----------- 
 16093749.3 
 
1 row selected. 
 
SYS@LAB112> @find_sql 
Enter value for sql_text: select avg(pk_col) from kso.skew a where col1 > 0 
Enter value for sql_id:  
 
SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- --------- ------- ---------------------------------- 
05cq2hb1r37tr      0  568322376     1      9.89 162,304 select avg(pk_col) from kso.skew a  
                                                        where col1 > 0 
 
1 row selected. 
SYS@LAB112> @dplan 
Enter value for sql_id: 05cq2hb1r37tr 
Enter value for child_no: 1 
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  05cq2hb1r37tr, child number 1 
------------------------------------- 
select avg(pk_col) from kso.skew a where col1 > 0 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

534 

Plan hash value: 568322376 
 
--------------------------------------------------------------------------- 
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     | 
--------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT   |      |       |       | 28420 (100)|          | 
|   1 |  SORT AGGREGATE    |      |     1 |    24 |            |          | 
|*  2 |   TABLE ACCESS FULL| SKEW |    32M|   732M| 28420   (2)| 00:05:42 | 
--------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   2 - filter("COL1">0) 
 
 
19 rows selected. 
 
SYS@LAB112> @outlines 
Enter value for category:  
Enter value for name:  
 
CATEGORY NAME              USED     ENABLED      HINTS SQL_TEXT 
-------- ----------------  -------- -------- ------------------------------------------- 
DEFAULT  JUNK2             USED     ENABLED      6 select avg(pk_col) from kso.skew a where  
DEFAULT  OUTLINE_11.2.0.1  UNUSED   ENABLED      6 select /*+ index(a SKEW_COL2_COL1) */  
TEST     JUNK              UNUSED   ENABLED      6 select avg(pk_col) from kso.skew a where  
 
3 rows selected. 
 
 
SYS@LAB112> -- JUNK not used (because it’s not in the DEFAULT Category) 
SYS@LAB112> -- let’s set the category to test 
SYS@LAB112> 
SYS@LAB112> alter session set use_stored_outlines=test; 
 
Session altered. 
 
SYS@LAB112> select avg(pk_col) from kso.skew a where col1 > 0; 
 
AVG(PK_COL) 
----------- 
 16093749.3 
 
1 row selected. 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

535 

SYS@LAB112> @find_sql 
Enter value for sql_text: select avg(pk_col) from kso.skew a where col1 > 0 
Enter value for sql_id:  
 
SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- --------- -------- ----------------------------------- 
05cq2hb1r37tr      0  568322376     2     10.35  162,865 select avg(pk_col) from kso.skew a  
                                                         where col1 > 0 
 
1 row selected. 
 
SYS@LAB112> @dplan 
Enter value for sql_id: 05cq2hb1r37tr 
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  05cq2hb1r37tr, child number 0 
------------------------------------- 
select avg(pk_col) from kso.skew a where col1 > 0 
 
Plan hash value: 568322376 
 
--------------------------------------------------------------------------- 
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     | 
--------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT   |      |       |       | 28420 (100)|          | 
|   1 |  SORT AGGREGATE    |      |     1 |    24 |            |          | 
|*  2 |   TABLE ACCESS FULL| SKEW |    32M|   732M| 28420   (2)| 00:05:42 | 
--------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   2 - filter("COL1">0) 
 
Note 
----- 
   - outline "JUNK" used for this statement 
 
 
23 rows selected. 
 
SYS@LAB112> -- now it’s working 
SYS@LAB112> 
SYS@LAB112> @outlines 
Enter value for category:  



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

536 

Enter value for name:  
 
CATEGORY NAME             USED     ENABLED  HINTS SQL_TEXT 
-------- ---------------- -------- -------- ----------------------------------------------- 
DEFAULT  JUNK2            USED     ENABLED      6 select avg(pk_col) from kso.skew a where 
DEFAULT  OUTLINE_11.2.0.1 UNUSED   ENABLED      6 select /*+ index(a SKEW_COL2_COL1) */  
TEST     JUNK             USED     ENABLED      6 select avg(pk_col) from kso.skew a where 
 
3 rows selected. 
 

After using the alter session command to set the category to TEST, the Outline was used. In the final 
example on Outlines, Listing 16-18 demonstrates the use of the create_outline.sql script which, as 
mentioned earlier, uses the DBMS_OUTLN.CREATE_OUTLINE procedure to create an Outline. 

Listing 16-18. The create_outline.sql script 

SYS@LAB112> -- finally – let’s create an outline using the create_outline.sql script 
SYS@LAB112> 
SYS@LAB112> alter system flush shared_pool; 
 
System altered. 
 
SYS@LAB112> select avg(pk_col) from kso.skew where col1 = 136133; 
 
AVG(PK_COL) 
----------- 
   15636133 
 
1 row selected. 
SYS@LAB112> @find_sql 
Enter value for sql_text: %skew% 
Enter value for sql_id:  
 
SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- ---------  ------------------------------------------- 
84q0zxfzn5u6s      0 2650913906     1       .08  687 select avg(pk_col) from kso.skew where 
                                                         col1 = 136133 
 
1 row selected. 
 
SYS@LAB112> @create_outline 
 
Session altered. 
 
Enter value for sql_id: 84q0zxfzn5u6s 
Enter value for child_number: 0 
Enter value for outline_name (OL_sqlid_planhash): OL_84q0zxfzn5u6s 
Enter value for category (DEFAULT): 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

537 

 
Outline OL_84q0zxfzn5u6s created. 
 
PL/SQL procedure successfully completed. 
 
SYS@LAB112> @outlines 
Enter value for category:  
Enter value for name:  
 
CATEGORY NAME               USED     ENABLED   HINTS SQL_TEXT 
-------- ----------------   -------- --------  --------------------------------------------- 
DEFAULT  JUNK2              USED     ENABLED   6 select avg(pk_col) from kso.skew a where 
DEFAULT  OL_84q0zxfzn5u6s  UNUSED    ENABLED   6 select avg(pk_col) from kso.skew where 
DEFAULT  OUTLINE_11.2.0.1  UNUSED    ENABLED   6 select /*+ index(a SKEW_COL2_COL1) */  
TEST     JUNK               USED     ENABLED   6 select avg(pk_col) from kso.skew a where 
col1  
 
4 rows selected. 
 
SYS@LAB112> select avg(pk_col) from kso.skew a where col1 > 1; 
 
AVG(PK_COL) 
----------- 
 16049999.5 
 
SYS@LAB112> select avg(pk_col) from kso.skew where col1 = 136133; 
 
1 row selected. 
 
AVG(PK_COL) 
----------- 
   15636133 
 
1 row selected. 
 
SYS@LAB112> -- now let’s check for SQL using Outlines in the shared pool 
SYS@LAB112> -- we could also use the find_sql_using_outline.sql script 
SYS@LAB112> 
SYS@LAB112> select sql_id, sql_text, outline_category  
  2  from v$sql where outline_category is not null; 
 
SQL_ID        SQL_TEXT                                                     OUTLINE_CATEGORY 
------------- -----------------------------------------------------------  ---------------- 
fh70fkqr78zz3 select avg(pk_col) from kso.skew where col1 = 136133             DEFAULT 
3u57q0vkbag55 select avg(pk_col) from kso.skew a where col1 > 1                DEFAULT 
 
2 rows selected. 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

538 

 

There are several things to note in the previous examples: 

• The outlines.sql script queries the outln.ol$ table that holds the outline definitions.  

• Only one category can be used at a time by a single session. In general, if an Outline is not in the 
DEFAULT category, it will not be used. This means you can create an Outline in some other 
category for testing without affecting other users. 

• The dplan.sql script uses DMS_XPLAN.DISPLAY_CURSOR that provides a note section at the 
bottom of its plan output showing whether an Outline (or Profile or Baseline for that matter) was 
used. 

• The create_outline.sql script provides an easier way to create an Outline using the 
dbms_outln.create_outline procedure. This allows you to see the plan (and the hints) that will 
be used prior to creating the Outline. It prompts for a sql_id (instead of a hash_value) and 
renames the outline to something meaningful as opposed to the system generated name that it 
would normally create.  

• The v$sql view has a column (outline_category) that indicates whether a particular SQL 
statement is using an Outline (although it doesn’t tell you which Outline). 

Despite their minor flaws, Outlines have been a standard method for influencing execution plans for 
the last decade, and prior to 10g, they were the only option available. They also work with RAC, so if you 
create an Outline (or Profile or Baseline, for that matter), it will be picked up across all the nodes in the 
cluster. So, if you find yourself working on a 9i database, don’t discount their usefulness. If you’re 
working on 10g or 11g, read on, as there are other options available. 

■NOTE  I find it useful to include the SQL_ID and the PLAN_HASH_VALUE of a statement in the name of Outlines 
(and SQL Profiles and Baselines). For Outlines, I have used a convention of OL_sqlid_planhash. This makes it very 
easy to track the object back to a SQL statement and to see what the original plan was that I was trying to “lock 
in.” See the create_outline.sql script for an example. 

SQL Profiles 
SQL Profiles were introduced in 10g. They are the second iteration of Oracle’s hint-based mechanisms 
for influencing execution plans. SQL Profiles are only documented as a part of the SQL Tuning Advisor, 
so the only documented way to create a SQL Profile is to run a SQL Tuning Advisor (STA) job.  In some 
cases, STA will offer to create a SQL Profile for you. The task of STA is to analyze a SQL statement and 
determine if there is a better plan. Since it is allowed as much time as it needs, the advisor can 
sometimes find better execution plans than the optimizer. That’s because it can actually validate the 
optimizer’s original estimates by running various steps in a plan and comparing the actual results to the 
estimates. When it’s all done, if it has found a better plan, it offers to implement a SQL Profile that will 
hopefully cause the optimizer to generate a new and better plan.  

Those offered SQL Profiles are simply a collection of hints (much like Outlines) and they almost 
always contain a lightly documented hint (OPT_ESTIMATE) that allows the optimizer to scale its 
estimates for various operations. Essentially, it’s a fudge factor. The problem with this hint is that, far 
from locking a plan in place, it is locking an empirically derived fudge factor in place. This still leaves the 
optimizer with a lot of flexibility when it comes to choosing a plan. It also sets up a commonly occurring 
situation where the fudge factors stop making sense as things change over time. It is common for SQL 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

539 

Profiles generated by STA to work well for a while and then lose their effectiveness, thus the observation 
that SQL Profiles tend to sour over time.  

Regardless of their intended purpose, the fact remains that SQL Profiles provide a mechanism for 
applying hints to SQL statements behind the scenes in the same basic manner as Outlines. In fact, it 
appears that the code is actually based on the earlier Outline code. Of course, SQL Profiles have some 
additional features that provide some distinct advantages, such as: 

• SQL Profiles are turned on by default in 10g and 11g. They can be disabled by setting 
SQLTUNE_CATEGORY to false. This parameter behaves in much the same way as the 
USE_STORED_OUTLINE parameter.  However, it is a real parameter that is exposed via 
v$parameter and it retains its value across bounces. The value can be TRUE, FALSE, or a 
category name.  

• SQL Profiles are assigned to Categories just like Outlines. Each SQL Profile is assigned to a single 
category. The default category is DEFAULT. If SQLTUNE_CATEGORY is set to TRUE, outlines in 
the DEFAULT category will be used. If SQLTUNE_CATEGORY is set to some other text string, 
only SQL Profiles in the category that matches the value of SQLTUNE_CATEGORY will be used. 
As with Outlines, this parameter can be changed with an ALTER SESSION statement allowing 
SQL Profiles to be tested without enabling them for the whole database (more on this later).  

• DBMS_SQLTUNE.IMPORT_SQL_PROFILE procedure creates a SQL Profile for a given SQL 
statement. Any set of hints may be passed to the procedure. While this procedure is not 
mentioned in the documentation (at least as of 11.2.0.1), it is used by the SQL Tuning Advisor 
and migration procedures. It is also referenced by at least one Oracle Support document as a 
way of creating what I call a Manual SQL Profile. This is a giant leap forward from Outlines. 
With the IMPORT_SQL_PROFILE procedure you can create any hints you want and apply them 
to any statement you want. 

• SQL Profiles have the ability to ignore literals when it comes to matching SQL statements. Think 
of it as being similar to the cursor_sharing parameter. This means you can have a SQL Profile 
that will match multiple statements that differ only in their use of literals—without having to set 
the cursor_sharing parameter for the whole instance. This attribute of a SQL Profile is called 
FORCE_MATCHING. When you create a SQL Profile you tell it whether you want to set this 
attribute or not. If the attribute is set to TRUE, the Profile will apply to all statements that have 
the same signature, regardless of the literals used in the statement.  

• There is a view (DBA_SQL_PROFILES) that exposes the SQL profiles that have been created. 

• As with all hints, SQL Profile hints are directives that will be obeyed unless they are invalid. 
Invalid hints will be silently ignored. An invalid hint does not necessarily cause other hints in 
the SQL Profile to be ignored or disabled, however. 

• SQL Profiles appear to be able to apply most, if not all, valid hints. 
 

SQL TUNING ADVISOR 

SQL Tuning Advisor is not the answer to plan stability issues. However, it is occasionally capable of finding 
a better plan than the one the optimizer came up with for the reasons I have already discussed. I 
occasionally create a tuning task for a problem statement to see what suggestions the Tuning Advisor 
might have. The example download for this book contains a number of scripts to help with that task (look 
for create_tuning_task.sql and accept_sql_profile.sql). 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

540 

If the Tuning Advisor recommends a SQL Profile, do yourself a favor and create it in an alternate category
(TEST, for example). This will allow you to review the hints and test the performance before making your
users the guinea pigs in your experiment.  

The hints can provide valuable information as to where the optimizer is having problems. Remember that the
OPT_ESTIMATE hint applies a scaling factor to various calculations based on its more thorough analysis. 

Anywhere that the Advisor comes up with very large or very small scaling factor is a direct pointer to a
place in the plan where the optimizer is having trouble. Such a scaling factor can often point out a problem
with statistics or in some cases a shortcoming of the optimizer itself. If it is an optimizer shortcoming and if
the optimizer is going to keep making the same error no matter how the data changes, then leaving an
STA SQL Profile in place may be perfectly reasonable.  

If, on the other hand, you’re looking for a way to lock in a specific plan, then you may want to consider
creating another hint-based object (Outline, Profile, or Baseline) that contains directive hints instead of the
OPT_ESITMATE hint. This is fairly easy to accomplish, as all three of these mechanisms can exist on the
same statement. For example, you could accept the STA SQL Profile and then create an Outline on the same
statement. You could also use the lock_STA_profile.sql script from the example download to do away
with the OPT_ESTIMATE-based Profile and replace it with a SQL Profile using directive type hints. For further
information see this blog post: http://kerryosborne.oracle-guy.com/2008/09/sql-tuning-advisor. 

Listing 16-19 shows an example of a couple of scripts for finding SQL Profiles and statements that are
using them. 

Listing 16-19. Scripts for finding SQL Profiles 

SYS@LAB112> @sql_profiles.sql
Enter value for sql_text: 
Enter value for name:  

NAME                           CATEGORY  STATUS   SQL_TEXT                            FORCE
------------------------------ --------- -------- ----------------------------------- ----- 
PROFILE_fgn6qzrvrjgnz          DEFAULT   DISABLED select /*+ index(a SKEW_COL1) */ av NO
PROFILE_8hjn3vxrykmpf          DEFAULT   DISABLED select /*+ invalid_hint (doda) */ a NO
PROFILE_69k5bhm12sz98          DEFAULT   DISABLED SELECT dbin.instance_number,        NO
PROFILE_8js5bhfc668rp          DEFAULT   DISABLED select /*+ index(a SKEW_COL2_COL1)  NO
PROFILE_bxd77v75nynd8          DEFAULT   DISABLED select /*+ parallel (a 4) */ avg(pk NO
PROFILE_7ng34ruy5awxq          DEFAULT   DISABLED select i.obj#,i.ts#,i.file#,i.block NO
SYS_SQLPROF_0126f1743c7d0005   SAVED     ENABLED  select avg(pk_col) from kso.skew    NO
PROF_6kymwy3guu5uq_1388734953  DEFAULT   ENABLED  select 1                            YES
PROFILE_cnpx9s9na938m_MANUAL   DEFAULT   ENABLED  select /*+ opt_param('statistics_le NO
PROF_79m8gs9wz3ndj_3723858078  DEFAULT   ENABLED  /* SQL Analyze(252,1) */ select avg NO
PROFILE_9ywuaagwscbj7_GPS      DEFAULT   ENABLED  select avg(pk_col) from kso.skew    NO
PROF_arcvrg5na75sw_3723858078  DEFAULT   ENABLED  select /*+ index(skew@sel$1 skew_co NO
SYS_SQLPROF_01274114fc2b0006   DEFAULT   ENABLED  select i.table_owner, i.table_name, NO 

18 rows selected. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://kerryosborne.oracle-guy.com/2008/09/sql-tuning-advisor
mailto:@sql_profiles.sql
mailto:skew@sel$1skew_coNOSYS_SQLPROF_01274114fc2b0006DEFAULTENABLEDselecti.table_owner
mailto:skew@sel$1skew_coNOSYS_SQLPROF_01274114fc2b0006DEFAULTENABLEDselecti.table_owner


CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

541 

SYS@LAB112> @find_sql_using_profile.sql 
Enter value for sql_text:  
Enter value for sql_id:  
Enter value for sql_profile_name:  
 
SQL_ID          PLAN_HASH SQL_PROFILE                    SQL_TEXT 
-------------  ---------- ------------------------------ ----------------------------------- 
bqfx5q2jas08u  3755463150 SYS_SQLPROF_01281e513ace0000   SELECT TASK_LIST.TASK_ID FROM (SELE 
                                                         CT /*+ NO_MERGE(T) ORDERED */ T.TAS 
                                                         K_ID FROM (SELECT * FROM DBA_ADVISO 
                                                         R_TASKS ORDER BY TASK_ID DESC) T, D 
                                                         BA_ADVISOR_PARAMETERS_PROJ P1, DBA_ 
                                                         ADVISOR_PARAMETERS_PROJ P2 WHERE T. 
                                                         ADVISOR_NAME='ADDM' AND T.STATUS = 
                                                         'COMPLETED' AND T.EXECUTION_START > 
                                                         = (SYSDATE - 1) AND T.HOW_CREATED = 
                                                         'AUTO' AND T.TASK_ID = P1.TASK_ID 
                                                         AND P1.PARAMETER_NAME = 'INSTANCE' 
                                                         AND P1.PARAMETER_VALUE = SYS_CONTEX 
                                                         T('USERENV','INSTANCE') AND T.TASK_ 
                                                         ID = P2.TASK_ID AND P2.PARAMETER_NA 
                                                         ME = 'DB_ID' AND P2.PARAMETER_VALUE 
                                                         = TO_CHAR(:B1 ) ORDER BY T.TASK_ID 
                                                         DESC) TASK_LIST WHERE ROWNUM = 1 
 
 

The sql_profiles.sql script queries DBA_SQL_PROFILES and the fnd_sql_using_profile.sql 
queries V$SQL. The SQL Profiles with names that begin with SYS_SQLPROF are generated by the SQL 
Tuning Advisor. The others are manually created using the DBMS_SQLTUNE.IMPORT_SQL_PROFILE 
procedure. Now, let’s create a couple of SQL Profiles. To do this, you’ll use a script called 
create_1_hint_profile.sql that simply prompts for a SQL_ID and a hint and then creates a SQL Profile 
for the statement containing the hint (see Listing 16-20). 

Listing 16-20.  The create_1_hint_profile.sql Script 

SYS@LAB112> select /* test 1 hint */ avg(pk_col) from kso.skew a where col1 = 222222; 
 
AVG(PK_COL) 
----------- 
   15722222 
 
1 row selected. 
 
SYS@LAB112> @find_sql 
Enter value for sql_text: select /* test 1 hint */ avg(pk_col) from kso.skew % 222222  
Enter value for sql_id:  
 

mailto:@find_sql_using_profile.sql


CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

542 

SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- ---------  ------------------------------------------- 
0pvj94afp6faw      0 2650913906     1       .10  876 select /* test 1 hint */ avg(pk_col) 
                                                     from kso.skew a where col1 = 222222 
 
 
1 row selected. 
 
SYS@LAB112>  
SYS@LAB112> @dplan 
Enter value for sql_id: 0pvj94afp6faw 
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  0pvj94afp6faw, child number 0 
------------------------------------- 
select /* test 1 hint */ avg(pk_col) from kso.skew a where col1 = 222222 
 
Plan hash value: 2650913906 
 
--------------------------------------------------------------------------------------------- 
| Id  | Operation                    | Name           | Rows  | Bytes | Cost (%CPU)| Time    | 
--------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT             |                |       |       |    34 (100)|         | 
|   1 |  SORT AGGREGATE              |                |     1 |    24 |            |         | 
|   2 |   TABLE ACCESS BY INDEX ROWID| SKEW           |    32 |   768 |    34   (0)| 0:00:01 | 
|*  3 |    INDEX SKIP SCAN           | SKEW_COL2_COL1 |    32 |       |     5   (0)| 00:00:01| 
---------------------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   3 - access("COL1"=222222) 
       filter("COL1"=222222) 
 
 
21 rows selected. 
 
SYS@LAB112> -- So it’s using an index skip scan 
SYS@LAB112> 
SYS@LAB112> -- Now lets create a SQL Profile with a FULL hint 
SYS@LAB112> 
SYS@LAB112> @create_1_hint_sql_profile 
Enter value for sql_id: 0pvj94afp6faw 
Enter value for profile_name (PROFILE_sqlid_MANUAL): PROF_0pvj94afp6faw_FULL 
Enter value for category (DEFAULT):  



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

543 

Enter value for force_matching (false):  
Enter value for hint:                                FULL( A@SEL$1 ) 
 
Profile PROF_0pvj94afp6faw_FULL created. 
 
SYS@LAB112> select /* test 1 hint */ avg(pk_col) from kso.skew a where col1 = 222222; 
 
AVG(PK_COL) 
----------- 
   15722222 
 
1 row selected. 
 
SYS@LAB112> @find_sql 
Enter value for sql_text: select /* test 1 hint */ avg(pk_col) from kso.skew a where col1 %  
Enter value for sql_id:  
 
SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- ---------  -------------------------------------------- 
0pvj94afp6faw      0  568322376     1      6.34  162,309 select /* test 1 hint */ avg(pk_col) 
                                                         from kso.skew a where col1 = 222222 
 
1 row selected. 
 
SYS@LAB112> -- Well it has a different plan hash value and it took a lot longer 
SYS@LAB112> 
SYS@LAB112> @dplan 
Enter value for sql_id: 0pvj94afp6faw 
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  0pvj94afp6faw, child number 0 
------------------------------------- 
select /* test 1 hint */ avg(pk_col) from kso.skew a where col1 = 222222 
 
Plan hash value: 568322376 

--------------------------------------------------------------------------- 
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     | 
--------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT   |      |       |       | 28360 (100)|          | 
|   1 |  SORT AGGREGATE    |      |     1 |    24 |            |          | 
|*  2 |   TABLE ACCESS FULL| SKEW |    32 |   768 | 28360   (1)| 00:05:41 | 
--------------------------------------------------------------------------- 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

544 

Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   2 - filter("COL1"=222222) 
 
Note 
----- 
   - SQL profile PROF_0pvj94afp6faw_FULL used for this statement 
 
 
23 rows selected. 
 
SYS@LAB112> -- So it is using the SQL Profile and it did change to a FULL SCAN 
SYS@LAB112> 
SYS@LAB112> -- Let’s check the hints in the SQL Profile 
SYS@LAB112> 
SYS@LAB112> @sql_profile_hints 
Enter value for profile_name: PROF_0pvj94afp6faw_FULL 
 
HINT 
-------------------------------------------------------------------------------------------- 
                      FULL( A@SEL$1 ) 
 
1 rows selected. 
 
SYS@LAB112> -- Let’s check the hints in the OTHER_XML field of V$SQL_PLAN 
SYS@LAB112> 
SYS@LAB112> @sql_hints 
Enter value for sql_id: 0pvj94afp6faw 
Enter value for child_no: 0 
 
OUTLINE_HINTS 
-------------------------------------------------------------------------------------------- 
IGNORE_OPTIM_EMBEDDED_HINTS 
OPTIMIZER_FEATURES_ENABLE('11.2.0.1') 
DB_VERSION('11.2.0.1') 
ALL_ROWS 
OUTLINE_LEAF(@"SEL$1") 
FULL(@"SEL$1" "A"@"SEL$1") 
 
6 rows selected. 
 

Notice that the hint was specified using the fully qualified alias for the SKEW table, FULL ( 
A@SEL$1). This was done on purpose because Outlines, Profiles, and Baselines are more picky about 
object identification than those normal hints that are embedded in the SQL statement text. For example, 
it would be perfectly acceptable to use FULL (A) in the text of the SQL statement. But if you put that into 
a SQL Profile, the optimizer will not know what to do with it (and so it will silently ignore it). Notice also 
that the complete syntax for the FULL hint would also include the Query Block (QB) name as shown in 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

545 

the output from the sql_hints.sql script. Remember that this is the set of hints that Oracle thinks would 
be necessary to recreate the plan and thus is the set of hints that would be used if you created an Outline 
on the statement. You may wonder how I knew that SEL$1 was the correct QB name to use. The answer 
is experience. And you know how I got the experience? By making lots of mistakes! Actually, since I know 
that the default QB names are SEL$1, UPD$1, and DEL$1, and this is a very simple query with only one 
QB and very little (if any) way that the optimizer could transform it to something else, it was a pretty 
good guess. But why guess when you can know? If you use DBMS_XPLAN.DISPLAY_CURSOR with the 
alias option, you can see exactly what the QB name and fully qualified aliases are (see Listing 16-21). 

Listing 16-21.  DBMS_XPLAN.DISPLAY_CURSOR with the Alias Option 

SYS@LAB112> @dplan_alias 
Enter value for sql_id: 0pvj94afp6faw 
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  0pvj94afp6faw, child number 0 
------------------------------------- 
select /* test 1 hint */ avg(pk_col) from kso.skew a where col1 = 222222 
 
Plan hash value: 568322376 
 
--------------------------------------------------------------------------- 
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     | 
--------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT   |      |       |       | 28360 (100)|          | 
|   1 |  SORT AGGREGATE    |      |     1 |    24 |            |          | 
|*  2 |   TABLE ACCESS FULL| SKEW |    32 |   768 | 28360   (1)| 00:05:41 | 
--------------------------------------------------------------------------- 
 
Query Block Name / Object Alias (identified by operation id): 
------------------------------------------------------------- 
 
   1 - SEL$1 
   2 - SEL$1 / A@SEL$1 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   2 - filter("COL1"=222222) 
 
Note 
----- 
   - SQL profile PROF_0pvj94afp6faw_FULL used for this statement 
 
 
29 rows selected. 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

546 

SQL Profiles can also duplicate the functionality of Outlines, but without all the quirks, so you can 
create a SQL Profile using the same hints that an Outline would use (i.e. the ones in the OTHER_XML 
column). The goal would be to have all the hints necessary to “lock” the plan. There is no way to guarantee 
that the plan will never be able to change, but the technique works fairly well. It is actually quite easy to 
create a SQL Profile using the hints that an Outline would use, and of course there is a script in the example 
download to help you out (create_sql_profile.sql).  Listing 16-22 shows an example. 

Listing 16-22. The create_sql_profile.sql Script 

SYS@LAB112> select /* NOT IN */ department_name 
  2     from hr.departments dept 
  3     where department_id not in (select department_id from hr.employees emp); 

no rows selected 

SYS@LAB112> @find_sql 
Enter value for sql_text: select /* NOT IN */ department_name% 
Enter value for sql_id:  

SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- ---------  ------------------------------------------- 
875qbqc2gw2qz      0 4201340344     3       .00        9 select /* NOT IN */ department_name  
 
1 row selected. 
 
SYS@LAB112> @dplan 
Enter value for sql_id: 875qbqc2gw2qz                       
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  875qbqc2gw2qz, child number 0 
------------------------------------- 
select /* NOT IN */ department_name    from hr.departments dept 
where department_id not in (select department_id from hr.employees emp) 
 
Plan hash value: 4201340344 

-------------------------------------------------------------------------------------------- 
| Id  | Operation                     | Name        | Rows  | Bytes | Cost (%CPU)| Time    | 
-------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT              |             |       |       |     6 (100)|         | 
|   1 |  MERGE JOIN ANTI NA           |             |    17 |   323 |     6  (17)| 00:00:01| 
|   2 |   SORT JOIN                   |             |    27 |   432 |     2   (0)| 00:00:01| 
|   3 |    TABLE ACCESS BY INDEX ROWID| DEPARTMENTS |    27 |   432 |     2   (0)| 00:00:01| 
|   4 |     INDEX FULL SCAN           | DEPT_ID_PK  |    27 |       |     1   (0)| 00:00:01| 
|*  5 |   SORT UNIQUE                 |             |   107 |   321 |     4  (25)| 00:00:01| 
|   6 |    TABLE ACCESS FULL          | EMPLOYEES   |   107 |   321 |     3   (0)| 00:00:01| 
-------------------------------------------------------------------------------------------- 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

547 

Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   5 - access("DEPARTMENT_ID"="DEPARTMENT_ID") 
       filter("DEPARTMENT_ID"="DEPARTMENT_ID") 
 
 
25 rows selected. 
 
SYS@LAB112> @create_sql_profile 
Enter value for sql_id: 875qbqc2gw2qz 
Enter value for child_no (0):  
Enter value for profile_name (PROF_sqlid_planhash):  
Enter value for category (DEFAULT):  
Enter value for force_matching (FALSE):  
 
SQL Profile PROF_875qbqc2gw2qz_4201340344 created. 
 
SYS@LAB112> select /* NOT IN */ department_name 
  2     from hr.departments dept 
  3     where department_id not in (select department_id from hr.employees emp); 
 
no rows selected 
 
SYS@LAB112> @find_sql 
Enter value for sql_text: select /* NOT IN */ department_name% 
Enter value for sql_id:  
 
SQL_ID         CHILD  PLAN_HASH  EXECS  AVG_ETIME   AVG_LIO SQL_TEXT 
------------- ------  ---------  ----- ----------   ---------------------------------------- 
875qbqc2gw2qz      1 4201340344     1       .01     17 select /* NOT IN */ department_name  
 
1 row selected. 
 
SYS@LAB112> @dplanEnter value for sql_id: 875qbqc2gw2qz 
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  875qbqc2gw2qz, child number 1 
------------------------------------- 
select /* NOT IN */ department_name    from hr.departments dept 
where department_id not in (select department_id from hr.employees emp) 
 
Plan hash value: 4201340344 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

548 

-------------------------------------------------------------------------------------------- 
| Id  | Operation                     | Name        | Rows  | Bytes | Cost (%CPU)| Time    | 
-------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT              |             |       |       |     6 (100)|         | 
|   1 |  MERGE JOIN ANTI NA           |             |    17 |   323 |     6  (17)| 00:00:01| 
|   2 |   SORT JOIN                   |             |    27 |   432 |     2   (0)| 00:00:01| 
|   3 |    TABLE ACCESS BY INDEX ROWID| DEPARTMENTS |    27 |   432 |     2   (0)| 00:00:01| 
|   4 |     INDEX FULL SCAN           | DEPT_ID_PK  |    27 |       |     1   (0)| 00:00:01| 
|*  5 |   SORT UNIQUE                 |             |   107 |   321 |     4  (25)| 00:00:01| 
|   6 |    TABLE ACCESS FULL          | EMPLOYEES   |   107 |   321 |     3   (0)| 00:00:01| 
-------------------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   5 - access("DEPARTMENT_ID"="DEPARTMENT_ID") 
       filter("DEPARTMENT_ID"="DEPARTMENT_ID") 
 
Note 
----- 
   - SQL profile PROF_875qbqc2gw2qz_4201340344 used for this statement 
 
29 rows selected. 
 
SYS@LAB112> @sql_profile_hints 
Enter value for profile_name: PROF_875qbqc2gw2qz_4201340344 
 
HINT 
-------------------------------------------------------------------------------------------- 
IGNORE_OPTIM_EMBEDDED_HINTS 
OPTIMIZER_FEATURES_ENABLE('11.2.0.1') 
DB_VERSION('11.2.0.1') 
ALL_ROWS 
OUTLINE_LEAF(@"SEL$5DA710D3") 
UNNEST(@"SEL$2") 
OUTLINE(@"SEL$1") 
OUTLINE(@"SEL$2") 
INDEX(@"SEL$5DA710D3" "DEPT"@"SEL$1" ("DEPARTMENTS"."DEPARTMENT_ID")) 
FULL(@"SEL$5DA710D3" "EMP"@"SEL$2") 
LEADING(@"SEL$5DA710D3" "DEPT"@"SEL$1" "EMP"@"SEL$2") 
USE_MERGE(@"SEL$5DA710D3" "EMP"@"SEL$2") 
 
12 rows selected. 
 

So that’s handy if you have a SQL statement in the Shared Pool with a plan that you like. But what if 
you have a statement that goes bad and there is no longer a copy of the good plan in the shared pool? No 
problem, as long as your AWR retention allows you to get back to a previous execution that used a plan 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

549 

you like, because all the hints will be stored in the OTHER_XML column of the DBA_HIST_SQL_PLAN 
table along with the rest of the plan data. So it is a relatively simple matter to create a SQL Profile using 
those hints in order to restore your previous plan (while you go looking for the reason it went south in 
the first place). Of course there is a script for that one as well (create_sql_profile_awr.sql). Listing 16-23 
shows an example of its use (note that this example was run in 10g as it’s easier to get the optimizer to 
behave badly in 10g than in 11g). 

Listing 16-23. The create_sql_profile_awr.sql Script 

SYS@LAB1024> @awr_plan_change 
Enter value for sql_id: 05cq2hb1r37tr 
 
SNAP_ID NODE BEGIN_INTERVAL_TIME        PLAN_HASH_VALUE  EXECS    AVG_ETIME        AVG_LIO 
------- ---- -------------------------- --------------- ------ ------------     ---------- 
9532    1    12-AUG-10 03.00.09.212 PM   68322376            1       90.339      162,298.0 
9534    1    12-AUG-10 10.00.08.716 AM                       1       51.715      162,298.0 
9535    1    13-AUG-10 06.00.10.280 PM                       4       23.348      162,298.0 
9536    1    15-AUG-10 04.00.05.439 PM   3723858078          1      622.170    9,218,284.0 
 
SYS@LAB1024>  
SYS@LAB1024> -- statement 05cq2hb1r37tr has taken a turn for the worse    
SYS@LAB1024> -- let's get it back to plan 568322376 
SYS@LAB1024>  
SYS@LAB1024> @create_sql_profile_awr 
Enter value for sql_id: 05cq2hb1r37tr 
Enter value for plan_hash_value: 568322376 
Enter value for profile_name (PROF_sqlid_planhash):  
Enter value for category (DEFAULT):  
Enter value for force_matching (FALSE): 
 
SQL Profile PROF_05cq2hb1r37tr_568322376 created. 
 
SYS@LAB1024> @sql_profile_hints 
Enter value for profile_name: PROF_05cq2hb1r37tr_568322376 
 
HINT 
------------------------------------------------------------------------------------------
IGNORE_OPTIM_EMBEDDED_HINTS 
OPTIMIZER_FEATURES_ENABLE('10.2.0.4') 
ALL_ROWS 
OUTLINE_LEAF(@"SEL$1") 
FULL(@"SEL$1" "A"@"SEL$1") 
 
5 rows selected. 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

550 

This approach is very handy if you have a statement that ran well at some point and AWR captured
it. But what if you need to tune a statement from scratch, but you don’t have access to the code? Well,
SQL Profiles have one more trick up their sleeve. Since you have already demonstrated that you can
build SQL Profiles with any set of hints and associate them with any SQL statement and since you have
shown you can use OTHER_XML as a source of hints, why not move a set of hints from one statement to
another? This would allow you to take a statement and manipulate it to get the plan you want (via hints,
alter session statements, etc.) and then create a SQL Profile on your un-manipulated statement using the
hints from your manipulated statement. And of course there is a script in the example download to do
that (move_sql_profile.sql). There are several steps to this process. First, you need to identify the
statement and get it’s SQL_ID, then you need to make a copy of it to manipulate, then you need to create
a SQL Profile on the new manipulated version, and finally, you need to move the hints to the original
statement.  Listing 16-24 shows an example. 

Listing 16-24. The move_sql_profile.sql Script 

SYS@LAB112> select count(*) from kso.skew where col3 = '01-jan-10'; 

  COUNT(*)
---------- 
         0 

1 row selected. 

SYS@LAB112> @find_sql 
Enter value for sql_text: select count(*) from kso.skew where col3 = %
Enter value for sql_id:  

SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- --------- -------------------------------------------- 
4cp821ufcwvgc      0 3438766830     1       .39      675 select count(*) from kso.skew where  
                                                         col3 = '01-jan-10' 

1 row selected. 

SYS@LAB112> @dplan 
Enter value for sql_id: 4cp821ufcwvgc
Enter value for child_no:  

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------------- 
SQL_ID  4cp821ufcwvgc, child number 0 
------------------------------------- 
select count(*) from kso.skew where col3 = '01-jan-10' 

Plan hash value: 3438766830 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

551 

-------------------------------------------------------------------------------- 
| Id  | Operation         | Name       | Rows  | Bytes | Cost (%CPU)| Time     | 
-------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |            |       |       |     3 (100)|          | 
|   1 |  SORT AGGREGATE   |            |     1 |    26 |            |          | 
|*  2 |   INDEX RANGE SCAN| COL3_INDEX |     1 |    26 |     3   (0)| 00:00:01 | 
-------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   2 - access("COL3"='01-jan-10') 
 
 
19 rows selected. 
 

So you have identified your statement and found the SQL_ID. Now let’s create another version of 
the statement and force it to use a different index. You’ll do this by adding an inline hint to the select 
statement text (Listing 16-25). 

Listing 16-25. Adding an Inline Hint to the Select Statement Text 

SYS@LAB112> -- let’s create a statement that does the same thing but uses a different index 
SYS@LAB112> 
SYS@LAB112> select /*+ index (skew skew_col3_col2_col1) */ count(*)  
  2 from kso.skew where col3 = '01-jan-10'; 
 
  COUNT(*) 
---------- 
         0 

1 row selected. 

SYS@LAB112> @find_sql 
Enter value for sql_text: select /*+ index (skew skew_col3_col2_col1) */ count(*)% 
Enter value for sql_id:  
 
SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- ---------  ------------------------------------------- 
09gdkwq1bs48h      0  167097056     1       .06        8 select /*+ index (skew  
                                                         skew_col3_col2_col1)  
                                                         */ count(*) from kso.skew where   
                                                         '01- jan-10' 

1 row selected. 

SYS@LAB112> @dplan 
Enter value for sql_id: 09gdkwq1bs48h 
Enter value for child_no:  



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

552 

 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  09gdkwq1bs48h, child number 0 
------------------------------------- 
select /*+ index (skew skew_col3_col2_col1) */ count(*) from kso.skew 
where col3 = '01-jan-10' 
 
Plan hash value: 167097056 

----------------------------------------------------------------------------------------- 
| Id  | Operation         | Name                | Rows  | Bytes | Cost (%CPU)| Time     | 
----------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |                     |       |       |     4 (100)|          | 
|   1 |  SORT AGGREGATE   |                     |     1 |    26 |            |          | 
|*  2 |   INDEX RANGE SCAN| SKEW_COL3_COL2_COL1 |     1 |    26 |     4   (0)| 00:00:01 | 
----------------------------------------------------------------------------------------- 

Predicate Information (identified by operation id): 
--------------------------------------------------- 

   2 - access("COL3"='01-jan-10') 

20 rows selected. 
 

In Listing 16-25, you created a new statement (SQL_ID: 09gdkwq1bs48h) that has the same structure 
but uses a different execution plan (because of the hint). The next step is to create a SQL Profile on the 
new statement. You’ll do this with the create_sql_profile.sql script as shown in Listing 16-26. 

Listing 16-26. The create_sql_profile.sql Script 

SYS@LAB112> -- now let’s create a profile on our new statement 
SYS@LAB112> 
SYS@LAB112> @create_sql_profile 
Enter value for sql_id: 09gdkwq1bs48h 
Enter value for child_no (0):  
Enter value for profile_name (PROF_sqlid_planhash):  
Enter value for category (DEFAULT):  
Enter value for force_matching (FALSE):  

SQL Profile PROF_09gdkwq1bs48h_167097056 created. 

SYS@LAB112> select /*+ index (skew skew_col3_col2_col1) */ count(*)  
  2 from kso.skew where col3 = '01-jan-10'; 
 
  COUNT(*) 
---------- 
         0 

1 row selected. 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

553 

 
SYS@LAB112> @find_sql 
Enter value for sql_text: select /*+ index (skew skew_col3_col2_col1) */ count(*)% 
Enter value for sql_id:  
 
SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- ---------  -------------------------------------------  
09gdkwq1bs48h      0  167097056     1       .01  16 select /*+ index (skew         
                                                      skew_col3_col2_col1)  
                                                      */ count(*) from kso.skew where col3 =  
                                                      '01- jan-10' 
 
 
1 row selected. 
SYS@LAB112> @dplan  
Enter value for sql_id: 09gdkwq1bs48h 
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  09gdkwq1bs48h, child number 0 
------------------------------------- 
select /*+ index (skew skew_col3_col2_col1) */ count(*) from kso.skew 
where col3 = '01-jan-10' 
 
Plan hash value: 167097056 
 
----------------------------------------------------------------------------------------- 
| Id  | Operation         | Name                | Rows  | Bytes | Cost (%CPU)| Time     | 
----------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |                     |       |       |     4 (100)|          | 
|   1 |  SORT AGGREGATE   |                     |     1 |    26 |            |          | 
|*  2 |   INDEX RANGE SCAN| SKEW_COL3_COL2_COL1 |     1 |    26 |     4   (0)| 00:00:01 | 
----------------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   2 - access("COL3"='01-jan-10') 
 
Note 
----- 
   - SQL profile PROF_09gdkwq1bs48h_167097056 used for this statement 
 
 
24 rows selected. 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

554 

The last step is to move the newly created SQL Profile on to the original statement. You’ll  do this 
with the move_sql_profile.sql script in Listing 16-27. Then you’ll verify that the SQL Profile is being used 
and having the desired effect. 

Listing 16-27.  The move_sql_profile.sql Script 

SYS@LAB112> -- let's attach that same SQL Profile on to our original statement 
SYS@LAB112>  
SYS@LAB112> @move_sql_profile 
Enter value for profile_name: PROF_09gdkwq1bs48h_167097056 
Enter value for sql_id: 4cp821ufcwvgc 
Enter value for category (DEFAULT):  
Enter value for force_matching (false):  
 
PL/SQL procedure successfully completed. 
 
SYS@LAB112> select count(*) from kso.skew where col3 = '01-jan-10'; 
 
  COUNT(*) 
---------- 
         0 
 
1 row selected. 
 
SYS@LAB112> @find_sql 
Enter value for sql_text: select count(*) from kso.skew where col3 = % 
Enter value for sql_id:  
 
SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- ---------  ------------------------------------------- 
4cp821ufcwvgc      0  167097056     1       .12  16 select count(*) from kso.skew where  
                                                    col3 = '01-jan-10'   
 
 
1 row selected. 
 
SYS@LAB112> @dplan 
Enter value for sql_id: 4cp821ufcwvgc 
Enter value for child_no:  
 
PLAN_TABLE_OUTPUT 
-------------------------------------------------------------------------------------------- 
SQL_ID  4cp821ufcwvgc, child number 0 
------------------------------------- 
select count(*) from kso.skew where col3 = '01-jan-10' 
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

555 

Plan hash value: 167097056 
 
----------------------------------------------------------------------------------------- 
| Id  | Operation         | Name                | Rows  | Bytes | Cost (%CPU)| Time     | 
----------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |                     |       |       |     4 (100)|          | 
|   1 |  SORT AGGREGATE   |                     |     1 |    26 |            |          | 
|*  2 |   INDEX RANGE SCAN| SKEW_COL3_COL2_COL1 |     1 |    26 |     4   (0)| 00:00:01 | 
----------------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
   2 - access("COL3"='01-jan-10') 
 
Note 
----- 
   - SQL profile PROFILE_4cp821ufcwvgc_moved used for this statement 
 
 
23 rows selected. 
 
 

As you can see, the move worked and the new plan is in effect for the original statement. Moving 
SQL Profiles from one statement to another is a very useful technique and very easy to do. It basically 
allows you to manipulate a SQL statement until you get the plan you want and then attach the plan to a 
statement that you can’t touch. There are a few restrictions you should be aware of, however:  

• You cannot change the structure of the statement. Remember that SQL Profile hints are very 
specific when it comes to QB names. So anything that would change the Query Blocks will not 
work.  

• You cannot change any object aliases. Remember that all hints must reference objects by alias 
names (if aliases exist in the statement). Adding, removing, or changing an alias name in your 
manipulated statement will create hints that won’t match the original, and so they will be 
silently ignored. 

So to wrap up the section on SQL Profiles, I believe they provide a very powerful tool for controlling 
execution plans. The ability to match multiple statements via the FORCE_MATCHING attribute and the 
ability to attach any set of hints to a statement via the IMPORT_SQL_PROFILE procedure sets SQL 
Profiles apart as one of the most useful tools in our tool belt. 

SQL Plan Baselines 
Oracle Database 11g has provided a new method of dealing with plan instability. The third iteration of 
Oracle’s hint based mechanisms for influencing execution plans is called a SQL Plan Baseline (Baseline, 
for short). With Baselines, the design goal has morphed into eliminating backwards movement 
(“performance regressions” as the Oracle documentation calls them)—in other words, not allowing a 
statement to switch to a plan that is significantly slower than the one it has already been executing. This 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

556 

new mechanism depends on Baselines, which look very much like SQL Profiles; in fact, they are actually 
stored in the same structure in the data dictionary.  

Baselines are at their core a set of hints that are given a name and attached to a specific SQL 
statement. They are associated with a SQL statement using the same “normalized” text matching as 
Outlines and SQL Profiles. Here are some key features of Baselines: 

• Baselines will be used by default in 11g if they exist. There is a parameter to control whether 
they are used or not (OPTIMIZER_USE_SQL_PLAN_BASELINE). It is set to TRUE by default. 

• In 11g, Baselines will not be created by default. So, like the older Outlines or SQL Profiles, you 
must do something to create them. This also means that by default, 11g plan management does 
not look very different from 10g.  

• The concept of Categories has disappeared from Baselines. 

• Unlike Outlines and Profiles, you can have multiple Baselines per SQL statement. In an even 
more confusing twist, there’s a concept of a preferred set of Baselines called the “Fixed” set.   

• One of the key features of Baselines is that they are the first hint-based mechanism to have 
knowledge of the plan that was used to create them. That is to say, they store a plan_hash_value 
along with the hints. So if a Baseline is applied to a statement and the optimizer doesn’t come 
up with the same plan_hash_value that it had when the Baseline was created, all the hints are 
thrown out and the optimization is re-done without any of the hints. (Note: It doesn’t actually 
happen in this order but the point is that this mechanism is very different from Outlines and 
Profiles where the optimizer has no idea what plan the hints were trying generate. With 
Baselines, it does.) 

• There is a view called DBA_SQL_PLAN_BASELINES that exposes the Baselines that have been 
created. 

• Just like Outlines and SQL Profiles, Baselines apply to all instances in a RAC environment. They 
are not localized to a specific instance. 

SQL PLAN MANAGEMENT INFRASTRUCTURE 

Baselines are a part of the new SQL Plan Management (SPM) infrastructure in 11g. The concept of SPM is 
to have a Baseline associated with every statement that runs through the database. The optimizer then 
uses the Baselines to attempt to recreate the original plans they were created from.  

Every time a statement is parsed in 11g, the optimizer goes through its normal process including coming 
up with an execution plan. It then checks to see if the plan it just came up with is already stored in a 
Baseline. If it is, the optimizer will use that plan. If it’s not, the optimizer will use the Baseline plan and 
store the alternate plan in the history for later evaluation with the 
DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function (assuming that the database is configured to do that).  

The approach of saving plans for later evaluation sounds like a great plan to limit instability due to 
unexpected plan changes. The only real downside to that approach is that seeding the Baselines can be a 
difficult task and it is not done by default. The result is that most shops have not embraced this feature yet. 
I expect we’ll see more of this feature as people become more familiar with it, at least for key SQL 
statements. 

 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

557 

You can do pretty much the same things with Baselines that you can do with Outlines and SQL 
Profiles. For example, you can find a list of them, see what hints are contained by them, see what their 
status is, see which SQL statements are using them, etc. Listing 16-28 shows a quick example using a few 
scripts from the example download. 

Listing 16-28. Using Baselines 

SYS@LAB112> @find_sql_using_baseline 
Enter value for sql_text:  
Enter value for sql_id:  
Enter value for plan_hash_value:  
 
SQL_ID          PLAN_HASH SQL_PLAN_BASELINE               AVG_ETIME SQL_TEXT 
-------------  ---------- ------------------------------  -------------------------------- 
04s94zftphcgb  2650913906 SQL_PLAN_3mmrpt1hutfzs7456d135  .00 select sum(pk_col) from k 
12417fbdsfaxt  2333976600 SQL_PLAN_0j493a65j2bamc0e39d1a  .01 SELECT SQL_HANDLE FROM DB 
2us663zxp440c   329476029 SQL_PLAN_6dny19g5cvmaj059cc611  .04 /* OracleOEM */ select at 
3972rvxu3knn3  3007952250 SQL_PLAN_05a32329hrft07347ab53  .00 delete from sdo_geor_ddl_ 
               3007952250 SQL_PLAN_05a32329hrft07347ab53  .00 delete from sdo_geor_ddl_ 
62m44bym1fdhs  3137838658 SQL_PLAN_2jvcuyb2j5t1g4d67c3d9   .00 SELECT ID FROM WWV_FLOW_M 
               3137838658 SQL_PLAN_2jvcuyb2j5t1g4d67c3d9   .00 SELECT ID FROM WWV_FLOW_M 
6abthk1u14yb7  2848324471 SQL_PLAN_5y7pbdmj87bz3ea394c8e   .00 SELECT VERSION FROM V$INS 
               2848324471 SQL_PLAN_5y7pbdmj87bz3ea394c8e   .00 SELECT VERSION FROM V$INS 
9xw644rurr1nk  2848324471 SQL_PLAN_ba7pvw56m6m1cea394c8e   .00 SELECT REGEXP_REPLACE(VER 
aukfj0ur6962z  2366097979 SQL_PLAN_adx60prqvaaqhf8e55c8a   .00 SELECT VALUE V FROM WWV_F 
               2366097979 SQL_PLAN_adx60prqvaaqhf8e55c8a   .00 SELECT VALUE V FROM WWV_F 
b1um9gxnf22a3  1475283301 SQL_PLAN_1kj53db9w5gzga4a6b425   .00 select count(*) from sqll 
d56r760yr1tgt  2650913906 SQL_PLAN_dn32tuq14sj5q7456d135   .01 select sum(pk_col) from k 
f1b04310fhv7a  2650913906 SQLID_AR5DZ1STDPFC6_2650913906   .00  select sum(pk_col) from 
fg5u3ydzcqzvw  3291240065 SQL_PLAN_3ndjuqr0f58a716c3d523   .03 select spb.sql_handle, sp 
               3291240065 SQL_PLAN_3ndjuqr0f58a716c3d523   .03 select spb.sql_handle, sp 
 
17 rows selected. 
 
SYS@LAB112> @baselines 
Enter value for sql_text: %skew% 
Enter value for name:  
Enter value for plan_name:  
 
SQL_HANDLE               PLAN_NAME                      SQL_TEXT            ENABLED ACC FIX  
------------------------ ------------------------------ ------------------- ------- --- ---  
SYS_SQL_17fbdf9452045c7d SQL_PLAN_1gyyzkj908r3x6c55a992 select avg(pk_col)  YES     NO  NO 
                         SQL_PLAN_1gyyzkj908r3x7b89d948 select avg(pk_col)  YES     NO  NO 
SYS_SQL_36bf1c88f777e894 SQL_PLAN_3dgswj3vrgu4n11d25c67 select avg(pk_col)  YES     NO  NO 
                         SQL_PLAN_3dgswj3vrgu4ned88b4f4 select avg(pk_col)  NO      YES NO  
SYS_SQL_39cef5c861acbbf8 SQL_PLAN_3mmrpt1hutfzs7456d135 select sum(pk_col)  YES     YES NO 
SYS_SQL_3a363ab5c0e2a147 SQL_PLAN_3ndjuqr0f58a716c3d523 select spb.sql_hand YES     YES NO  
SYS_SQL_3c55382b2b2a4d5f SQL_PLAN_3sp9s5cpknmaz7456d135 select sum(pk_col)  YES     YES NO 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

558 

SYS_SQL_94dc89c011141f02 SQL_PLAN_99r49s08j87s255381d08 select avg(pk_col)  YES     NO  NO 
                         SQL_PLAN_99r49s08j87s27456d135 select avg(pk_col)  YES     NO  NO 
SYS_SQL_d0686c14959cbf64 SQL_PLAN_d0u3c2kattgv48b1420d2 select avg(pk_col)  YES     YES NO 
SYS_SQL_da0c59d5824c44b6 SQL_PLAN_dn32tuq14sj5q7456d135 select sum(pk_col)  YES     YES NO   
SYS_SQL_f1140cddb13082df DODA                           select sql_id, chil YES     YES NO  
SYS_SQL_f5cd6b7b73c7a1f7 SQLID_F1B04310FHV7A_2650913906 select sum(pk_col)  YES     YES NO   
 
13 rows selected. 
 
SYS@LAB112> @baseline_hints 
Enter value for baseline_plan_name: SQLID_F1B04310FHV7A_2650913906 
 
OUTLINE_HINTS 
-------------------------------------------------------------------------------------------- 
IGNORE_OPTIM_EMBEDDED_HINTS 
OPTIMIZER_FEATURES_ENABLE('11.2.0.1') 
DB_VERSION('11.2.0.1') 
ALL_ROWS 
OUTLINE_LEAF(@"SEL$1") 
INDEX_SS(@"SEL$1" "SKEW"@"SEL$1" ("SKEW"."COL2" "SKEW"."COL1")) 
 
6 rows selected. 
 

The naming of baselines is not particularly friendly. The sql_handle is a unique identifier for a SQL 
statement while the sql_plan_name is a unique identifier for a plan. By the way, the sql_plan_name is 
also called sql_plan_baseline in the v$sql view.  

There are many ways to create Baselines. They can be automatically created for every statement that 
is excuted by setting the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES parameter to true. They can 
also be created for statements in a SQL Tuning Set using the LOAD_PLANS_FROM_SQLSET function or 
migrated from Outlines using the MIGRATE_STORED_OUTLINE function. These mechanisms are 
primarily designed for seeding Baselines when doing migrations. 

Creating a baseline for an individual statement that is already in the cursor cache can be accomplished 
via the DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE function. All the function needs is a SQL_ID 
and a PLAN_HASH_VALUE. Optionally, a parameter can be used to define the baseline as FIXED. If it’s 
FIXED then it gets priority over any other Baselines for that statement, except other FIXED Baselines. 
Confused? Well it’s not exactly the most straightforward setup. I’m a simple guy, so at this point I’m 
thinking one FIXED Baseline is plenty. After all, you’re looking to minimize plan changes. So with that said, 
let’s look an example of creating a baseline for a single statement in Listing 16-29. 

Listing 16-29. Creating a Baseline for a Single Statement 

SYS@LAB112> select sum(pk_col) from kso.skew where col1=666666; 
 
SUM(PK_COL) 
----------- 
  517333312 
 
SYS@LAB112> @find_sql 
Enter value for sql_text: %66666% 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

559 

Enter value for sql_id:  
 
SQL_ID         CHILD  PLAN_HASH EXECS AVG_ETIME  AVG_LIO SQL_TEXT 
------------- ------ ---------- ----- ---------  ------------------------------------------- 
dv1qm9crkf281      0 2650913906     1       .08       45 select sum(pk_col) from kso.skew   
                                                         col1=666666 
 
SYS@LAB112> @create_baseline 
Enter value for sql_id: dv1qm9crkf281 
Enter value for plan_hash_value: 2650913906 
Enter value for fixed (NO):  
Enter value for enabled (YES):  
Enter value for plan_name (ID_sqlid_planhashvalue):  
 
Baseline SQLID_DV1QM9CRKF281_2650913906 created. 
 
SYS@LAB112> select sql_handle, plan_name, sql_text  
 2  from dba_sql_plan_baselines where sql_text like '%66666%'; 
 
SQL_HANDLE               PLAN_NAME                      SQL_TEXT 
------------------------ ------------------------------ ------------------------------------ 
SYS_SQL_8a22ceb091365064 SQLID_DV1QM9CRKF281_2650913906 select sum(pk_col) from kso.skew  
 
1 row selected. 
 
SYS@LAB112> select sum(pk_col) from kso.skew where col1=666666; 
 
SUM(PK_COL) 
----------- 
  517333312 
 
1 row selected. 
 
SYS@LAB112> / 
SUM(PK_COL) 
----------- 
  517333312 

1 row selected. 

SYS@LAB112> @dplan 
Enter value for sql_id: dv1qm9crkf281 
Enter value for child_no:  
 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

560 

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------------- 
SQL_ID  dv1qm9crkf281, child number 1 
------------------------------------- 
select sum(pk_col) from kso.skew where col1=666666 

Plan hash value: 2650913906 

---------------------------------------------------------------------------------------------- 
| Id  | Operation                    | Name           | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT             |                |       |       |    34 (100)|          |
|   1 |  SORT AGGREGATE              |                |     1 |    24 |            |          |
|   2 |   TABLE ACCESS BY INDEX ROWID| SKEW           |    32 |   768 |    34   (0)|00:00:01  |
|*  3 |    INDEX SKIP SCAN           | SKEW_COL2_COL1 |    32 |       |     5   (0)| 00:00:01 |
---------------------------------------------------------------------------------------------- 

Predicate Information (identified by operation id):
--------------------------------------------------- 

   3 - access("COL1"=666666) 
       filter("COL1"=666666) 

Note
----- 
   - SQL plan baseline SQLID_DV1QM9CRKF281_2650913906 used for this statement 

46 rows selected. 

Listing 16-29 shows the use of the create_baseline.sql script that creates a Baseline on an existing
statement in the shared pool. The script also renames the Baseline to something more meaningful
(SQLID_sqlid_planhash by default).  This renaming only works in 11gR2, by the way;  11gR1 allows you to
rename a Baseline but there is a bug that causes a statement that uses a renamed Baseline to fail.
Consequently, the create_baseline.sql script does not rename Baselines if the version is not 11.2 or higher.  

Baselines can also be used to retrieve a plan from the AWR history although it’s not quite a straight
forward as getting the plan from the cursor cache. Listing 16-30 shows an of example of doing just that
with the create_baseline_awr.sql script. 

Listing 16-30. The create_baseline_awr.sql Script  

SYS@LAB112> @find_sql_awr 
Enter value for sql_text: %cursor%skew%
Enter value for sql_id:  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

561 

SQL_ID        SQL_TEXT 
------------- ------------------------------------------------------------------------------ 
3ggjbbd2varq2 select /*+ cursor_sharing_exact */ avg(pk_col) from kso.skew where col1 = 1 
48up9g2j8dkct select /*+ cursor_sharing_exact */ avg(pk_col) from kso.skew where col1 = 136135 
2z6s4zb5pxp9k select /*+ opt_param('cursor_sharing' 'exact') */ avg(pk_col) from kso.skew where  
13krz9pwd6a88 select /*+ opt_param('cursor_sharing=force') */ avg(pk_col) from kso.skew 
 
4 rows selected. 
 
SYS@LAB112> @dplan_awr 
Enter value for sql_id: 3ggjbbd2varq2 
Enter value for plan_hash_value:  
 
PLAN_TABLE_OUTPUT 
--------------------------------------------------------------------------------------------
--- 
SQL_ID 3ggjbbd2varq2 
-------------------- 
select /*+ cursor_sharing_exact */ avg(pk_col) from kso.skew where col1 = 1 
 
Plan hash value: 568322376 
 
--------------------------------------------------------------------------- 
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     | 
--------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT   |      |       |       | 28366 (100)|          | 
|   1 |  SORT AGGREGATE    |      |     1 |    24 |            |          | 
|   2 |   TABLE ACCESS FULL| SKEW |  3149K|    72M| 28366   (1)| 00:05:41 | 
--------------------------------------------------------------------------- 
 
15 rows selected. 
SYS@LAB112> @find_sql 
Enter value for sql_text:  
Enter value for sql_id: 3ggjbbd2varq2 
 
no rows selected 
 
SYS@LAB112> -- so it’s not in the cursor cache 
SYS@LAB112> 
SYS@LAB112> @create_baseline_awr 
Enter value for SQL_ID: 48up9g2j8dkct 
Enter value for PLAN_HASH_VALUE: 568322376 
Enter value for fixed (NO):  
Enter value for enabled (YES):  
Enter value for plan_name (ID_sqlid_planhashvalue):  
 
Baseline SQLID_48UP9G2J8DKCT_568322376 created. 



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

562 

 
SYS@LAB112>  
SYS@LAB112> select sql_handle, plan_name, sql_text  
 2  from dba_sql_plan_baselines where plan_name like ‘SQLID_48UP9G2J8DKCT_568322376’; 
 
SQL_HANDLE               PLAN_NAME                      SQL_TEXT 
------------------------ ------------------------------ ------------------------------------ 
SYS_SQL_d52c57087080269e SQLID_48UP9G2J8DKCT_568322376  select /*+ cursor_sharing_exact */      
                                                        avg(pk_col)  
 
1 row selected. 
 

So Baselines are obviously the wave of the future, but at this point they are not quite as flexibile as 
SQL Profiles when it comes to applying custom controls to statements. They can attempt to lock in plans 
from the cursor cache or from AWR history, but they cannot import arbitrary hints or apply to many 
statements at a time like SQL Profiles can via the FORCE_MATCHING attribute. However, they can 
collect alternate plans for later evaluation and they are designed to store a large set of plans in an 
attempt to keep any plan from changing without warning.  

Hint Based Plan Control Mechanisms Wrap Up 
Of the three options availabe in 11g, I believe that SQL Profiles are the most straight forward and 
functional. They have the advantage of “force matching” which allows a single SQL Profile to apply to 
multiple SQL statements by  ignoring literals (much like cursor_sharing=force , i.e. the “force” 
matching). They also have a built in procedure (dbms_sqltune.import_sql_profile) that allows any set of 
hints to be attached to any SQL statement. This is an extremely powerful tool that basically allows you to 
apply any hint to any statement, even if you have don’t have access to the code. Neither Outlines nor 
Baselines have either one of these advantages. Baselines do store the original plan_hash_value, which 
means they can tell if the hints are still generating the original plan. But they have no way of getting back 
to the original plan in cases when the hints fail to do their job. Their only option at that point is to throw 
away the hints all together and try again. It would be nice if there was a way to just store the plan itself, 
instead of a set of hints that “should” get you back to the same plan. Maybe in the next release. 

Conclusion 
There are several things that contribute to plan instability. If you get one thing out of this chapter, I hope 
it is that plans do not change without a reason. Plans will remain static unless something else changes in 
the system. Changes in statistics and bind variable peeking are the most likely causes of plan instability. 
Oddly enough, failure of statistics to keep up with changing data is another common cause of instability. 
Of these three issues, though, bind variable peeking is probably the most prevalent and the most 
frustrating to deal with. While most shops are understandably reluctant to turn off the bind variable 
peeking “feature” turning it off altogether is in fact a viable option. There are many production systems 
that have taken this approach. Part of the standard configuration of SAP, for example, is to set the 
_optim_peek_user_binds parameter to false. This can prevent the optimizer from choosing the absolute 
best plan available for a certain set of queries, but the trade off is a more consistent environment. Short 
of turning off bind variable peeking altogether, using literals appropriately with columns that need 
histograms to deal with skewed data distributions is really the only effective way to deal with the issue 
while still providing the optimizer the ability to choose the absolute best execution plans. However, if 
circumstances prevent this approach, there are other techniques that can be applied.  



CHAPTER 16 ■ PLAN STABILITY AND CONTROL 

 

563 

SQL Profiles provide an extremely valuable tool in situations where the need is urgent and the 
ability to change the code is non-existent. They also have the advantage of being very specific in their 
scope (i.e. they can be targeted at a single statement without the possibility of having negative affects on 
other statements). Baselines can also be very useful if you are using 11g. Although they are not as flexible 
as SQL Profiles, they do have the advantage of knowing what plan they are trying to recreate. They also 
have the capability of keeping a list of alternate plans that can be evaluated later. SQL Tuning Advisor 
Profiles can be useful for identifying better plans and pointing out problem areas, but I am not a fan of 
implementing them in most cases. Generally speaking, I would rather have a mechanism that applies 
directive hints that list specific objects and join methods rather than fudge factors. All of these types of 
hint-based control mechanisms, though, should be considered temporary fixes. Although they may work 
well for an extended period of time while a more permenant solution is contemplated, they really should 
be considered a temporary fix while appropriate statistics gathering methodology is implemented or 
code is changed to make appropriate use of literals. 

From a philosophical standpoint, I strongly believe that consistency is more important than 
absolute speed. So when a choice must be made, I always favor slightly reduced but consistent 
performance over anything that doesn’t provide that consistency. 





I n d e x  
 

   

565 

A 
access methods 

full scan, 61–72 
index scan, 73–88 

access paths 
adding or removing, for plan control,  

525–526 
changing, 522 
index based, 374–376 

ACCESS_PREDICATES column, 164 
ACID properties, of transactions, 434–435 
Active Session History (ASH), 484 
active transactions, 447–448 
Active Workload Repository (AWR), 484, 494, 

509 
ACYCLIC algorithm, 271–272 
ACYCLIC FAST algorithm, 271–272 
Adaptive Cursor Sharing, 505 
advanced grouping, 191–220 
aggregation functions, 224–227 

default windowing clause, 227 
nulls and, 126–127 
over entire partition, 225–226 

aggregation, 263–264 
ALL clause, 18 
all_ind_columns view, 54 
all_indexes view, 54 
all_tab_cols view, 54 
all_tables view, 54 
ALTER OUTLINE command, 529 
_always_anti_ parameter, 364 
_always_semi_join parameter, 342–345, 365 
analytic functions, 221–250 

advanced topics, 246–250 
aggregation functions and, 224–227 
components of, 222–223 
dense_rank, 235 
example data, 221–222 
first_value, 230–232 
lag, 227–230 
last_value, 230–232 

lead, 227–230 
list of, 223–224 
Listagg, 243 
nesting, 223, 248–249 
nth_value, 233 
NTILE, 241, 242 
organizational resistance to, 250 
parallelism and, 249–250 
percent_rank, 238 
percentile_cont, 238–240 
percentile_disc, 240–241 
performance tuning with, 243–246 
PGA size and, 250 
rank, 234–235 
ratio_to_report, 237 
row_number, 236–237 
stddev, 242, 243 
syntax, 222 

AND conditions, 140, 151 
ANSI join syntax, 100 
ANSI/ISO SQL standard, 435 
ANTIJOIN hint, 363 
anti-joins, 325, 347–371 

alternative syntax for, 350–352, 358–360 
execution plans, 353–363 

controlling, 363–367 
hints with, 363–364 
illustration of, 348 
nested loop, 353 
requirements, 371 
restrictions, 367–370 

=ANY key word, 328 
APPEND hint, 404–405, 415 
architecture, Oracle, 29–30 
arrays 

Group By and, 217 
partitioned, 254 

arraysize, 56–58 
as.sql script, 505 
ASH (Active Session History), 484 
asterisk (*), 164 



 INDEX 

566 

atomicity, 435, 447 
automatic order, of rule evaluation, 263, 271–272 
AUTOMATIC ORDER clause, 260 
autonomous transactions, 458–463 
AUTOTRACE command, 156 
AWR (Active Workload Repository), 484, 494, 509 
awr_plan_change.sql script, 507–508 
awr_plan_stats.sql script, 508 

B 
background processes, 30 
Baselines, 555–562 
bind variable datatypes, 160–162 
bind variable peeking, 502–504 
bind variables, 35–36, 141, 150–151 
bitmap indexes, 373, 378–381 
bitmap join indexes, 399–400 
blevel statistic, 74 
block accesses, 73 
blocks, 37 

query, 39 
touch count, 37 

Boolean expressions, 140–151 
BREADTH FIRST search, 308–310, 323 
Breitling, Wolfgang, 337 
B-tree indexes, 73–75, 373, 379 

compressed, 389–391 
buffer cache, 37–39 
BUFFER SORT operation, 97 

C 
cardinality, 377 
Cartesian joins, 88, 96–97 
CASE expression, 141, 208 
child operations, 159 
client processes, 30 
closed questions, 131 
clustering factor, 75–78, 139 
code 

adding instrumentation to, 484–488 
measurable attributes of, 465 

column value, 73 
columns 

choice of, for indexes, 376–378 
conversion of rows to, 265 
partitioning, 254 
statistics, 54 
updating, 18–22 
virtual, 392–393 

commands, SQL*Plus, 4 
executing, 6–8 
set command, 4–6 

commit statement, 438 
common table expressions (CTE), 283 
compressed indexes, 389–391 
CONCATENATION plan, 150–151 
concurrency, 389 
conditional expressions, 141 
conditional inserts, 407 
conditional logic, 140–151 
configuration, SQL*Plus, 4–6 
CONNECT BY clause, 304–307 

compared with RSF, 308 
duplicating functionality, 309–324 

connect command, 6 
CONNECT_BY_ISCYCLE pseudocolumn,  

316–319 
CONNECT_BY_ISLEAF pseudocolumn,  

319–324 
CONNECT_BY_ROOT operator, 313–316 
_connect_identifier variable, 6 
consistency, 435 
constraints, 439 
correlated subqueries, 347 

unnesting transformation of, 46–47 
vs. non-correlated, 331–334 

Cost Based Optimizer (CBO), 9, 244, 347,  
497–498 

COUNT aggregate function, 64, 126 
COUNT() function, 192 
CREATE OUTLINE statement, 526–527 
Create Table As Select (CTAS), 416–418,  

431–434 
create_1_hint_profile.sql hint, 541 
create_baseline.sql script, 560 
CREATE_ERROR_LOG procedure, 415 
CREATE_OUTLINE procedure, 527–529, 536 
create_sql_profile.sql script, 546, 552 
create_sql_profile_awr.sql script, 549 
CUBE operation, 12, 197–201, 205–207 
CV function, 254–255 
CYCLE clause, 319 
CYCLIC algorithm, 271–272 

D 
data 

aggregation, 263–264 
consistency, multi-version read 

consistency model, 437 
questions about, 134–140 



 INDEX 

567 

data definition language (DDL), 434 
data dictionary, 135 
data manipulation language (DML) 

statements,403–434 
DELETE, 422–427 
INSERT, 403–415 
MERGE, 427–434 
UPDATE, 416–422 

database 
connections, SQL*Plus, 3 
definition of, 30 
interfacing to, 2 
querying the, 134–140 

database parameters, changing, for plan 
control, 525 

db_file_multiblock_read_count parameter, 66 
DBA_SQL_PLAN_BASELINES, 556 
DBMS_APPLICATION_INFO package, 484 
DBMS_METADATA package, 418 
DBMS_OUTLN.CREATE_OUTLINE procedure, 

529, 536 
dbms_output call, 171 
DBMS_SPM.LOAD_PLANS_FROM_CURSOR_C

ACHE function, 558 
DBMS_UTILITY.get_time, 491 
DBMS_UTLITITY.get_cpu_time, 491 
DBMS_XPLAN package, 174–180 
DBMS_XPLAN.display_cursor function,  

166–171, 191, 545 
DBMS_XPLAN_TYPE_TABLE type, 174 
DECODE() function, 208, 216 
default windowing clause, 227 
DELETE statement, 22–24, 422–427 
dense_rank function, 235 
DEPTH FIRST search, 323 
DESC keyword, 261 
descending indexes, 395–396 
descending sorted order, 80 
dictionary cache, 32 
direct path inserts, 403–406 
dirty read, 436 
DISPLAY function, 176 
DISTINCT clause, 14 

inner join with, 327–328 
semi-join and, 329–330 

DML error logging, 409–415 
driven-to table, 89 
driving table, 89 
durability, 435 
dynamic SQL, 247–248 

E 
EDIT command, 8 
_editor variable, 8 
embedded SQL statements, 2 
equi-joins, 95 
Error Logging clause, 413–415 
execution characters, 7 
execution plans, 153–190. See also plan control; 

plant instability 
analytic functions and, 244 
anti-join, 353–363 

controlling, 363–367 
collecting plan statistics, 168–171 
comparing, before and after changes,  

478–483 
controlling, 513–562 
DBMS_XPLAN package, 174–180 
definition of, 52 
determining, 52–56 
executing and fetching rows, 56–59 
EXPLAIN PLAN statement, 153–162 
GROUP BY, 194 
identifying SQL statements for retrieval, 

171–174 
Model clause and, 271–274 
reading, 163–165 
semi-join, 335–339 

controlling, 339–345 
for subfactored queries, 286–290 
using, for problem solving, 180–189 
viewing, 166–168 
viewing recently generated SQL, 166 

EXISTS clause, 119, 326, 330–331 
EXPLAIN PLAN statement, 153–162, 341 

shortcomings of, 160–162 
using, 153–159 

EXTRACT() function, 303 

F 
factoring, subquery, 281–282 
fast full scan, 87–88 
fast incremental refresh, 276 
FETCH calls, 56–58 
FILTER operation, 46, 151 
filter predicate information, 165 
FILTER_PREDICATES column, 164 
first_value function, 230–232 
FIXED Baselines, 558 
FOR loops, 258 
FORCE_MATCHING attribute, 539, 555 



 INDEX 

568 

FORMAT parameter, 175–176 
forward slash (/), 7 
FROM clause, 9–11, 22, 88 
FULL hint, 516 
full outer joins, 101–103 
full scan access methods, 61-72 

choosing, 62–65 
highwater mark and, 67–72 
multiblock reads and, 66 
throwaway and, 65–66 

full scans 
index, 81–85 
index fast full scan, 87–88 

function based indexes, 391–393 

G 
gather_plan_statistics hint, 167 
GLOBAL keyword, 385 
global indexes, 385–386 
glogin.sql file, 6 
GROUP BY clause, 12–13, 191 

advanced functionality, 197 
basic usage, 192–195 
column requirements, 192 
CUBE extension, 197–207 
GROUPING SETS() extension, 214–216 
GROUPING() extension, 207–210 
GROUPING_ID() extension, 210–214 
HAVING clause and, 195 
NULLs and, 124–126 
restrictions, 217–220 
results not sorted, 193 
ROLLUP() extension, 216–217 

GROUPING() function, 216 
compared with GROUPING_ID() function, 

213–214 
eliminating NULLS with, 207–208 
extending reports with, 209–210 

GROUPING SETS() function, 214–216 
GROUPING_ID() function, 210–214 
_gs_anti_semi_join_allowed parameter, 364 

H 
hard parsing, 32–39 
hash joins, 94–96, 334 
hash partitioning scheme, 386–389 
HASH UNIQUE operation, 114 
hash values, 35, 95–96 
HASH_AJ hint, 363 
HASH_VALUE identifier, 529 

hashing algorithms, 387 
HAVING clause, 13, 195–196, 209–210, 213, 

216, 287 
hierarchical queries, 309 
highwater mark, full scans and, 67–72 
hint-based mechanisms, for plan control,  

526–562 
outlines, 526–538 
SQL Plan Baselines, 555–562 
SQL Profiles, 538–555 

hints 
controlling anti-joins using, 363–364 
controlling semi-joins using, 339–342 
format of, 516 
using for plan control, 514–522 

I 
identical statements, 33–36 
identification questions, 131 
IGNORE NAV clause, 270 
IGNORE NULLS clause, 232 
ILO_COMMENT field, 489 
ILO_ELAPSED_TIME table, 488 
IN clause, 326 
index based access paths, 374–376 
index fast full scan, 87–88 
index full scan, 81–85, 150 
index organized tables, 373, 381–383 
index range scan, 79–81 
index scan access methods, 73–88 

index scan types, 75–78 
index fast full scan, 87–88 
index full scan, 81–85 
index range scan, 79–81 
index skip scan, 85–87 
index unique scan, 78, 150 

index structure, 74–75 
index skip scan, 85–87 
index statistics, 54 
index unique scan, 78, 150 
indexes, 373–401 

adding or removing, for plan control,  
525–526 

analytic functions and, 246 
bitmap, 378–381 
bitmap join, 399–400 
blevels, 74 
B-tree, 73–75, 373379, 389–391 
clustering factor, 75–78, 139 
column choice, 376–378 
compressed, 389–391 



 INDEX 

569 

cost of, 377 
descending, 395–396 
function based, 391–393 
global, 385–386 
importance of choosing, 373 
invisible, 396–398 
local, 384–385 
Model clause and, 280–281 
nosegment, 398 
null values and, 378–379 
partitioned, 383–389 
performance tuning and, 280–281 
predicates and, 246 
reverse key, 394,–395 
structural types, 379–383 
structure of, 74–75 
using execution plan to troubleshoot,  

181–185 
virtual, 398 
when to use, 374–376 

INLINE hint, 286, 289–290, 293, 303 
inner join, with DISTINCT, 327–328 
inner table, 89 
INSERT APPEND, 418, 421 
INSERT statement, 15, 18, 403–415 

compared with MERGE, 431–434 
conditional inserts, 407 
direct path inserts, 403–406 
DML error logging, 409–415 
multiple-table inserts, 406 

inserts 
conditional, 407 
direct path, 403–406 
multiple-table, 16–18, 406 
single-table, 15 

instances, 30 
instrumentation, 484 

adding to code, 484–488 
troubleshooting through, 491–495 

Instrumentation Library for Oracle (ILO),  
484–488 

inter-row referencing, 252–255 
INTERSECT operator, 113, 119, 328 
invalid objects, checking for, 475–476 
invisible indexes, 396–398 
IS NOT NULL predicates, 367 
IS NULL predicates, 378–379 
isolation, 435 
isolation levels, transaction, 435–437, 455–458 
iteration, 264–266 
iterative operations, 159 

J 
joins/join methods, 88–104. See also anti-joins; 

semi-joins 
Cartesian, 88, 96–97 
equi-joins, 95 
full outer, 101–103 
hash, 94–96 
inner, 327–328 
merge, 334 
nested loops, 46, 89–92 
order of, 88 
outer, 98–103 
processing, 10 
self-joins, 252 
sort-merge, 92–93 

K 
KEEP NAV clause, 269 

L 
lag function, 227–230 
last_value function, 230–232 
latches, 36–37 
LEAD() function, 227–230, 322–323 
leaf nodes, 74, 320–322 
Least Recently Used (LRU) algorithm, 32, 37 
LEVEL pseudocolumn, 309–311 
library cache, 32–36 
LIKE operator, 80 
Listagg function, 243 
literals, 35–36, 514 
LNNVL function, 370 
local indexes, 384–385 
LOG ERRORS clause, 415 
LOG ERRORS INTO keywords, 410 
logical expressions, building, 140–151 
logical reads, 37–39 
login.sql file, 6 
lookup tables, 267–269 

M 
MAIN keyword, 267 
MATERIALIZE hint, 286, 290, 293, 303 
materialized views, 50–52, 276, 277 
maximum, calculation of, 231 
memory, shared pool, 31, 32 
MERGE hint, 43 
MERGE JOIN ANTI NA plan, 355 
merge joins, 334 



INDEX 

570 

MERGE statement, 24–27, 427–434
compared with INSERT and CTAS, 431–434
syntax and usage, 427–30 

MERGE_AJ hint, 363 
minimum, calculation of, 231 
MINUS operator, 113, 117–118, 350–352, 371
minus sign (-), 175 
Model clause, 251–282 

aggregation and, 263–264
components of, 253–254 
evaluation order and, 260–263
execution plans and, 271–274 
FOR loops and, 258 
indexes and, 280–281 
inter-row referencing via, 252–255
iteration and, 264–266 
lookup tables and, 267–269
materialized views and, 276–277
NULLs and, 266–270 
parallelism and, 277–278
partitioning and, 278–280
performance tuning with, 271–281
positional notation, 256–257
predicate pushing and, 274–276
PRESENTV function, 266–267
returning updated rows and, 258–259
rule evaluation and, 271–274
spreadsheets and, 251–255
subquery factoring and, 281–282
symbolic notation, 257 

move_sql_profile.sql script, 550, 554
multiblock reads, full scans and, 66
multi-table inserts, 16–18, 406
multi-version read consistency model, 452 

N 
nested analytic functions, 248–249
nested loop anti-join, 353 
nested loop semi-join, 334–335 
nested loops, 334 
NESTED LOOPS ANTI plan, 355 
nested loops joins, 46, 89–92 
nested sets diagram, 110 
NL_AJ hint, 363 
no_invalidate parameter, 498
NO_MERGE hint, 42, 49
NO_PUSH_PRED hint, 49
NO_QUERY_TRANSFORMATION hint, 40
NO_SEMIJOIN hint, 339, 341
NO_UNNEST hint, 45 
noncorrelated subqueries, 44–45, 331–334 

non-repeatable read, 436 
nosegment indexes, 398 
NOT EXISTS keyword, 118, 348–352, 355, 371
NOT IN keyword, 348–352, 355, 367, 371
NOT NULL Anti-join behavior, 370 
NOT NULL constraints, 87, 349, 367, 370
nth_value function, 233 
NTILE function, 241–242 
Null Aware ANTI join, 370 
null value, 120 
nulls, 12, 269–270 

aggregate functions and, 126–127
analytic functions and, 232 
avoiding, with NOT IN, 349–350 
in comparisons and expressions, 122
eliminating with GROUPING() function, 

207–208 
GROUP BY clause and, 124–126
indexes and, 378, 379 
ORDER BY clause and, 124–126
rules and, 266–267 
sets and, 119–127 
unintuitive results and, 120–122 

NULLS FIRST clause, 235
NULLS LAST clause, 235
num_distinct column statistic, 54
NVL() function, 208 

O 
object level statistics, 498 
objective questions, 131 
offset, 228 
OL_sqlid_planhash, 538 
Online Analytic Processing (OLAP) queries, 221
open questions, 130 
operations 

execution order, 163–164
parent-child, 164 

OPT_ESITMATE hint, 540
optimization, 14, 92 

anti-joins, 347, 353–355, 367, 370–371
index full scans, 83–85 
semi-joins, 326, 334–335, 347
subquery caching, 46 
subquery factoring and, 286–301 

optimizer, 53–56, 61, 135. See also Cost Based 
Optimizer 

optimizer parameter values, 501
OPTIMIZER_CAPTURE_SQL_PLAN_BASELINE

S parameter, 558 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



 INDEX 

571 

_optimizer_null_aware_antijoin parameter, 
364–365 

_optimizer_outer_to_anti_enabled parameter, 
364 

OR condition, 140, 151 
ora_hash function, 96 
Oracle Call Interface (OCI), 2 
Oracle Concepts Guide, 30 
ORACLE_HOME/demo/schema directory, 191 
ORACLE_HOME/sqlplus/demo directory, 191 
ORDER BY clause, 14, 80, 110, 114, 193, 222, 

239, 243 
NULLs and, 124–126 

ORDER BY year, week clause, 261 
Order Entry (OE) schema, 440–446 
ORDERED algorithm, 273–274 
ORDERED FAST algorithm, 271, 274 
outer joins, 98–103 
outlines, for plan control, 526–538 

P 
parallelism, 249–250, 277–278, 376 
PARENT_ID column, 158–159, 163 
parent-child relationships, 164 
parsing, 32 

bind variables and, 35–36 
hard, 33–39 
soft, 32–39 

partioned indexes, local, 384–385 
partition keyword, 254 
partition pruning, 278 
partition-by clause, 230, 242 
partitioned arrays, 254 
partitioned indexes, 383–389 

global, 385–386 
hash vs. range partitioning, 386, 387–389 

partitioning 
columns, 254 
hash, 386–389 
Model clause execution and, 278–280 

partitioning-clause, 222 
pass-thru operations, 159 
percent_rank function, 238 
percentile_cont function, 238–240 
percentile_disc function, 240–241 
performance, as measurable code attribute, 

465 
performance management tools, 484 
performance optimization. See optimization 
performance testing, 488–490 
performance tuning 

with analytic functions, 243–246 
Model clause and, 271–281 

PGA_AGGREGATE_TARGET (PGAT) 
parameter, 250 

phantom read, 436 
physical reads, 37–39 
PIVOT operator, 283, 285 
pivoting, 265 
PL/SQL, applying subquery factoring to, 301–304 
plan control, 513–562 

add or remove access paths, 525–526 
change database parameters, 525 
changing statistics, 523–525 
giving optimizer hints, 514–522 
making appropriate use of literals, 514 
modifying query structure, 513 
with hint-based mechanisms, 526–562 

outlines, 526–538 
SQL Plan Baselines, 555–562 
SQL Profiles, 538–555 

plan instability, 497–512 
identifying, 505–512 

aggregating statistics by plan, 508–509 
capturing data on currently running 

queries, 505–506 
checking for variations around point in 

time, 511–512 
looking for statistical variance by plan, 

509–510 
reviewing history of statement’s 

performance, 506, 508 
reasons for 

bind variable peeking, 502–504 
changes to SQL, 502 
changes to statistics, 498–500 
changes tp environment, 500–501 

PLAN_HASH_VALUE, 538 
PLAN_TABLE, 156–159 
plus sign (+), 100, 175, 515 
positional notation, 256–259 
PRECEDING keyword, 223 
predefined variables, 6 
predicate information, 164 
predicate pushing, 47–49, 274–276 
predicates, 55, 244–245, 275, 377 
preprocessor, 2 
PRESENTNNV function, 267 
PRESENTV function, 266–267, 270 
PRESNTNNV function, 270 
PRIMARY KEY constraint, 89 
problem-solving questions, 131 
procedural approach, 106–113 



 INDEX 

572 

process flow diagram, 110 
program (process) global area (PGA), 30, 250 

Q 
queries 

about data, 134–140 
capturing data on currently running,  

505–506 
executing, 56 
hierarchical, 309 
parallel execution, 277–278 
processing, order of, 9 
rewrite feature, 276 
rewrite with materialized views, 50–52 
specifications, 132–134 
writing, 129–152 

query blocks, 39 
determining correct names, 517–520 
explicitly named, 520–521 

query transformations, 39–40 
predicate pushing, 47–49 
query rewrites with materialized views, 

50–52 
subquery unnesting, 44–47 
view merging, 40–44 

questions 
about data, 134–140 
about the question, 132–134 
asking good, 129–130 
categories of, 130–131 
purpose of, 130 

R 
range partitioning scheme, 386–389 
range scan, 79–81 
rank function, 234–235 
ratio_to_report function, 237 
read committed isolation level, 435 
read uncommitted isolation level, 435–437 
recursive subquery factoring (RSF), 304–324 

compared with CONNECT BY, 308 
CONNECT BY query, 304–307 

CONNECT_BY_ISCYCLE pseudocolumn, 
316–319 

CONNECT_BY_ISLEAF pseudocolumn, 
319–324 

CONNECT_BY_ROOT operator,  
313–316 

duplicating CONNECT BY functionality 
with, 309–324 

LEVEL pseudocolumn, 309–311 
restrictions on, 307 
SYS_CONNECT_BY_PATH function,  

311–313 
redo logs, 437 
REFERENCE clause, 268 
reference tables, 267. See also lookup tables 
regression tests, 472 
relational database management systems 

(RDBMS), 1 
Relative Block Address (RBA), 74 
repeatable read isolation level, 435 
reports 

extending, with GROUPING() function, 
209–210 

extending, with GROUPING_ID() function, 
210–214 

RESPECT NULLS  clause, 232 
RETURN UPDATED ROWS clause, 258–259 
reverse key indexes, 394–395 
REWRITE hint, 52 
right hand growth indexes, 387, 395 
rollback statement, 438 
rolling invalidation, 498 
ROLLUP() function, 12, 216–217 
root block, 74 
row_number function, 236–237 
rowid, 73 
rownum pseudocolumn, 49 
rows 

conversion to columns, 265 
evaluation order, 260–262 
fetching, 56, 59 
merging, 24–27 
nonexistent, 266–267 
offset, 228 
random, 63 
removing, 22–24 
returning updated, 258–259 
returning value from upcoming, 229 
sequentially-stored, 63 
updating, 18–22 

rowsource execution statistics, 153, 167–168 
RSF. See recursive subquery factoring 
rules 

evaluating, 271–274 
evaluation order of, 260–263, 273–274 
FOR loops and, 258 
null values and, 266–267 

rules automatic order clause, 271 



 INDEX 

573 

S 
savepoint statement, 438 
savepoints, 449–452 
schema changes, 472–476 
SCN number, 447 
SCOTT schema, 191 
.sql script files, executing, 8 
SEARCH clause, 308, 323 
secondary indexes, 373 
SELECT statement, 9–15, 39, 113 

execution of, 56–57 
FROM clause, 9–11 
GROUP BY clause, 12–13 
HAVING clause, 13 
ORDER BY clause, 14 
SELECT list, 13–14 
WHERE clause, 11 

selection questions, 131 
selectivity, 55 
self-joins, 252 
semi-colon (;), 7 
semi-joins, 325–334 

compared with inner joins, 326 
DISTINCT and, 329–330 
execution plans, 335–339 

controlling, 339–345 
EXISTS clause and, 326 
hints with, 339–342 
illustration of, 325 
IN clause and, 326 
nested loop, 334–335 
requirements, 347 
restrictions, 345–346 

sequential order, of rule evaluation, 262–263, 
273–274 

serializable isolation level, 435, 455 
serializable transactions, 452–455 
serialization devices, 36 
server processes, 30 
SERVEROUTPUT, 171 
SET clause, 4, 6, 18 
set constraints command, 439 
SET game, 105–106 
set operations, 113 

INTERSECT, 119 
MINUS, 117–118 
NULLs in, 123–124 
UNION, 114–117 
UNION ALL, 114–117, 150 

SET SERVEROUTPUT OFF, 171 
SET SQLPROMPT command, 6 

set transaction command, 438 
set transaction read only, 438 
sets, 105–127 

nulls and, 119–127 
procedural vs. set-based approach, 106–113 
thinking in, 105–106 

SGI. See system global area 
shared pool, 31–32 
showplan_last.sql, 191–192 
single child operations, 159 
single-block reads, 73 
single-table inserts, 15 
skip scan, 85–87 
SKIP_UNSUPPORTED parameter, 415 
snapper script, 505–506 
soft parsing, 32–33, 37–39 
sort-merge joins, 92–95 
sorts, 14–15 
spinning, 36 
spreadsheets, 251, 252 

FOR loops, 258 
inter-row referencing, 252–255 
positional notation, 256–257 
symbolic notation, 257 

SQL 
interfacing to database, 2 
introduction to, 1 
viewing recently generated, 166 

SQL Developer, 2 
SQL execution, 29–60 

buffer cache and, 37–39 
determining execution plan, 52–56 
executing plan and fetching rows, 56, 59 
identical statements and, 33–36 
library cache and, 32–33 
overview, 59–60 
query transformation and, 39–40 

predicate pushing, 47–49 
query rewrites with materialized views, 

50–52 
subquery unnesting, 44–47 
view merging, 40–44 

shared pool and, 31–32 
SQL Plan Baselines, for plan control, 555–562 
SQL Plan Management (SPM), 556 
SQL Profiles, for plan control, 538–555 
SQL statements. See also specific statements 

changes to, and plan instability, 502 
cost of, 52 
DELETE, 22–24 
dynamic, 247–248 
executing, 2, 7 



 INDEX 

574 

identical, 33–36 
INSERT, 15, 18 
MERGE, 24–27 
parsing, 32 
SELECT, 9–15 
UPDATE, 18–22 

SQL Tuning Advisor, 538–539 
SQL*Plus, 2 

buffer, 7 
commands, 4–8 

edit command, 8 
executing, 6–8 
set command, 4–6 

configuration, 4–6 
connecting to database, 3 
starting, 3 

SQL_ID, 529, 538 
sql_profiles.sql script, 541 
SQLTUNE_CATEGORY, 539 
statistics, 52–56, 61, 135–139 

aggregating by plan, 508–509 
blevel, 74 
changes to, 498–500 
changing, for plan control, 523–525 
clustering factor, 75–78, 139 
collecting plan, 168–171 
column, 54 
determining out of date, 186–189 
looking for variance by plan, 509–510 
 
object level, 498 
setting and restoring, 499 

statistics functions, 243 
STATISTICS_LEVEL instance parameter, 167 
Statspack, default retention for, 509 
stddev function, 242–243 
stddev_pop function, 243 
stddev_samp function, 243 
stored outlines, for plan control, 526–538 
subindexes, 85 
subqueries. See also correlated subqueries; 

uncorrelated subqueries 
caching, 46 
correlated vs. noncorrelated, 331–334 
unnesting, 44–47 

subquery factoring, 281–324 
applying to PL/SQL, 301–304 
execution plans, 286–290 
experimentation with, 304 
optimization and, 286–301 
recursive, 304–324 
standard usage, 283–286 

testing effects of query changes, 293–296 
testing over multiple executions, 290–293 

symbolic notation, 257 
SYS_CONNECT_BY_PATH function, 311–313 
system change number (SCN), 437 
system global area (SGA), 30, 437 

buffer cache, 37–39 
shared pool, 31–32 

system parameters, 32 

T 
TABLE ACCESS FULL operation, 65, 185 
table statistics, 54 
tables 

index organized, 381–383 
 
partitioning, 278–280 
set-based approach to, 110 

Test Driven Development (TDD), 467–468 
tests/testing 

to breaking point, 490–491 
execution plan comparison 478–483 
instrumentation, 484 
methods, 467–468 
performance, 488–490 
regression, 472 
schema changes, 472–476 
test cases, 466–467 
test environment, 191 
unit, 468–472, 476–478 

three-valued logic, 122 
throwaway, full scans and, 65–66 
touch count, 37 
TRACEONLY EXPLAIN option, 156 
transaction control statements, 433, 438 

commit, 438 
rollback, 438 
savepoint, 438 
set constraints, 439 
set transaction, 438 

transaction processing, 433–463 
ACID compliance and, 446 
active transaction, 447–448 
Order Entry (OE) schema and, 440–446 
using savepoints, 449–452 

transactions 
ACID properties of, 434–435 
active, 447–448 
autonomous, 458–463 
defined, 433–434 
grouping operations into, 439–440 



 INDEX 

575 

isolating, 455–458 
isolation levels, 435–437 
multi-version read consistency, 437 
serializing, 452–455 

troubleshooting, with instrumentation,  
491–495 

truncate command, 427 
Tuning Advisor, 539 
two-valued logic, 122 

U 
uncorrelated subquery 

vs. correlated, 331–334 
unnesting transformation of, 44–45 

undo blocks, 437 
_unnest_subquery parameter, 47 
UNION ALL operator, 113–117, 150, 200–201, 

205 
UNION operator, 113–117 
UNIQUE constraint, 89 
unit tests, 468–472, 476–478 
UNKNOWN value, 11 
unstable_plans.sql script, 509 
UPDATE statement, 18–22, 416–422 
UPDATE-only facility, 257 
UPSERT facility, 257 
USE_ANTI hint, 363 
_use_nosegment_indexes parameter, 398 
USE_STORED_OUTLINE parameter, 539 
USE_STORED_OUTLINES parameter, 529 
_user variable, 6 
USER_DUMP_DEST directory, 337 
USING clause, 430 

V 
V$SQL_PLAN, 166 
V$SQL_PLAN_STATISTICS view, 168 
V$SQL_PLAN_STATISTICS_ALL view,  

168–171, 176 
valid_hints.sql script, 514 
variables, predefined, 6 
Venn diagrams, 325 
VIEW keyword, 42 
view merging, 40–44 
virtual columns, function based indexes and, 

392–393 
virtual indexes, 398 

W 
whats_changed.sql script, 511–512 
WHERE clause, 11, 18, 22, 88 
window functions. See analytic functions 
windowing clause, 222–223, 227, 230, 233, 242 
WITH clause, 283–286 

generating customer reports using,  
303–304 

INLINE hint and, 289–290, 293 
MATERIALIZE hint and, 287–290, 293 
refactoring using, 299–304 

within group (order-by-clause) clause, 243 
working operations, 159 

Y, Z 
yes/no questions, 131





 





 


	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewers
	Acknowledgments
	Core SQL
	The SQL Language
	Interfacing to the Database
	Review of SQL*Plus
	Connect to a Database
	Configuring the SQL*Plus environment
	Executing Commands

	The Five Core SQL Statements
	The SELECT Statement
	The FROM Clause
	The WHERE Clause
	The GROUP BY Clause
	The HAVING Clause
	The SELECT List
	The ORDER BY Clause

	The INSERT Statement
	Single-table Inserts
	Multi-table Inserts

	The UPDATE Statement
	The DELETE Statement
	The MERGE Statement
	Summary

	SQL Execution
	Oracle Architecture Basics
	SGA – The Shared Pool
	The Library Cache
	Identical Statements
	SGA – The Buffer Cache
	Query Transformation
	View Merging
	Subquery Unnesting
	Predicate Pushing
	Query Rewrite with Materialized Views
	Determining the Execution Plan
	Executing the Plan and Fetching Rows
	SQL Execution – Putting It All Together
	Summary

	Access and Join Methods
	Full Scan Access Methods
	How Full Scan Operations are Chosen
	Full Scans and Throwaway
	Full Scans and Multiblock Reads
	Full Scans and the Highwater Mark

	Index Scan Access Methods
	Index Structure
	Index Scan Types
	Index Unique Scan
	Index range scan
	Index Full Scan
	Index Skip Scan
	Index Fast Full Scan

	Join Methods
	Nested Loops Joins
	Sort-Merge Joins
	Hash Joins
	Cartesian Joins
	Outer Joins

	Summary

	SQL is About Sets
	Thinking in Sets
	Moving from Procedural to Set-based Thinking
	Procedural vs Set-based Thinking: An Example

	Set Operations
	UNION and UNION ALL
	MINUS
	INTERSECT

	Sets and Nulls
	NULLs and Unintuitive Results
	NULL Behavior in Set Operations
	NULLs and GROUP BY and ORDER BY
	NULLs and Aggregate Functions

	Summary
	CHAPTER 5 ¦ ¦ ¦


	It’s About the Question
	Unknown
	Karen Morton

	Asking Good Questions
	The Purpose of Questions
	Categories of Questions
	Questions about the Question
	Questions about Data
	Building Logical Expressions
	Summary

	SQL Execution Plans
	Explain Plans
	Using Explain Plan
	Understanding How EXPLAIN PLAN can Miss the Mark
	Reading the Plan

	Execution Plans
	Viewing Recently Generated SQL
	Viewing the Associated Execution Plan
	Collecting the Plan Statistics
	Identifying SQL Statements for Later Plan Retrieval
	Understanding DBMS_XPLAN in Detail
	Using Plan Information for Solving Problems

	Summary

	Advanced Grouping
	Basic GROUP BY Usage
	HAVING Clause
	“New” GROUP BY Functionality
	CUBE Extension to GROUP BY
	Putting CUBE To Work
	Eliminate NULLs with the GROUPING() Function
	Extending Reports with GROUPING()
	Extending Reports With GROUPING_ID()
	GROUPING SETS and ROLLUP()
	GROUP BY Restrictions
	Summary

	Analytic Functions
	Example Data
	Anatomy of Analytic Functions
	List of Functions
	Aggregation Functions
	Aggregate Function Over An Entire Partition
	Granular Window Specifications
	Default Window Specification

	Lead and Lag
	Syntax and Ordering
	Example 1: Returning a Value from Prior Row
	Understanding that Offset is in Rows
	Example 2: Returning a Value from an Upcoming Row

	First_value & Last_value
	Example: First_value to Calculate Maximum
	Example: Last_value to Calculate Minimum

	Other Analytic Functions
	Nth_value (11gR2)
	Rank
	Dense_rank
	Row_number
	Ratio_to_report
	Percent_rank
	Percentile_cont
	Percentile_disc
	NTILE
	Stddev
	Listagg

	Performance Tuning
	Execution Plans
	Predicates
	Indexes

	Advanced topics
	Dynamic SQL
	Nesting Analytic Functions
	Parallelism
	PGA size

	Organizational Behavior
	Summary

	The Model Clause
	Spreadsheets
	Inter-Row Referencing via the Model clause
	Example Data
	Anatomy of a Model Clause
	Rules

	Positional and Symbolic References
	Positional Notation
	Symbolic Notation
	FOR Loops

	Returning Updated Rows
	Evaluation Order
	Row Evaluation Order
	Rule Evaluation Order

	Aggregation
	Iteration
	An Example
	PRESENTV and NULLs

	Lookup Tables
	NULLs
	Performance Tuning with the Model Clause
	Execution Plans
	ACYCLIC
	ACYCLIC FAST
	CYCLIC
	Sequential
	Predicate Pushing
	Materialized Views
	Parallelism
	Partitioning in Model Clause Execution
	Indexes

	Subquery Factoring
	Summary

	Subquery Factoring
	Standard Usage
	Optimizing SQL
	Testing Execution Plans
	Testing Over Multiple Executions
	Testing the Effects of Query Changes
	Seizing Other Optimization Opportunities
	Applying Subquery Factoring to PL/SQL

	Recursive Subqueries
	A CONNECT BY Example
	The Example Using an RSF
	Restrictions on RSF
	Differences from CONNECT BY

	Duplicating CONNECT BY Functionality
	The LEVEL Pseudocolumn
	The SYS_CONNECT_BY_PATH Function
	The CONNECT_BY_ROOT Operator
	The CONNECT_BY_ISCYCLE Pseudocolumn and NOCYCLE Parameter
	The CONNECT_BY_ISLEAF Pseudocolumn

	Summary

	Semi-joins and Anti-joins
	Semi-joins
	Semi-join Plans
	Controlling Semi-join Plans
	Controlling Semi-join Plans Using Hints
	Controlling Semi-join Plans at the Instance Level

	Semi-join Restrictions
	Semi-join Requirements
	Anti-joins
	Anti-join Plans
	Controlling Anti-join Plans
	Controlling Anti-join Plans Using Hints
	Controlling Anti-join Plans at the Instance Level

	Anti-join Restrictions
	Anti-join Requirements
	Summary

	Indexes
	Understanding Indexes
	When to use Indexes
	Choice of Columns
	The Null Issue

	Index Structural Types
	B-tree indexes
	Bitmap Indexes
	Index Organized Tables

	Partitioned Indexes
	Local Indexes
	Global Indexes
	Hash Partitioning vs. Range Partitioning

	Solutions to Match Application Characteristics
	Compressed Indexes
	Function Based Indexes
	Reverse Key Indexes
	Descending Indexes

	Solutions to Management Problems
	Invisible Indexes
	Virtual Indexes
	Bitmap Join Indexes

	Summary

	Beyond the SELECT
	INSERT
	Direct Path Inserts
	Multi-Table Inserts
	Conditional Insert
	DML Error Logging

	UPDATE
	DELETE
	MERGE
	Syntax and Usage
	Performance Comparison

	Summary

	Transaction Processing
	What is a Transaction?
	ACID Properties of a Transaction
	Transaction Isolation Levels
	Multi-Version Read Consistency
	Transaction Control Statements
	Commit
	Savepoint
	Rollback
	Set Transaction
	Set Constraints

	Grouping Operations into Transactions
	The Order Entry Schema
	The Active Transaction
	Using Savepoints
	Serializing Transactions
	Isolating Transactions
	Autonomous Transactions
	Summary

	Testing and Quality Assurance
	Test Cases
	Testing Methods
	Unit Tests
	Regression Tests
	Schema Changes
	Repeating the Unit Tests
	Execution Plan Comparison
	Instrumentation
	Adding Instrumentation to Code
	Testing for Performance
	Testing to Destruction
	Troubleshooting through Instrumentation
	Summary

	Plan Stability and Control
	Plan Instability: Understanding The Problem
	Changes to Statistics
	Changes to the Environment
	Changes to the SQL
	Bind Variable Peeking

	Identifying Plan Instability
	Capturing Data on Currently-Running Queries
	Reviewing the History of a Statement’s Performance
	Aggregating Statistics by Plan
	Looking for Statistical Variance by Plan
	Checking for Variations Around a Point in Time

	Plan Control: Solving the Problem
	Modifying Query Structure
	Making Appropriate Use of Literals
	Giving the Optimizer some Hints

	Plan Control: Without Access to the Code
	Option 1: Change the Statistics
	Option 2: Change Database Parameters
	Option 3: Add or Remove Access Paths
	Option 4: Apply Hint Based Plan-Control Mechanisms
	Plan Control: With Hint-Based Mechanisms
	Outlines
	SQL Profiles
	SQL Plan Baselines
	Hint Based Plan Control Mechanisms Wrap Up

	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	H
	J
	K
	L
	M
	O
	N
	P
	Q
	R
	S
	T
	V
	U
	W
	Y, Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Malloy's general settings for optimal printing.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [684.000 864.000]
>> setpagedevice




